CN108734691A - 一种输电线路缺陷图像识别方法 - Google Patents

一种输电线路缺陷图像识别方法 Download PDF

Info

Publication number
CN108734691A
CN108734691A CN201810240201.7A CN201810240201A CN108734691A CN 108734691 A CN108734691 A CN 108734691A CN 201810240201 A CN201810240201 A CN 201810240201A CN 108734691 A CN108734691 A CN 108734691A
Authority
CN
China
Prior art keywords
transmission line
feature
electricity
input
candidate region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810240201.7A
Other languages
English (en)
Inventor
胡金磊
罗建军
阮伟聪
陈浩
汤金柱
尹祖春
刘章浚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Qingyuan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingyuan Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Qingyuan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority to CN201810240201.7A priority Critical patent/CN108734691A/zh
Publication of CN108734691A publication Critical patent/CN108734691A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种输电线路缺陷图像识别方法,包括输入输电线路图像,其中输电线路图像为无人机所拍摄获得;提取输电线路图像的多个候选区域;提取候选区域的特征;利用分类器对特征进行分类,以确定特征是否符合一个类别;对符合类别的特征对应的候选区域进行边框回归。通过上述方式,本发明所公开的输电线路缺陷图像识别方法能够自动对输电线路图像进行缺陷的识别,节省人力,提升效率。

Description

一种输电线路缺陷图像识别方法
技术领域
本发明涉及图像处理技术领域,特别涉及一种输电线路缺陷图像识别方法。
背景技术
电力***是我国经济建议的重要基础和国民生活的重要保障,电力***是否能够正常运行直接影响了国家经济发展和人民的生活质量。一套完整的电力供应***包括配电、发电、送电、输电、用电等一系列相关设备。作为连接整个***的主要部分,输电线路运行正常与否,影响了电力***的稳定性和安全性。对输电线路进行巡检,及时检测线路设备缺陷状态,保证电网安全稳定运行。目前输电线路巡检方式主要有3种:人工巡检、直升机巡检和无人机巡检。
现有对于无人机所拍摄的输电线路图像通常是采用人工检测识别的方式,通过人工识别输电线路图像上是否存在输电线路缺陷。现有对于输电线路图像的人工识别工作强度大,浪费大量的人力,且效率低下。
发明内容
本发明主要解决的技术问题是提供一种输电线路缺陷图像识别方法,能够自动对输电线路图像进行缺陷的识别,节省人力,提升效率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种输电线路缺陷图像识别方法,包括:输入输电线路图像,其中输电线路图像为无人机所拍摄获得;提取输电线路图像的多个候选区域;提取候选区域的特征;利用分类器对特征进行分类,以确定特征是否符合一个类别;对符合类别的特征对应的候选区域进行边框回归。
进一步地,提取输电线路图像的多个候选区域的步骤具体包括:利用选择性搜索算法在输电线路图像中提取多个候选区域。
进一步地,在利用选择性搜索算法在输电线路图像中提取多个候选区域的步骤之后还包括:将多个候选区域缩的尺寸大小缩放成预设尺寸大小;提取候选区域的特征的步骤具体包括:将缩放后的各个候选区域输入到卷积神经网络提取对应的CNN特征;利用分类器对特征进行分类的步骤具体包括:将CNN特征输入到SVM分类器进行分类。
进一步地,提取候选区域的特征的步骤具体包括:将输电线路图像输入到卷积神经网络以获得特征图;将候选区域在特征图上的映射输入到SPP层以获得特征向量;将特征向量输入到全连接层以获得特征。
进一步地,提取候选区域的特征的步骤具体包括:将输电线路图像输入到卷积神经网络以获得特征图;将候选区域在特征图上的映射输入到ROI Pooling层以获得特征向量;将特征向量输入到全连接层以获得特征。
进一步地,利用分类器对特征进行分类的步骤具体包括:将特征输入到softmax分类器进行分类。
进一步地,提取输电线路图像的多个候选区域的步骤具体包括:将输电线路图像输入到卷积神经网络以获得特征图;将特征图输入到RPN以获得多个候选区域。
进一步地,提取候选区域的特征的步骤具体包括:将候选区域输入到ROI Pooling层以获得特征向量;将特征向量输入到全连接层以获得特征。
本发明的有益效果是:区别于现有技术的情况,本发明所公开的输电线路缺陷图像识别方法,能够自动对输电线路图像进行缺陷的识别,通过分类器具体识别出缺陷的类别,以及通过边框回归修正确定缺陷的位置,节省人力,提升效率。
附图说明
图1是本发明输电线路缺陷图像识别方法第一实施例的流程示意图;
图2是本发明输电线路缺陷图像识别方法第二实施例的流程示意图;
图3是本发明输电线路缺陷图像识别方法第三实施例的流程示意图;
图4是本发明输电线路缺陷图像识别方法第四实施例的流程示意图;
图5是本发明输电线路缺陷图像识别方法第五实施例的流程示意图。
具体实施方式
本发明的图像识别方法为基于深度学习的目标检测算法,目标检测(objectdetection)就是在给定的图片中精确找到物体所在位置,并标注出物体的类别;本发明通过对输电线路图像进行图像识别,从而确定出输电线路的杆塔、导线、绝缘子、线路金具等目标的缺陷。
请参阅图1,本发明输电线路缺陷图像识别方法第一实施例包括以下步骤:
S11:输入输电线路图像。
输电线路图像为无人机所拍摄获得。
S12:提取输电线路图像的多个候选区域。
候选区域(Region Proposal)是预先找出图像中目标可能出现的位置,候选区域利用了图像中的纹理、边缘、颜色等信息,可以在选取较少窗口的情况下保持较高的召回率。
S13:提取候选区域的特征。
进一步提取上述候选区域的特征。
S14:利用分类器对特征进行分类。
利用分类器对特征进行分类,以确定特征是否符合一个类别,即确定输电线路图像的多个候选区域是否属于某一个缺陷类别。
S15:对符合类别的特征对应的候选区域进行边框回归。
边框回归(Bounding-Box Regression)为对窗口的位置进行调整,对符合某一个类别的特征对应的候选区域进行边框回归,以使其更接近真实的窗口位置,实现对目标对象的精准定位。
本发明输电线路缺陷图像识别方法第一实施例能够自动对输电线路图像进行缺陷的识别,通过分类器具体识别出缺陷的类别,以及通过边框回归修正确定缺陷的位置,节省人力,提升效率。
请参阅图2,本发明输电线路缺陷图像识别方法第二实施例包括以下步骤:
S21:输入输电线路图像。
S22:利用选择性搜索算法在输电线路图像中提取多个候选区域。
利用选择性搜索算法(selective search)在输电线路图像中提取多个候选区域,其中候选区域的数量可为2000个左右。
S23:将多个候选区域缩的尺寸大小缩放成预设尺寸大小。
其中,候选区域所缩放成的预设尺寸大小具体可为227×227。
S24:将缩放后的各个候选区域输入到卷积神经网络提取对应的CNN特征。
将缩放后的各个候选区域输入到卷积神经网络(Convolutional NeuralNetwork,CNN),提取对应的CNN特征,其中卷积神经网络的最后一层的全连接层fully-connected layers(fc7层)所输出的特征即为CNN特征。
S25:将CNN特征输入到SVM分类器进行分类。
将步骤S24的CNN特征输入到SVM(Support Vector Machine,支持向量机)分类器对各个候选区域进行分类,以确定输电线路图像的多个候选区域是否属于某一个缺陷类别。
S26:对符合类别的特征对应的候选区域进行边框回归。
本发明输电线路缺陷图像识别方法第二实施例为基于R-CNN的目标检测算法,依据图像识别的评估方法-mAP(meanAveraged Precision),在PASCAL VOC2007上的检测结果的准确率mAP约为66%,具有较高的识别率,通过分类器具体识别出缺陷的类别,以及通过边框回归修正确定缺陷的位置,节省人力,提升效率。
请参阅图3,本发明输电线路缺陷图像识别方法第三实施例包括以下步骤:
S31:输入输电线路图像。
S32:利用选择性搜索算法在输电线路图像中提取多个候选区域。
S33:将输电线路图像输入到卷积神经网络以获得特征图。
将步骤S31的输电线路图像输入到卷积神经网络进行卷积池化操作,以获得输电线路图像对应的特征图。
S34:将候选区域在特征图上的映射输入到SPP层以获得特征向量。
获取步骤S32的候选区域在上述特征图上的映射,该映射即为候选区域在特征图上对应的位置区域,将各个映射输入到SPP(Spatial Pyramid Pooling,空间金字塔采样)层以获得特征向量,SPP层具体将每个映射划分为4*4,2*2,1*1的块,然后每个块使用max-pooling下采样,这样每个映射经过SPP层后都得到一个长度为(4*4+2*2+1)*512维度的特征向量。
S35:将特征向量输入到全连接层以获得特征。
将步骤S34的特征向量输入到全连接层以获得特征,具体为两个相邻的全连接层(fc6层、fc7层),最后一层的全连接层(fc7层)输出上述特征。
S36:利用分类器对特征进行分类。
该步骤具体可利用SVM分类器对特征进行分类。
S37:对符合类别的特征对应的候选区域进行边框回归。
本发明输电线路缺陷图像识别方法第三实施例为基于SPP-NET(Spatial PyramidPooling in Deep Convolutional Networks for Visual Recognition)的目标检测算法,本发明第二实施例检测一张图像大约需要47秒,其需要对每个候选区域进行卷积池化操作以提取特征,而本发明第三实施例只需对输电线路图像进行一次卷积池化操作,相对第二实施例提高了图像识别的速度。
请参阅图4,本发明输电线路缺陷图像识别方法第四实施例包括以下步骤:
S41:输入输电线路图像。
S42:利用选择性搜索算法在输电线路图像中提取多个候选区域。
S43:将输电线路图像输入到卷积神经网络以获得特征图。
S44:将候选区域在特征图上的映射输入到ROI Pooling层以获得特征向量。
ROI Pooling层对每个候选区域的映射进行下采样以获得一个7*7*512维度的特征向量。
S45:将特征向量输入到全连接层以获得特征。
将S45的特征向量输入到全连接层以获得对应的特征。
S46:利用分类器对特征进行分类。
该步骤具体包括:将特征输入到softmax分类器进行分类。softmax分类器以多项式分布(Multinomial Distribution)为模型建模的,它可以分多种互斥的类别。
S47:对符合类别的特征对应的候选区域进行边框回归。
本发明输电线路缺陷图像识别方法第四实施例为基于Fast R-CNN的目标检测算法,与本发明第三实施例相比,本实施例加入了一个ROI Pooling层,此外损失函数使用了多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络中训练,使得整个训练过程是端到端的(上述S42提取候选区域阶段除外),整个网络的训练和测试十分方便。本实施例在Pascal VOC2007训练集上训练,在VOC2007测试的结果为66.9%(mAP),在VOC2007+2012训练集上训练,在VOC2007上相应的测试结果约为70%(数据集的扩充能提高目标检测性能)。本实施例检测每张图像大约需要3秒左右。
请参阅图5,本发明输电线路缺陷图像识别方法第五实施例包括以下步骤:
S51:输入输电线路图像。
S52:将输电线路图像输入到卷积神经网络以获得特征图。
S53:将特征图输入到RPN以获得多个候选区域。
将S52的特征图输入到RPN(Region Proposal Networks)网络以获得多个候选区域。RPN的核心思想是使用卷积神经网络直接产生候选区域,使用的方法本质上为滑动窗口。
S54:将候选区域输入到ROI Pooling层以获得特征向量。
S55:将特征向量输入到全连接层以获得特征。
S56:利用分类器对特征进行分类。
本步骤具体可通过softmax分类器对特征进行分类。
S57:对符合类别的特征对应的候选区域进行边框回归。
本发明输电线路缺陷图像识别方法第五实施例为基于Faster R-CNN的目标检测算法。本实施例将RPN获得的候选区域直接连到ROI Pooling层,实现一个网络内的端到端目标检测的框架。本实施例在VOC07+12训练集训练,其相应的测试mAP达到73.2%,目标检测的速度可以达到每秒5帧,相比本发明第四实施例速度有较大提升。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种输电线路缺陷图像识别方法,其特征在于,包括:
输入输电线路图像,其中所述输电线路图像为无人机所拍摄获得;
提取所述输电线路图像的多个候选区域;
提取所述候选区域的特征;
利用分类器对所述特征进行分类,以确定所述特征是否符合一个类别;
对符合所述类别的特征对应的候选区域进行边框回归。
2.根据权利要求1所述的方法,其特征在于,
所述提取所述输电线路图像的多个候选区域的步骤具体包括:利用选择性搜索算法在所述输电线路图像中提取多个候选区域。
3.根据权利要求2所述的方法,其特征在于,
在所述利用选择性搜索算法在所述输电线路图像中提取多个候选区域的步骤之后还包括:将所述多个候选区域缩的尺寸大小缩放成预设尺寸大小;
所述提取所述候选区域的特征的步骤具体包括:将缩放后的各个所述候选区域输入到卷积神经网络提取对应的CNN特征;
所述利用分类器对所述特征进行分类的步骤具体包括:将所述CNN特征输入到SVM分类器进行分类。
4.根据权利要求2所述的方法,其特征在于,
所述提取所述候选区域的特征的步骤具体包括:将所述输电线路图像输入到卷积神经网络以获得特征图;将所述候选区域在所述特征图上的映射输入到SPP层以获得特征向量;将所述特征向量输入到全连接层以获得所述特征。
5.根据权利要求2所述的方法,其特征在于,
所述提取所述候选区域的特征的步骤具体包括:将所述输电线路图像输入到卷积神经网络以获得特征图;将所述候选区域在所述特征图上的映射输入到ROI Pooling层以获得特征向量;将所述特征向量输入到全连接层以获得所述特征。
6.根据权利要求5所述的方法,其特征在于,
所述利用分类器对所述特征进行分类的步骤具体包括:将所述特征输入到softmax分类器进行分类。
7.根据权利要求1所述的方法,其特征在于,
所述提取所述输电线路图像的多个候选区域的步骤具体包括:将所述输电线路图像输入到卷积神经网络以获得特征图;将所述特征图输入到RPN以获得多个候选区域。
8.根据权利要求7所述的方法,其特征在于,
所述提取所述候选区域的特征的步骤具体包括:将所述候选区域输入到ROI Pooling层以获得特征向量;将所述特征向量输入到全连接层以获得所述特征。
CN201810240201.7A 2018-03-22 2018-03-22 一种输电线路缺陷图像识别方法 Pending CN108734691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810240201.7A CN108734691A (zh) 2018-03-22 2018-03-22 一种输电线路缺陷图像识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810240201.7A CN108734691A (zh) 2018-03-22 2018-03-22 一种输电线路缺陷图像识别方法

Publications (1)

Publication Number Publication Date
CN108734691A true CN108734691A (zh) 2018-11-02

Family

ID=63941046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810240201.7A Pending CN108734691A (zh) 2018-03-22 2018-03-22 一种输电线路缺陷图像识别方法

Country Status (1)

Country Link
CN (1) CN108734691A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658396A (zh) * 2018-12-06 2019-04-19 华中科技大学 一种基于选择性搜索与cnn的铸件x光图像缺陷识别方法
CN109781268A (zh) * 2019-03-16 2019-05-21 福州大学 一种基于低成本红外热视技术的开关柜内重点部位温度监测***
CN109815798A (zh) * 2018-12-17 2019-05-28 广东电网有限责任公司 无人机图像处理方法及***
CN110443130A (zh) * 2019-07-01 2019-11-12 国网湖南省电力有限公司 一种配电网架空线路异常状态检测方法
CN111340787A (zh) * 2020-02-28 2020-06-26 广东电网有限责任公司 输电线路的导线缺陷检测识别方法、装置及计算机设备
CN113221614A (zh) * 2020-12-23 2021-08-06 南方电网电力科技股份有限公司 一种基于混合神经网络的电网绝缘子破损图像识别方法
CN113515829A (zh) * 2021-05-21 2021-10-19 华北电力大学(保定) 一种用于极寒灾害下输电线路金具缺陷的态势感知方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198551A (zh) * 2016-08-01 2016-12-07 南方电网科学研究院有限责任公司 一种输电线路缺陷的检测方法及装置
CN106877237A (zh) * 2017-03-16 2017-06-20 天津大学 一种基于航拍图像的检测输电线路中绝缘子缺失的方法
US20170352144A1 (en) * 2016-06-06 2017-12-07 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a mask
CN107680090A (zh) * 2017-10-11 2018-02-09 电子科技大学 基于改进全卷积神经网络的输电线路绝缘子状态识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170352144A1 (en) * 2016-06-06 2017-12-07 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a mask
CN106198551A (zh) * 2016-08-01 2016-12-07 南方电网科学研究院有限责任公司 一种输电线路缺陷的检测方法及装置
CN106877237A (zh) * 2017-03-16 2017-06-20 天津大学 一种基于航拍图像的检测输电线路中绝缘子缺失的方法
CN107680090A (zh) * 2017-10-11 2018-02-09 电子科技大学 基于改进全卷积神经网络的输电线路绝缘子状态识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
如今我已剑指天涯: "浅谈RCNN、SPP-net、Fast-Rcnn、Faster-Rcnn", 《HTTP://BLOG.CSDN.NET/SUNPENG19960715/ARTICLE/DETAILS/54891652》 *
张洁: "输电线路缺陷在线监控***设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658396A (zh) * 2018-12-06 2019-04-19 华中科技大学 一种基于选择性搜索与cnn的铸件x光图像缺陷识别方法
CN109815798A (zh) * 2018-12-17 2019-05-28 广东电网有限责任公司 无人机图像处理方法及***
CN109781268A (zh) * 2019-03-16 2019-05-21 福州大学 一种基于低成本红外热视技术的开关柜内重点部位温度监测***
CN110443130A (zh) * 2019-07-01 2019-11-12 国网湖南省电力有限公司 一种配电网架空线路异常状态检测方法
CN111340787A (zh) * 2020-02-28 2020-06-26 广东电网有限责任公司 输电线路的导线缺陷检测识别方法、装置及计算机设备
CN111340787B (zh) * 2020-02-28 2023-09-29 广东电网有限责任公司 输电线路的导线缺陷检测识别方法、装置及计算机设备
CN113221614A (zh) * 2020-12-23 2021-08-06 南方电网电力科技股份有限公司 一种基于混合神经网络的电网绝缘子破损图像识别方法
CN113515829A (zh) * 2021-05-21 2021-10-19 华北电力大学(保定) 一种用于极寒灾害下输电线路金具缺陷的态势感知方法

Similar Documents

Publication Publication Date Title
CN108734691A (zh) 一种输电线路缺陷图像识别方法
CN109118479B (zh) 基于胶囊网络的绝缘子缺陷识别定位装置及方法
CN112199993B (zh) 基于人工智能识别任意方向变电站绝缘子红外图像检测模型的方法
CN104361314B (zh) 基于红外与可见光图像融合的变电设备定位方法及装置
CN108022235A (zh) 高压输电铁塔关键部件缺陷识别方法
CN108564565A (zh) 一种基于深度学习的电力设备红外图像多目标定位方法
CN106875381A (zh) 一种基于深度学习的手机外壳缺陷检测方法
CN109614488B (zh) 基于文本分类和图像识别的配网带电作业条件判别方法
CN113947590A (zh) 一种基于多尺度注意力引导和知识蒸馏的表面缺陷检测方法
CN110782461A (zh) 一种基于Mask-RCNN的电力设备红外图像分割方法
CN109544501A (zh) 一种基于无人机多源图像特征匹配的输电设备缺陷检测方法
CN111667455A (zh) 一种刷具多种缺陷的ai检测方法
CN104268505A (zh) 基于机器视觉的布匹疵点自动检测识别装置及方法
CN108537222A (zh) 一种用于电力仪表的图像识别方法及***
CN109886947A (zh) 基于区域的卷积神经网络的高压电线缺陷检测方法
CN111539330B (zh) 一种基于双svm多分类器的变电站数显仪表识别方法
CN105303200B (zh) 用于手持设备的人脸识别方法
CN109946304A (zh) 基于特征匹配的零件表面缺陷在线检测***及检测方法
CN111209832A (zh) 变电站巡检机器人辅助避障训练方法、设备及介质
CN105957081A (zh) 一种玻璃绝缘子掉串故障检测方法
CN112528979B (zh) 变电站巡检机器人障碍物判别方法及***
Gou et al. Pavement crack detection based on the improved faster-rcnn
CN113205039A (zh) 基于多dcnn网络的电力设备故障图像识别勘灾***及方法
CN115690012A (zh) 一种电能表接错线的检测方法
Wang et al. Railway insulator detection based on adaptive cascaded convolutional neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181102