CN108754357B - 一种SiC纳米线增强铝碳化硅复合材料及其制备方法 - Google Patents

一种SiC纳米线增强铝碳化硅复合材料及其制备方法 Download PDF

Info

Publication number
CN108754357B
CN108754357B CN201810528739.8A CN201810528739A CN108754357B CN 108754357 B CN108754357 B CN 108754357B CN 201810528739 A CN201810528739 A CN 201810528739A CN 108754357 B CN108754357 B CN 108754357B
Authority
CN
China
Prior art keywords
silicon carbide
sic
aluminum
composite material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810528739.8A
Other languages
English (en)
Other versions
CN108754357A (zh
Inventor
廖家豪
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Original Assignee
Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd filed Critical Suzhou Superlong Aviation Heat Resistance Material Technology Co Ltd
Priority to CN201810528739.8A priority Critical patent/CN108754357B/zh
Publication of CN108754357A publication Critical patent/CN108754357A/zh
Application granted granted Critical
Publication of CN108754357B publication Critical patent/CN108754357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种SiC纳米线增强铝碳化硅复合材料,由碳化硅泡沫陶瓷,SiC纳米线,BN界面层,碳化硅和铝合金组成,其特征在于SiC纳米线原位生长在碳化硅泡沫陶瓷中,BN界面层包覆在SiC纳米线和碳化硅泡沫陶瓷表面,碳化硅和铝合金填充在碳化硅泡沫陶瓷内部和表层;所述的碳化硅泡沫陶瓷密度为0.3~0.6g/cm3,孔隙率为70~90%,孔密度为15~35PPI;所述的SiC纳米线直径为50~200nm,长度为0.5~3mm;所述的BN界面层厚度为0.05~0.3μm;所述的碳化硅粉粒径为0.5~1μm,纯度为97~99%。本发明采用SiC纳米线增强铝碳化硅复合材料,制备工艺周期短,易于实现;充分发挥SiC纳米线的增韧补强和改善界面结合的作用,提高了铝碳化硅复合材料的断裂韧性和抗冲击性能等。

Description

一种SiC纳米线增强铝碳化硅复合材料及其制备方法
技术领域
本发明涉及一种铝碳化硅复合材料及其制备方法,特别涉及一种SiC纳米线增强铝碳化硅复合材料及其制备方法。
背景技术
铝碳化硅复合材料具有高比强度和比刚度、耐磨、低热膨胀系数、低密度、良好的尺寸稳定性和导热性,已经广泛地应用在航空航天、军事领域以及汽车、电子等行业领域。但是由于铝和碳化硅界面物理化学相容性不高,两相界面结合难以控制,材料内部不可避免的存在孔隙和微裂纹,导致铝碳化硅的断裂韧性、冲击强度以及抗热震性能有所不足,同时,过多的碳化硅难以均匀的分散在铝基体中,容易造成局部过高的应力集中,限制了铝碳化硅在高端结构件和功能件的应用能力。
SiC纳米线是一种性能优异的纳米增强体,拉伸强度可达到53.4GPa,远大于SiC纤维和SiC晶须,尤其是超长SiC纳米线不仅可以改善两相的界面结合,更重要的是还可以将两相基体彼此牢牢锁住,从而大大增强铝碳化硅复合材料的强度。将超长SiC纳米线原位生长在碳化硅泡沫陶瓷上,由于超长SiC纳米线径向放射状生长至碳化硅泡沫陶瓷内部空隙中,可以有效地将孔隙分割以及提高碳化硅泡沫陶瓷内的比表面积,便于铝和碳化硅泡沫陶瓷的结合,有效提高铝碳化硅的力学性能;并且超长SiC纳米线还可以通过分散压力、裂纹偏转及桥连等增韧机制,有效地强韧化铝碳化硅复合材料。
授权公开号为CN104726734B的中国发明专利公开了一种制备SiC/Al复合材料的方法,该方法为:将氧化铝和/或氧化硅粉末和分散剂用球磨介质球磨,再加入粘结剂继续球磨得到涂敷浆料;其中,粉末:分散剂:水:球磨介质:粘结剂的质量比为1:0.005~0.01:0.1~0.4:2:0.01~0.03;将网眼多孔SiC陶瓷浸入涂敷浆料中充分吸收、离心并干燥之;再将二次涂覆的网眼多孔SiC陶瓷埋入铝或铝合金粉中,抽真空升温将铝或铝合金熔化后,通入氩气,保温保压得到SiC/Al复合材料。由本发明方法得到的SiC/Al复合材料为双连续相,通过控制涂敷浆料的组成与性能,达到控制界面结构和界面反应的目的,实现碳化硅基体与金属Al之间的强结合且在三维空间均匀连续分布,避免了碳化硅增强体的偏聚与不连续,提高复合材料性能。
授权公开号为CN104658920B的中国发明专利公开了一种铝碳化硅制备方法及其所得铝碳化硅,铝碳化硅的制备方法,包括填粉和渗铝,填粉步骤包括:将粉料填充至铝基板的凹槽中,形成粉料板;在粉料板的表面铺设厚度为0.5mm的铝箔;铝碳化硅中不加除铝和碳化硅以外的其他添加剂。本发明提供的铝碳化硅制备方法通过在碳化硅粉料的表面铺设0.5mm厚的铝箔,再进行渗铝,可防止渗铝过程中铝液对碳化硅层的冲刷,保证渗铝步骤后所得铝碳化硅材料内部组织均匀。而且本发明提供的方法在未加入任何添加剂的情况下,保持了铝碳化硅材料的抗弯强度,从而将所得铝碳化硅材料的热导率提高至250~280W/mK。
申请公布号为CN105924178A的中国发明专利公开了一种铝碳化硅复合材料的制备方法,包括以下步骤:将粗碳化硅颗粒和细碳化硅颗粒混匀,加入两种碳化硅颗粒总质量1~3%的磷酸二氢铝水溶液和5%的水,加热进行湿混捏至湿度为10%,得到混合料,磷酸二氢铝水溶液的质量百分数为50%。将混合料烘干,造粒,陈腐得到粉料。将粉料填充至模具中,在10MPa的压力下成型,形成近成型素坯。将带素坯的模具包套封装后烧结,素坯形成预制件。将装有预制件的模具包套封装浸铝,得到铝碳化硅复合材料。原料中不添加石蜡微乳液,同时减少磷酸二氢铝的量,素坯的空隙高,制得材料铝体积分数大,提升了热导率。该制备方法,简化了工艺路线,节省了成本,提高了铝碳化硅复合材料的热导率。
目前,铝碳化硅复合材料的制备方法多为将铝粉和碳化硅粉混合烧结而成,或者将铝粉直接熔融渗入到碳化硅泡沫陶瓷中,这些方法没有有效解决铝碳化硅均匀分散的问题,也没有解决铝和碳化硅界面结合的问题,不能有效发挥铝碳化硅复合材料性能,限制了铝碳化硅复合材料的应用。
发明内容
为解决上述问题,本发明提出一种SiC纳米线增强铝碳化硅复合材料及其制备方法,充分发挥SiC纳米线增韧以及改善界面结合的优势,提高了铝碳化硅复合材料的性能,拓宽了铝碳化硅复合材料的应用领域。
一种SiC纳米线增强铝碳化硅复合材料,由碳化硅泡沫陶瓷,SiC纳米线,BN界面层,碳化硅和铝合金组成,其特征在于SiC纳米线原位生长在碳化硅泡沫陶瓷中,BN界面层包覆在SiC纳米线和碳化硅泡沫陶瓷表面,碳化硅和铝合金填充在碳化硅泡沫陶瓷内部和表层;所述的碳化硅泡沫陶瓷密度为0.3~0.6g/cm3,孔隙率为70~90%,孔密度为15~35PPI;所述的SiC纳米线直径为50~200nm,长度为0.5~3mm;所述的BN界面层厚度为0.05~0.3μm;所述的碳化硅呈颗粒状,粒径为0.5~1μm,纯度为97~99%。
一种SiC纳米线增强铝碳化硅复合材料的制备方法,其特征在于包括下述顺序的步骤:
(1)将碳化硅泡沫陶瓷用无水乙醇超声清洗,清洗后放到烘箱中烘干;
(2)将聚碳硅烷、二茂铁、活性炭混合球磨制得均匀的粉末先驱体,然后将粉末先驱体放入石墨坩埚中;
(3)将烘干好的碳化硅泡沫陶瓷放在石墨坩埚上面,再将石墨坩埚放入到高温烧结炉中,升温至1300~1500℃,保温并通入流动性Ar,制得原位生长SiC纳米线的碳化硅泡沫陶瓷;
(4)将原位生长SiC纳米线的碳化硅泡沫陶瓷放到化学气相沉积炉中沉积BN界面层;
(5)将铝合金颗粒和碳化硅颗粒混合均匀,将制备好BN界面的碳化硅泡沫陶瓷包埋在混合均匀的铝合金/碳化硅颗粒中,抽真空至0.01~10Pa,再升温至700~1000℃,保温1~5h,得到SiC纳米线增强铝碳化硅复合材料。
本发明有益效果:(1)采用SiC纳米线增强铝碳化硅复合材料,制备工艺简单,周期短,易于实现;(2)由于SiC纳米线的增韧补强和改善界面结合的作用,提高了铝碳化硅复合材料的断裂韧性和抗冲击性能等;(3)将混合均匀的铝/碳化硅粉填充在碳化硅泡沫陶瓷预制体中,有效地解决了铝和碳化硅均匀分散的问题。
实施例
一种SiC纳米线增强铝碳化硅复合材料,由碳化硅泡沫陶瓷,SiC纳米线,BN界面层,碳化硅和铝合金组成,其特征在于SiC纳米线原位生长在碳化硅泡沫陶瓷中,BN界面层包覆在SiC纳米线和碳化硅泡沫陶瓷表面,碳化硅和铝合金填充在碳化硅泡沫陶瓷内部和表层;所述的碳化硅泡沫陶瓷密度为0.5g/cm3,孔隙率为80%,孔密度为30PPI;所述的SiC纳米线直径为100nm,长度为1mm;所述的BN界面层厚度为0.1μm;所述的碳化硅粉粒径为0.5μm,纯度为99%。
一种SiC纳米线增强铝碳化硅复合材料的制备方法,其特征在于包括下述顺序的步骤:
(1)将碳化硅泡沫陶瓷用无水乙醇超声清洗,清洗后放到烘箱中烘干;
(2)将聚碳硅烷、二茂铁、活性炭混合球磨制得均匀的粉末先驱体,然后将粉末先驱体放入石墨坩埚中;
(3)将烘干好的碳化硅泡沫陶瓷放在石墨坩埚上面,再将石墨坩埚放入到高温烧结炉中,升温至1350℃,保温并通入流动性Ar,制得原位生长SiC纳米线的碳化硅泡沫陶瓷;
(4)将原位生长SiC纳米线的碳化硅泡沫陶瓷放到化学气相沉积炉中沉积BN界面层;
(5)将铝合金颗粒和碳化硅颗粒混合均匀,将制备好BN界面的碳化硅泡沫陶瓷包埋在混合均匀的铝合金/碳化硅颗粒中,抽真空至0.1Pa,再升温至750℃,保温3h,得到SiC纳米线增强铝碳化硅复合材料。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (1)

1.一种SiC纳米线增强铝碳化硅复合材料,由碳化硅泡沫陶瓷、SiC纳米线、BN界面层、碳化硅和铝合金组成,其特征在于SiC纳米线原位生长在碳化硅泡沫陶瓷中,BN界面层包覆在SiC纳米线和碳化硅泡沫陶瓷表面,碳化硅和铝合金填充在碳化硅泡沫陶瓷内部和表层;所述的碳化硅泡沫陶瓷密度为0.3~0.6g/cm3,孔隙率为70~90%,孔密度为15~35PPI;所述的SiC纳米线直径为50~200nm,长度为0.5~3mm;所述的BN界面层厚度为0.05~0.3μm;所述的碳化硅呈颗粒状,粒径为0.5~1μm,纯度为97~99%;所述的SiC纳米线增强铝碳化硅复合材料的制备方法,其特征在于包括下述顺序的步骤:(1)将碳化硅泡沫陶瓷用无水乙醇超声清洗,清洗后放到烘箱中烘干;(2)将聚碳硅烷、二茂铁、活性炭混合球磨制得均匀的粉末先驱体,然后将粉末先驱体放入石墨坩埚中;(3)将烘干好的碳化硅泡沫陶瓷放在石墨坩埚上面,再将石墨坩埚放入到高温烧结炉中,升温至1300~1500℃,保温并通入流动性Ar,制得原位生长SiC纳米线的碳化硅泡沫陶瓷;(4)将原位生长SiC纳米线的碳化硅泡沫陶瓷放到化学气相沉积炉中沉积BN界面层;(5)将铝合金颗粒和碳化硅颗粒混合均匀,将制备好BN界面的碳化硅泡沫陶瓷包埋在混合均匀的铝合金/碳化硅颗粒中,抽真空至0.01~10Pa,再升温至700~1000℃,保温1~5h,得到SiC纳米线增强铝碳化硅复合材料。
CN201810528739.8A 2018-05-29 2018-05-29 一种SiC纳米线增强铝碳化硅复合材料及其制备方法 Active CN108754357B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810528739.8A CN108754357B (zh) 2018-05-29 2018-05-29 一种SiC纳米线增强铝碳化硅复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810528739.8A CN108754357B (zh) 2018-05-29 2018-05-29 一种SiC纳米线增强铝碳化硅复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108754357A CN108754357A (zh) 2018-11-06
CN108754357B true CN108754357B (zh) 2020-06-23

Family

ID=64003433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810528739.8A Active CN108754357B (zh) 2018-05-29 2018-05-29 一种SiC纳米线增强铝碳化硅复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108754357B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518026A (zh) * 2018-11-29 2019-03-26 苏州宏久航空防热材料科技有限公司 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN109718603B (zh) * 2019-01-16 2021-04-02 苏州宏久航空防热材料科技有限公司 一种叠层复合过滤结构
CN115679163B (zh) * 2022-11-22 2023-09-22 山东创新金属科技有限公司 一种汽车防撞架用铝合金材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817432A (en) * 1992-03-17 1998-10-06 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
EP1035089A1 (en) * 1999-03-05 2000-09-13 General Electric Company Porous body infiltrating method
CN101089217A (zh) * 2007-07-19 2007-12-19 西安明科微电子材料有限公司 中体积分数铝碳化硅金属基复合材料组合物及制备产品的方法
CN102093056A (zh) * 2010-12-08 2011-06-15 湖南浩威特科技发展有限公司 网络互穿结构铝碳化硅复合材料及其构件的制备方法
CN104658920A (zh) * 2015-02-04 2015-05-27 湖南浩威特科技发展有限公司 铝碳化硅制备方法、所得铝碳化硅及电子元器件封装底板
CN104726734A (zh) * 2013-12-20 2015-06-24 中国科学院上海硅酸盐研究所 碳化硅增强铝基复合材料的制备方法
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817432A (en) * 1992-03-17 1998-10-06 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
EP1035089A1 (en) * 1999-03-05 2000-09-13 General Electric Company Porous body infiltrating method
CN101089217A (zh) * 2007-07-19 2007-12-19 西安明科微电子材料有限公司 中体积分数铝碳化硅金属基复合材料组合物及制备产品的方法
CN102093056A (zh) * 2010-12-08 2011-06-15 湖南浩威特科技发展有限公司 网络互穿结构铝碳化硅复合材料及其构件的制备方法
CN104726734A (zh) * 2013-12-20 2015-06-24 中国科学院上海硅酸盐研究所 碳化硅增强铝基复合材料的制备方法
CN104658920A (zh) * 2015-02-04 2015-05-27 湖南浩威特科技发展有限公司 铝碳化硅制备方法、所得铝碳化硅及电子元器件封装底板
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法

Also Published As

Publication number Publication date
CN108754357A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
US6309994B1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
CN109055874B (zh) 一种界面层增强铝合金-碳化硅双基纤维复合材料及其制备方法
RU2176628C2 (ru) Композит (варианты) и способ его приготовления, способ обработки волоконной заготовки (варианты)
CN108754357B (zh) 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN109020628B (zh) 一种SiC纳米线增强多孔陶瓷复合材料及其制备方法
JP2004510674A (ja) 炭化ホウ素をベースとしたセラミックマトリックス複合材料
US7012035B2 (en) Fibre composite ceramic with a high thermal conductivity
CN107759251B (zh) 一种多孔陶瓷表面高韧性陶瓷涂层的制备方法
CN109020588B (zh) 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
EP0417493A2 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
Li et al. Research and prospect of ceramics for automotive disc-brakes
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN106507783B (zh) 碳/碳化硅陶瓷基复合材料刹车盘的制造方法
US20130084389A1 (en) Method and ceramic component
CN114538964B (zh) SiC-Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法
CN114315394B (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN111876625B (zh) 一种AlNMg复合材料及其制备方法
CN109518026A (zh) 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN114908322B (zh) 一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法
CN109095932A (zh) 一种晶须增韧氮化硅泡沫材料及其无压烧结制备方法
KR100838825B1 (ko) 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant