CN108736024B - A kind of fuel cell system reformer chamber and fuel cell system - Google Patents

A kind of fuel cell system reformer chamber and fuel cell system Download PDF

Info

Publication number
CN108736024B
CN108736024B CN201810569926.0A CN201810569926A CN108736024B CN 108736024 B CN108736024 B CN 108736024B CN 201810569926 A CN201810569926 A CN 201810569926A CN 108736024 B CN108736024 B CN 108736024B
Authority
CN
China
Prior art keywords
fuel cell
almag
plate
cell system
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810569926.0A
Other languages
Chinese (zh)
Other versions
CN108736024A (en
Inventor
戚玉欣
苗建朋
党志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dezhou New Kinetic Energy Tower Power Generation Co Ltd
Original Assignee
Dezhou New Kinetic Energy Tower Power Generation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dezhou New Kinetic Energy Tower Power Generation Co Ltd filed Critical Dezhou New Kinetic Energy Tower Power Generation Co Ltd
Priority to CN201810569926.0A priority Critical patent/CN108736024B/en
Publication of CN108736024A publication Critical patent/CN108736024A/en
Application granted granted Critical
Publication of CN108736024B publication Critical patent/CN108736024B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The invention discloses a kind of fuel cell system reformer chamber and fuel cell systems, reformer chamber includes almag flow-field plate and Seal end plate, almag flow-field plate includes flow field, composite catalyst and complex carrier, complex carrier is formed on the surface in flow field, complex carrier is made of aluminium oxide and magnesia, composite catalyst is formed on complex carrier, composite catalyst is made of copper simple substance, copper oxide, germanium dioxide and indium sesquioxide, complex carrier is formed by electrochemical erosion method, and composite catalyst is formed by reactive plasma spray coating method and cold metallikon.Reformer chamber of the invention has high methanol conversion ratio and low CO selection rate, the also ability with the poisoning of good resisting sulfide.

Description

A kind of fuel cell system reformer chamber and fuel cell system
Technical field
The present invention relates to a kind of fuel cell system reformer chamber and fuel cell systems, and in particular to a kind of methanol-water weight The fuel cell system reformer chamber and fuel cell system of whole hydrogen manufacturing.
Background technique
Fuel cell water hydrogen generator is converted into hydrogen using methanol-water as fuel, methanol-water, is passed through fuel cell progress Chemical energy is converted into electric energy by electrochemical reaction, and energy conversion efficiency is higher, only discharges water and a small amount of carbon dioxide, PM2.5 discharge is 0, realizes real environmental protection.Solve the problems, such as Hydrogen Energy " storage and transportation is difficult, at high cost ".With traditional vapour Oil/diesel-driven generator is compared, and has efficient, stable lasting power generation;Pollution-free, environmentally protective;Low decibel, zero noise pollution;Exempt from Maintenance, the advantage of low running cost.The service life of water hydrogen power generator is up to 10 years or more, and product has reliable and stable set Standby service ability and security protection ability, can long-time steady operation, uninterrupted power supply is provided.
Methanol-water is after gasification system gasification is gas, and catalytic reforming is hydrogen in reformer chamber.Therefore, methanol-water weight Whole hydrogen producing technology more becomes the hot spot researched and developed both at home and abroad, and technological core is the preparation of methanol-water reforming hydrogen-production catalyst. The activity and selectivity that Pd/ZnO alloy catalyst has had in hydrogen production from methanol-steam reforming at present, but Pd is expensive, warp Ji property is poor, and anti-impurity poisoning capability is weaker.Base metal Cu base catalyst and other oxide catalysts are cheap, tool There is preferable methanol conversion, but CO is selectively poor, anti-impurity poisoning is also poor, and stability problem is relatively difficult to resolve certainly.And first Common impurity has sulfide, chloride etc. in alcohol.
Therefore, at present the research emphasis of reforming catalyst from improving methanol conversion and H2Selectivity, how be changed into has Effect reduces the selectivity and resisting sulfide, chloride poisoning of CO.
Summary of the invention
For this purpose, the present invention proposes a kind of fuel cell system reformer chamber and fuel cell system, it is therefore an objective to solve methanol The resisting sulfide of water reforming hydrogen-production catalyst is poisoned bad problem.
In order to solve the above-mentioned technical problem, the technical solution adopted by the present invention are as follows: a kind of fuel cell system reformer chamber, Including almag flow-field plate and Seal end plate, almag flow-field plate includes flow field, composite catalyst and complex carrier, spy Sign is that complex carrier is formed on the surface in flow field, and complex carrier is made of aluminium oxide and magnesia, and composite catalyst is formed On complex carrier, composite catalyst is made of copper simple substance, copper oxide, germanium dioxide and indium sesquioxide.
Preferably, complex carrier is formed by electrochemical erosion method.Electrochemical erosion method includes following successively step: will be had After the surface of the almag plate in flow field is cleaned with deionized water, electrochemical corrosion is carried out, the almag plate after corrosion is used Ethyl alcohol and deionized water are successively cleaned, and are then placed in baking oven dry.
Preferably, composite catalyst is formed by reactive plasma spray coating method and cold metallikon.Reactive plasma spray Coating includes following successively step: copper powder, indium powder, germanium powder 1:0.5-3:0.5-3 in mass ratio are mixed after mixing Mixed powder is put into the powder feeder of plasma-spraying device by powder, using the dry almag plate through excessive erosion as substrate, Choose Ar and O2As spray gas, by plasma-spraying device the dry almag plate surface through excessive erosion into Row plasma spraying is prepared in the runner of the dry almag plate through excessive erosion by copper oxide, indium oxide and oxidation The three-way catalyst of germanium composition.
Preferably, composite catalyst is formed by reactive plasma spray coating method and cold metallikon.Cold metallikon includes such as Under successively step: copper powder is put into cold spraying plating equipment, using the almag plate with three-way catalyst as substrate, chooses N2Make For working gas, cold spraying plating is carried out in the almag plate surface with three-way catalyst by cold spraying plating equipment, has three Composite catalyst is prepared in the runner of the almag plate of first catalyst.
Preferably, complex carrier is formed by electrochemical erosion method.The technique of electrochemical erosion method is as follows: with sodium chloride solution As electrolyte, for the almag plate with flow field as anode, graphite plate applies direct current, electric current as cathode at room temperature Density is 100~300A/m2, voltage 200-300V, the electrochemical corrosion time be 10~120mins.
Preferably, composite catalyst is formed by reactive plasma spray coating method and cold metallikon.Reactive plasma spray The technique of coating is as follows: the flow of Ar is 50-90L/min, O2Flow be 10-25L/min, the electricity of plasma-spraying device Arc voltage is 40-50V, arc current 800-900A, send mixed powder speed 15-50g/min, spray distance 80-135mm, powder feeding 50 ° -90 ° of angle.
Preferably, composite catalyst is formed by reactive plasma spray coating method and cold metallikon.The technique of cold metallikon As follows: injection pressure is 1-3MPa, and injection temperation is 25-80 DEG C, gas velocity 1-2m3.min-1, copper powder conveying speed 5- 15kg.h-1, spray distance 10-50mm, power 5-25kW.
The present invention also provides a kind of fuel cell systems, including, gasifier, fuel cell system of the invention are reformed Room, hydrogen purifier and fuel cell.
The invention has the following advantages that
1, the present invention is formed in the runner of almag plate using novel processing step --- electrochemical erosion method --- The complex carrier being made of aluminium oxide and magnesia, the complex carrier generate collaboration together with composite catalyst of the invention and make With, it can be in the case where high methanol conversion ratio and low CO selection rate, the ability with the poisoning of good resisting sulfide.
2, the present invention uses novel processing step --- reactive plasma spray coating method and the novel preparation side of cold metallikon Method --- the composite catalyst being made of copper simple substance, copper oxide, germanium dioxide and indium sesquioxide is formd, the composite catalyst Synergistic effect is generated together with the complex carrier that electrochemical corrosion is formed, there is high methanol conversion ratio and low CO selection rate, also have There is the ability of good resisting sulfide poisoning.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of fuel cell system reformer chamber of the present invention.
Fig. 2 is the structural schematic diagram of the cross section in flow field in almag flow-field plate in Fig. 1.
Fig. 3 is the structural schematic diagram of fuel cell system of the present invention.
Fig. 4 is the preparation technology flow chart of fuel cell system reformer chamber of the invention.
Specific embodiment
With reference to the accompanying drawings to invention is more fully described, wherein illustrating exemplary embodiment of the present invention.
As depicted in figs. 1 and 2, fuel cell system reformer chamber includes almag flow-field plate 1 and Seal end plate 2, aluminium Magnesium alloy flow-field plate 1 includes flow field 11, composite catalyst 12 and complex carrier 13, and complex carrier 13 is formed in the surface in flow field 11 On, complex carrier 13 is made of aluminium oxide and magnesia, and composite catalyst 12 is formed on complex carrier 13, composite catalyst 12 It is made of copper simple substance, copper oxide, germanium dioxide and indium sesquioxide.Flow field 11, composite catalyst 12 and complex carrier 13 in Fig. 2 Between size be not offered as the relative size between them, be only to illustrate this three.The four of almag flow-field plate 1 A angle has mounting hole, for being installed with Seal end plate 2.Seal end plate 2 has methanol steam air inlet 21 and reforms Gas gas outlet 22, and also there is mounting hole at four angles of Seal end plate 2, for the mounting hole with almag flow-field plate 1 Alignment installation.Installation method is unlimited, can be installed using bolt.
As shown in figure 3, fuel cell system 3 includes gasifier 31, fuel cell system reformer chamber 32, hydrogen purifier 33, fuel cell 34.Raw material is methanol aqueous solution, is gasified after entering vaporizer 31, and fuel cell system use is then passed to Reformer chamber 32.It obtains reforming gas after reforming, reforms gas and enter after hydrogen purifier 33, obtain high-purity hydrogen.High-purity hydrogen Into generating electricity in fuel cell.Gasifier 31, hydrogen purifier 33, fuel cell 34 can use gas in the prior art Makeup sets, hydrogen purification apparatus and fuel-cell device.
As shown in figure 4, the manufacturing method of fuel cell system reformer chamber is as follows: choosing first, there is the magnalium in flow field to close Golden plate after cleaning on the surface of the almag plate with flow field with deionized water, carries out electrochemical corrosion, by the aluminium after corrosion Magnesium alloy plate ethyl alcohol and deionized water are successively cleaned, and are then placed in baking oven dry.
Almag plate with flow field can be with conventional aluminium magnesium alloy plate by being stamped and formed out flow field.The type of runner and Size is not particularly limited.It can be using snakelike etc..Common almag is mainly made of aluminium and magnesium, and wherein the content of magnesium is 8- 13wt%.The size of almag plate is unlimited, such as (length) 20mm × 30mm × 15mm, 30cm × 50cm × 20cm. The technique of electrochemical erosion method is as follows: using sodium chloride solution as electrolyte, the almag plate with flow field is as anode, stone Black plate applies direct current as cathode at room temperature, and current density is 100~300A/m2, voltage 200-300V, electrochemistry is rotten The erosion time is 10~120mins.By the almag plate after corrosion with ethyl alcohol clean and deionized water successively clean, ethyl alcohol it is dense For degree in 95kWt% or more, wash number is unlimited, and generally 3 times.It is finally putting into baking oven dry.Drying can be using true Sky is dry, and temperature is 60~80 DEG C, and the time is 1~3h.
Copper powder, indium powder, germanium powder 1:0.5-3:0.5-3 in mass ratio are obtained into mixed powder after mixing, are put into plasma The powder feeder of body spraying equipment.Copper powder, indium powder, germanium powder quality can be adjusted according to the catalyst thickness of acquisition, copper powder, Indium powder, germanium powder average diameter D50 be 0.05-0.3 μm.Using the dry almag plate through excessive erosion as substrate, choose Ar and O2As spray gas, carried out by plasma-spraying device in the dry almag plate surface through excessive erosion etc. Plasma spray is prepared in the runner of the dry almag plate through excessive erosion by copper oxide, indium oxide and germanium oxide group At three-way catalyst.There are many ways to mixing, such as colter mixer, spiral ribbon mixer, Agravicmixer, V-type are mixed Conjunction machine, double-spiral conical mixer, high low-velocity liquid mixer, planetary power mixing machine etc..As long as mixture is uniformly mixed ?.Incorporation time can determines according to actual conditions, usually in 2-10h.Plasma-spraying device uses SluzerMetco9MC plasma spraying equipment carries out plasma spraying, spray gun type 9MB.In spraying process, the flow of Ar For 50-90L/min, O2Flow be 10-25L/min, the arc voltage of plasma-spraying device is 40-50V, arc current 800-900A, send mixed powder speed 15-50g/min, spray distance 80-135mm, and 50 ° -90 ° of powder feeding angle.In spraying process In, matrix is cooled down using air blowing method or recirculated water cooling method.It is cold when matrix cooling using air blowing method But the flow of gas is 100-2000L/min;When matrix cooling using recirculated water cooling method, the flow of cooling water is 10- 500L/min.The three-way catalyst layer of formation is with a thickness of 1-5 μm.Copper, indium powder, germanium powder are during plasma spray coating It is oxidized, forms the very high three-way catalyst of catalytic activity, and can closely tie with the complex carrier in almag plate runner It closes, forms the strong catalyst of resisting sulfide ability.
Copper powder is put into cold spraying plating equipment, using the almag plate with three-way catalyst as substrate, chooses N2As Working gas carries out cold spraying plating in the almag plate surface with three-way catalyst by cold spraying plating equipment, with ternary Composite catalyst is prepared in the runner of the almag plate of catalyst.The quality of copper powder can be according to the catalyst thickness of acquisition Be adjusted, the technique of cold metallikon is as follows: injection pressure is 1-3MPa, and injection temperation is 25-80 DEG C, gas velocity 1- 2m3.min-1, copper powder conveying speed 5-15kg.h-1, spray distance 10-50mm, power 5-25kW.The copper catalyst layer of formation With a thickness of 1-3 μm.Elemental copper will not be oxidized in cold metallization process, avoid decomposition, the problems such as phase transformation, crystal grain are grown up, Composite catalyst of the invention is together constituted with three-way catalyst.Composite catalyst of the invention can mentioned with complex carrier In the case where high methanol conversion ratio and reduction CO selection rate, the ability of resisting sulfide is improved.
Almag flow-field plate with composite catalyst and complex carrier is assembled, it is close with Seal end plate around Envelope, is assembled into fuel cell system reformer chamber.Successively by gasifier, reformer chamber of the invention, hydrogen purifier and fuel cell It is attached and assembles, form fuel cell system of the invention.Fuel cell system working principle of the invention is as follows: water hydrogen Raw material uses methanol-water, the i.e. mixed solution of first alcohol and water.Methanol-water is passed through in gasifier, first alcohol and water is passed through after being gasified Reformer chamber.By catalytic reforming, obtain reforming gas.It reforms gas to be purified in hydrogen purifier, obtains high-purity hydrogen, be supplied to It generates electricity in fuel cell.
The present invention is with hydrogen content (%), carbon monoxide selective (%), methanol conversion (%) in reformation gas to this hair Bright fuel cell is assessed with reformer chamber.Using dress, there are four the Agilent 3000A in channel and four TCD detectors Micro gas chromatography system (GC) is monitored and is analyzed.Whole system is automatic, and uses calculating Machine come control with carry out operation and data acquisition.
Contain the H of 0.1wt% in the methanol of test2S, reformer chamber run 5h after, test reform gas in hydrogen content (%), Carbon monoxide selective (%), methanol conversion (%).
Below in conjunction with embodiment, the present invention will be described in detail.
Embodiment 1
Choose 30cm × 50cm with flow field × 10cm almag plate of 8wt%, runner depth 1cm, wide 1cm, ridge Width is 1cm.With after ethyl alcohol, deionized water successively supersonic oscillations 5min after almag plate is cleaned up, then configure The sodium chloride solution of 0.1mol/L uses graphite as cathode as electrolyte solution, and almag plate is applied at room temperature as anode Add direct current, current density 100A/m2, voltage 200V, the electrochemical corrosion time be 120mins.By the magnalium after corrosion Alloy sheets are cleaned with ethyl alcohol and deionized water is successively cleaned 3 times.It is put into baking oven and is dried in vacuo, temperature is 60 DEG C, and the time is 3h.
Mixed powder will be obtained after copper powder, indium powder, germanium powder 1:1:1 mixing 2h in mass ratio, is put into plasma-spraying device Powder feeder.Copper powder, indium powder, germanium powder average diameter D50 be 0.1 μm.Using the dry almag plate through excessive erosion as Substrate chooses Ar and O2As spray gas, by plasma-spraying device in the dry almag plate through excessive erosion Surface carries out plasma spraying, prepares in the runner of the dry almag plate through excessive erosion by copper oxide, indium oxide With the three-way catalyst of germanium oxide composition.The flow of Ar is 50L/min, O2Flow be 10L/min, plasma-spraying device Arc voltage be 40V, arc current 800A, mixed powder powder feed rate 15g/min, spray distance 80mm, 50 ° of powder feeding angle. Three-way catalyst layer is obtained in runner with a thickness of 2 μm.
Copper powder is put into cold spraying plating equipment, using the almag plate with three-way catalyst as substrate, chooses N2As Working gas carries out cold spraying plating in the almag plate surface with three-way catalyst by cold spraying plating equipment, with ternary Composite catalyst is prepared in the runner of the almag plate of catalyst.The injection pressure of cold metallikon is 1MPa, injection temperation It is 25 DEG C, gas velocity 1m3.min-1, copper powder conveying speed 5kg.h-1, spray distance 10mm, power 5kW.The copper of formation Catalyst layer thickness is 1 μm.
Almag flow-field plate with composite catalyst and complex carrier is assembled, it is close with Seal end plate around Envelope, is assembled into fuel cell system reformer chamber.Methanol-water containing hydrogen sulfide is passed through in gasifier, first alcohol and water is gasified It is passed through middle reformer chamber.By catalytic reforming, obtain reforming gas.
Measuring and reforming hydrogen content in gas is 75.8%, carbon monoxide selective 5.1%, and methanol conversion is 98.1%.
Embodiment 2
Choose 30cm × 50cm with flow field × 10cm almag plate of 10wt%, runner depth 1cm, wide 1cm, ridge Width is 1cm.With after ethyl alcohol, deionized water successively supersonic oscillations 5min after almag plate is cleaned up, then configure The sodium chloride solution of 0.1mol/L uses graphite as cathode as electrolyte solution, and almag plate is applied at room temperature as anode Add direct current, current density 200A/m2, voltage 250V, the electrochemical corrosion time be 60mins.Magnalium after corrosion is closed Golden plate is cleaned with ethyl alcohol and deionized water is successively cleaned 3 times.It is put into baking oven and is dried in vacuo, temperature is 70 DEG C, and the time is 2h.
Mixed powder will be obtained after copper powder, indium powder, germanium powder 1:2:2 mixing 6h in mass ratio, is put into plasma-spraying device Powder feeder.Copper powder, indium powder, germanium powder average diameter D50 be 0.2 μm.Using the dry almag plate through excessive erosion as Substrate chooses Ar and O2As spray gas, by plasma-spraying device in the dry almag plate through excessive erosion Surface carries out plasma spraying, prepares in the runner of the dry almag plate through excessive erosion by copper oxide, indium oxide With the three-way catalyst of germanium oxide composition.The flow of Ar is 70L/min, O2Flow be 18L/min, plasma-spraying device Arc voltage be 45V, arc current 850A, mixed powder powder feed rate 25g/min, spray distance 100mm, 60 ° of powder feeding angle. Three-way catalyst layer is obtained in runner with a thickness of 3 μm.
Copper powder is put into cold spraying plating equipment, using the almag plate with three-way catalyst as substrate, chooses N2As Working gas carries out cold spraying plating in the almag plate surface with three-way catalyst by cold spraying plating equipment, with ternary Composite catalyst is prepared in the runner of the almag plate of catalyst.The injection pressure of cold metallikon is 1.5MPa, injection temperature Degree is 45 DEG C, gas velocity 1.5m3.min-1, copper powder conveying speed 10kg.h-1, spray distance 25mm, power 10kW.Shape At copper catalyst layer with a thickness of 1.5 μm.
Almag flow-field plate with composite catalyst and complex carrier is assembled, it is close with Seal end plate around Envelope, is assembled into fuel cell system reformer chamber.Methanol-water containing hydrogen sulfide is passed through in gasifier, first alcohol and water is gasified It is passed through middle reformer chamber.By catalytic reforming, obtain reforming gas.
Measuring and reforming hydrogen content in gas is 74.6%, carbon monoxide selective 4.7%, and methanol conversion is 96.7%.
Embodiment 3
Choose 30cm × 50cm with flow field × 10cm almag plate of 12wt%, runner depth 1cm, wide 1cm, ridge Width is 1cm.With after ethyl alcohol, deionized water successively supersonic oscillations 5min after almag plate is cleaned up, then configure The sodium chloride solution of 0.1mol/L uses graphite as cathode as electrolyte solution, and almag plate is applied at room temperature as anode Add direct current, current density 300A/m2, voltage 300V, the electrochemical corrosion time be 10mins.Magnalium after corrosion is closed Golden plate is cleaned with ethyl alcohol and deionized water is successively cleaned 3 times.It is put into baking oven and is dried in vacuo, temperature is 80 DEG C, and the time is 1h.
Mixed powder will be obtained after copper powder, indium powder, germanium powder 1:3:3 mixing 8h in mass ratio, is put into plasma-spraying device Powder feeder.Copper powder, indium powder, germanium powder average diameter D50 be 0.3 μm.Using the dry almag plate through excessive erosion as Substrate chooses Ar and O2As spray gas, by plasma-spraying device in the dry almag plate through excessive erosion Surface carries out plasma spraying, prepares in the runner of the dry almag plate through excessive erosion by copper oxide, indium oxide With the three-way catalyst of germanium oxide composition.The flow of Ar is 80L/min, O2Flow be 25L/min, plasma-spraying device Arc voltage be 50V, arc current 900A, mixed powder powder feed rate 45g/min, spray distance 120mm, 70 ° of powder feeding angle. Three-way catalyst layer is obtained in runner with a thickness of 3 μm.
Copper powder is put into cold spraying plating equipment, using the almag plate with three-way catalyst as substrate, chooses N2As Working gas carries out cold spraying plating in the almag plate surface with three-way catalyst by cold spraying plating equipment, with ternary Composite catalyst is prepared in the runner of the almag plate of catalyst.The injection pressure of cold metallikon is 3MPa, injection temperation It is 65 DEG C, gas velocity 2m3.min-1, copper powder conveying speed 15kg.h-1, spray distance 35mm, power 20kW.It is formed Copper catalyst layer is with a thickness of 2 μm.
Almag flow-field plate with composite catalyst and complex carrier is assembled, it is close with Seal end plate around Envelope, is assembled into fuel cell system reformer chamber.Methanol-water containing hydrogen sulfide is passed through in gasifier, first alcohol and water is gasified It is passed through reformer chamber.By catalytic reforming, obtain reforming gas.
Measuring and reforming hydrogen content in gas is 74.8%, carbon monoxide selective 5.4%, and methanol conversion is 97.1%.
Comparative example 1
Other than almag plate is replaced with aluminium sheet, remaining is the same as embodiment 1.
Measuring and reforming hydrogen content in gas is 51.6%, carbon monoxide selective 15.4%, and methanol conversion is 55.1%.
Comparative example 2
Other than almag plate is replaced with magnesium plate, remaining is the same as embodiment 1.
Measuring and reforming hydrogen content in gas is 50.3%, carbon monoxide selective 16.7%, and methanol conversion is 53.2%.
Comparative example 3
Other than indium powder is replaced with zinc powder, remaining is the same as embodiment 1.
Measuring and reforming hydrogen content in gas is 41.7%, carbon monoxide selective 20.1%, and methanol conversion is 43.2%.
Comparative example 4
Other than germanium powder is replaced with zinc powder, remaining is the same as embodiment 1.
Measuring and reforming hydrogen content in gas is 39.2%, carbon monoxide selective 21.2%, and methanol conversion is 42.3%.
Comparative example 5
Other than reactive plasma spray coating method is replaced with impregnation sintering method, remaining is the same as embodiment 1.
Impregnation sintering method includes following successively step: weighing mantoquita, germanium salt, indium salts and is dissolved in water as solution, is immersed in dry On the dry almag plate through excessive erosion, 500-550 DEG C roasting 2-4 hours, obtained on flow field by copper oxide, germanium dioxide With the catalyst of indium sesquioxide composition.
Measuring and reforming hydrogen content in gas is 48.9%, carbon monoxide selective 13.8%, and methanol conversion is 53.5%.
Can be seen that fuel cell system reformer chamber of the invention from embodiment 1-3 can be reasonably resistant to sulfide Poisoning, and keep methanol conversion and carbon monoxide selective.It can be seen that from comparative example 1-5 in obtained reformer chamber Sulfide poisoning, the equal sharp fall of methanol conversion, hydrogen content has occurred in catalyst.
The above is only a preferred embodiment of the present invention, for those of ordinary skill in the art, according to the present invention Thought, there will be changes in the specific implementation manner and application range, and the content of the present specification should not be construed as to the present invention Limitation.

Claims (7)

1. a kind of fuel cell system reformer chamber, including almag flow-field plate and Seal end plate, the almag flow field Plate includes flow field, composite catalyst and complex carrier, which is characterized in that the complex carrier is formed in the surface in the flow field On, the complex carrier is made of aluminium oxide and magnesia, and the composite catalyst is formed on the complex carrier, described multiple It closes catalyst to be made of copper simple substance, copper oxide, germanium dioxide and indium sesquioxide, the composite catalyst passes through reaction and plasma Body spray coating method and cold metallikon are formed, and the reactive plasma spray coating method includes following successively step: by copper powder, indium powder, germanium Powder 1:0.5-3:0.5-3 in mass ratio obtains mixed powder after mixing, and mixed powder is put into sending for plasma-spraying device Powder device chooses Ar and O using the dry almag plate through excessive erosion as substrate2As spray gas, by it is described it is equal from Daughter spraying equipment carries out plasma spraying in the almag plate surface through excessive erosion of the drying, in the warp of the drying The three-way catalyst being made of copper oxide, indium oxide and germanium oxide is prepared in the runner of the almag plate of excessive erosion.
2. fuel cell system reformer chamber according to claim 1, wherein the complex carrier is by electrochemical erosion method It is formed, the electrochemical erosion method includes following successively step: by the surface deionized water of the almag plate with flow field After cleaning, carry out electrochemical corrosion, by after corrosion almag plate ethyl alcohol and deionized water successively clean, be then placed in baking It is dry in case.
3. fuel cell system reformer chamber according to claim 1 or 2, wherein the composite catalyst passes through reaction Plasma spraying process and cold metallikon are formed, and the cold metallikon includes following successively step: copper powder being put into cold spraying plating and is set It is standby, using the almag plate with three-way catalyst as substrate, choose N2As working gas, pass through the cold spraying plating equipment Cold spraying plating is carried out in the almag plate surface with three-way catalyst, in the almag with three-way catalyst The composite catalyst is prepared in the runner of plate.
4. fuel cell system reformer chamber according to claim 1 or 2, wherein the complex carrier is by electrochemistry corruption Erosion method is formed, and the technique of the electrochemical erosion method is as follows: using sodium chloride solution as electrolyte, the almag with flow field Plate applies direct current as cathode as anode, graphite plate at room temperature, and current density is 100~300A/m2, voltage 200- 300V, electrochemical corrosion time are 10~120mins.
5. fuel cell system reformer chamber according to claim 1 or 2, wherein the composite catalyst passes through reaction Plasma spraying process and cold metallikon are formed, and the technique of the reactive plasma spray coating method is as follows: the flow of Ar is 50- 90L/min, O2Flow be 10-25L/min, the arc voltage of plasma-spraying device is 40-50V, arc current 800- 900A, send mixed powder speed 15-50g/min, spray distance 80-135mm, and 50 ° -90 ° of powder feeding angle.
6. fuel cell system reformer chamber according to claim 1 or 2, wherein the composite catalyst passes through reaction Plasma spraying process and cold metallikon are formed, and the technique of the cold metallikon is as follows: injection pressure is 1-3MPa, injection temperation It is 25-80 DEG C, gas velocity 1-2m3.min-1, copper powder conveying speed 5-15kg.h-1, spray distance 10-50mm, power 5- 25kW。
7. a kind of fuel cell system, including, gasifier, fuel cell system according to any one of claims 1 to 6 weight Whole room, hydrogen purifier and fuel cell.
CN201810569926.0A 2018-06-05 2018-06-05 A kind of fuel cell system reformer chamber and fuel cell system Active CN108736024B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810569926.0A CN108736024B (en) 2018-06-05 2018-06-05 A kind of fuel cell system reformer chamber and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810569926.0A CN108736024B (en) 2018-06-05 2018-06-05 A kind of fuel cell system reformer chamber and fuel cell system

Publications (2)

Publication Number Publication Date
CN108736024A CN108736024A (en) 2018-11-02
CN108736024B true CN108736024B (en) 2019-08-09

Family

ID=63931930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810569926.0A Active CN108736024B (en) 2018-06-05 2018-06-05 A kind of fuel cell system reformer chamber and fuel cell system

Country Status (1)

Country Link
CN (1) CN108736024B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326752A (en) * 2018-12-14 2020-06-23 中国科学院大连化学物理研究所 Solid powder of fuel cell catalyst layer and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145617A (en) * 2006-09-11 2008-03-19 三星Sdi株式会社 Reformer for fuel cell, and fuel cell system including same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295061A1 (en) * 2011-05-18 2012-11-22 General Electric Company Components with precision surface channels and hybrid machining method
CN102969514B (en) * 2012-12-03 2014-10-01 哈尔滨工业大学 Metal-coated oxide nano core-shell structure catalyst and preparation method thereof
CN103949260B (en) * 2014-05-19 2016-03-16 哈尔滨工业大学 The preparation method of a kind of aluminium alloy miniature methanol recapitalization chamber body inner flow passage surface catalyst
CN105428666A (en) * 2015-11-26 2016-03-23 福州大学 Fuel cell catalyst with sulfur dioxide poisoning resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145617A (en) * 2006-09-11 2008-03-19 三星Sdi株式会社 Reformer for fuel cell, and fuel cell system including same

Also Published As

Publication number Publication date
CN108736024A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
Lee et al. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes
Bodner et al. H2 generation from alkaline electrolyzer
Zhang et al. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation
CN100593016C (en) Short carbon nanotube, carbon nanotube impregnated with catalyst and fuel cell
CN100399610C (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the same
TWI414636B (en) Membrane reactor
US20070278108A1 (en) Method of forming a porous nickel coating, and related articles and compositions
Yentekakis Open-and closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures
TW201323074A (en) Method for electrochemically transforming carbon dioxide
Senocrate et al. Electrochemical CO2 reduction at room temperature: Status and perspectives
Chetty et al. Direct ethanol fuel cells with catalysed metal mesh anodes
Zheng et al. Preparation of nano-crystalline tungsten carbide thin film electrode and its electrocatalytic activity for hydrogen evolution
Doan et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis
CN113795611A (en) Conversion of carbonates to synthesis gas or C2+ products in an electrolytic cell
Wang et al. Preparation and characterization of micro-arc-induced Pd/TM (TM= Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation
Shi et al. Cu-based tandem catalysts for electrochemical CO2 reduction
CN108736024B (en) A kind of fuel cell system reformer chamber and fuel cell system
Hjelm et al. Sodium borohydride oxidation on Pt and/or Pd-based electrodes in hydrogen peroxide direct borohydride fuel cells (H2O2-DBFCs)
TW201323076A (en) Membrane reactor
Awasthi et al. Synthesis and characterization of nano structured Pd-Ni and Pd-Ni-C composites towards electrooxidation of alcohols
Ham et al. Fabrication of Au catalysts for electrochemical reduction of CO2 to syngas
Durgadevi et al. Electro oxidation of methanol on Ni/Ni-Co coated SS mesh electrode
CN110306199A (en) A kind of carbon dioxide electro-catalysis reduction film and the preparation method and application thereof
Joe et al. Production of hydrogen by anion exchange membrane using AWE
Nishida et al. Synthesis of nickel nanoparticles supported on hollow samaria-doped ceria particles via the solution-spray plasma technique: Anode catalysts for SOFCs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant