CN108715550A - 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法 - Google Patents

一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法 Download PDF

Info

Publication number
CN108715550A
CN108715550A CN201810569782.9A CN201810569782A CN108715550A CN 108715550 A CN108715550 A CN 108715550A CN 201810569782 A CN201810569782 A CN 201810569782A CN 108715550 A CN108715550 A CN 108715550A
Authority
CN
China
Prior art keywords
powder
cala
gas
infrared transparent
transparent ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810569782.9A
Other languages
English (en)
Other versions
CN108715550B (zh
Inventor
李焕勇
郗鹏飞
任晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201810569782.9A priority Critical patent/CN108715550B/zh
Publication of CN108715550A publication Critical patent/CN108715550A/zh
Application granted granted Critical
Publication of CN108715550B publication Critical patent/CN108715550B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,在较低的温度下,利用高压液相烧结实现陶瓷成型,制备出了高稳定性、高致密度、高透过率的CaLa2S4红外透明陶瓷。与现有陶瓷烧结技术相比,该方法利用了硫系玻璃当助熔剂,明显降低了烧结温度,使得烧结温度低于CaLa2S4粉体的氧化温度,有效避免了CaLa2S4烧结陶瓷体易氧化的问题。同时该技术工艺简单、效率高,适合于批量制备CaLa2S4红外透明陶瓷,具有广阔的应用前景。

Description

一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
技术领域
本发明属于新材料制备技术领域,涉及一种制备CaLa2S4(硫镧钙,CLS)粉体及热压烧结红外透明陶瓷的方法,具体涉及一种新型制备CaLa2S4粉体和热压烧结高稳定性、高致密度、高透过率红外透明陶瓷的方法。
背景技术
CaLa2S4透明陶瓷具有优异的红外透过率、高的熔点和高的硬度,有望成为红外窗口的理想材料。
CaLa2S4透明陶瓷的研究主要集中在CaLa2S4的粉体和陶瓷制备两方面。其中CaLa2S4粉体制备有前驱体硫化法和热分解法。前驱体硫化法[Tsai MS,HonMH.Fabrication of calcium lanthanum sulfide ceramic by carbonatecoprecipitating method.Scripta Metall Mater.1995;32:713-718]将La(OH)3和CaCO3溶解在HNO3中,然后缓慢加入(NH4)2CO3并搅拌,将生成的沉淀经烘干得到的前驱体再加入管式炉中,CS2为硫化剂,于900℃硫化得到CaLa2S4粉体;热分解法[Yiyu Li,Lihua Zhang andYiquan Wu.Synthesis and characterization of calcium lanthanum sulfide via awet chemistry route followed by thermal decomposition.RSC Adv.2016;6:34935-34939]将20mmol二乙胺基二硫代甲酸钠(Na(Ddtc)·3H2O)和20mmol三水1,10邻菲罗啉((Phen)·3H2O)分别溶解在100ml的无水乙醇中,混合这两种溶液后,剧烈搅拌记作A液,再将5mmol的七水氯化钙(LaCl3·7H2O)和2.5mmol的二水氯化钙(CaCl2·2H2O)分别溶解到100ml无水乙醇中,分别记作B和C液。将B和C液逐滴滴加到搅拌的A液中,得到黄色溶液,之后将2ml巯基乙酸溶解到10ml无水乙醇中,记作D液,将D液加入到之前的黄色溶液中,搅拌1h,洗涤离心烘干得到干燥好的粉体,最后将干燥好的粉体在氩气保护气氛下1000℃处理5h,这样便得到了纳米级的CaLa2S4粉体。CaLa2S4红外陶瓷的制备主要有气氛热压烧结法、先气氛无压烧结再真空热压烧结法、热等静压烧结法和电场辅助烧结法。气氛热压烧结法[Wang Li Hsing,Hon Min Hsiung,Huang Wen Liang,Lin Whai Yuh.Sulphurization ofcoprecipitated carbonates for formation of CaLa2S4.Journal of MaterialsScience,1991.26(18):p.5013-5018]采用碳酸盐沉淀法得到的微米级CaLa2S4粉体,放在碳化钨模具中施加以400MPa的压强,并在H2S气氛保护下1400℃烧结8h,得到了半透明性的CaLa2S4陶瓷;先气氛无压烧结再真空热压烧结法[Merdrignac Conanec Odile,DurandGuillaume,Walfort Sebastian,Hakmeh Noha,Zhang Xianghua.Elaboration of CaLa2S4transparent ceramics from novel precursor powders route.CeramicsInternational,2017.43(8):p.5984-5989]采用水热法得到的前驱体,经硫化得到介观尺寸的CaLa2S4粉体,将得到的粉体装入石墨模具,先在H2S气氛下1250℃无压烧结12h,之后将模具放入真空热压烧结炉中,在温度1000℃、压强120MPa下烧结6h,得到了半透明的CaLa2S4陶瓷,另外,此团队中N·阿克梅赫、O·梅尔德里格诺-科纳内克和X-H·张在2015年发明专利CN107001153A《制造基于硫化物的陶瓷元件的方法,特别是用于IR光学应用》中提出了一种水热法制备硫化锌粉体和真空热压烧结硫化锌陶瓷的方法,论述中也提到了CaLa2S4粉体的热压烧结,但未提及CaLa2S4粉体制备和热压参数细节;热等静压烧结法[Bor Jou Tsay,Li Hsing Wang,Min Hsiung Hon.Formation and densification of CaLa2S4 powders bysulfidization of modified metal alkoxides in different atmospheres,MaterialsScience and Engineering B72(2000):P.31-35]采用掺少量PbS的CaLa2S4粉体,先在H2S气氛下1350℃无压烧结4-8h,再在烧结温度为1350℃、压强为200MPa和氩气气氛下热等静压烧结1h,得到了偏黑色半透明CaLa2S4陶瓷;电场辅助烧结法[Yiyu Li and YiquanWu.Sintering behavior of calcium lanthanum sulfide ceramics in field-assistedconsolidation.Journal of the American Ceramic Society,2017.100(11):p.5011-5019]采用市售的CaLa2S4粉体,将粉体放入模具,真空烧结环境,粉体受到压强为50MPa,温度为1000℃,电场辅助烧结(FAST)10分钟,得到了半透明的CaLa2S4红外陶瓷。以上报道的方法均存在烧结过程中极易氧化、烧结温度高、时间长以及难烧结等问题,所得到的CaLa2S4红外陶瓷相中均存在由于氧化形成的硫氧化物杂质,导致8~14μm红外波段SO3 2-和SO4 2-的强吸收,进而使得样品红外透过率低。因此综合看来,发展一种新的制备高稳定性、高致密度、高透过率CaLa2S4透明陶瓷的方法具有重要意义。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,解决目前CaLa2S4热压烧结中存在的易氧化、烧结温度高、烧结时间长和难烧结导致低红外透过率的技术缺陷,是一种制备高稳定性、高致密度和高透过率CaLa2S4红外透明陶瓷的新方法。
技术方案
一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于步骤如下:
步骤1、LaS2粉体的制备:将La(OH)CO3·n(H2O)粉体置于管式炉中,通入流量为30-50ml/min的Ar气作为保护气体,管式炉以速率3-5℃/min升温;当炉温升至400-600℃时,将通入气体改为混合气体,流量为30-50ml/min,保温2-5h结束后,将混合气体再改为流量为30-50ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体多次,再用无水乙醇洗涤粉体多次,然后将粉体在70-80℃、真空度5Pa下,保持6-12小时干燥,取出干燥粉体得到LaS2粉体;
所述La(OH)CO3·n(H2O)中,n=1~8,n数值表示粉体的干燥程度;
步骤2、CaLa2S4粉体的制备:将LaS2粉体与卤族元素钙盐充分研磨混合,将混合后的粉体置于管式炉中,通入流量为30-50ml/min的Ar气作为保护气体,以速率3-5℃/min升温;当炉温升至600-750℃时,将通入的气体改为混合气体,流量为30-50ml/min,管式炉继续升温至750-850℃,保温3-5h;保温结束后管式炉自然冷却,当炉温降至600-750℃时,将混合气体再改为流量为30-50ml/min的Ar气;待管式炉冷却至室温,取出粉体,先用去离子水洗涤粉体多次,再用无水乙醇洗涤粉体多次,然后将粉体在70-80℃、真空度5Pa下,干燥6-12小时,取出干燥粉体即为CaLa2S4粉体;
所述LaS2粉体与卤族元素钙盐混合后的La:Ca的物质的量之比为(1.8-2.2):1;
步骤3、CaLa2S4红外透明陶瓷的热压制备:将步骤2所得CaLa2S4粉体与硫系玻璃粉体研磨混合,加入模具中并具放入热压炉中,通入流量为50-70ml/min的Ar气作为保护气体,将粉体所受压强加至200~1000MPa,通气10min后将热压炉以20-40℃/min的速率先升温至1200-1300℃,再以20-40℃/min的速率降至800~1000℃,保温3~5h,保温结束后撤去压力,热压炉自然冷却至室温;取出得到热压块体CaLa2S4陶瓷,将其抛光后,获得在8~14μm长波红外波段最高透过率≥45%的CaLa2S4红外透明陶瓷;
所述硫系玻璃粉体与CaLa2S4粉体的质量比为3%~12%;
所述步骤1和2采用的混合气体为Ar气和CS2或者Ar气和H2S的混合气体,混合气体体积比为Ar:CS2=1:1或Ar:H2S=1:1。
所述La(OH)CO3·n(H2O)粉体采用分析纯级粉体。
所述卤族元素钙盐采用分析纯级别。
所述卤族元素钙盐为CaCl2、CaBr2或CaI2
所述硫系玻璃为250~300目的粉体。
所述硫系玻璃为Ge-S或Ge-Se-Te。
所述步骤1~2采用去离子水洗涤粉体多次为2次。
所述步骤1~2采用无水乙醇洗涤粉体多次为2次。
有益效果
本发明提出的一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,在较低的温度下,利用高压液相烧结实现陶瓷成型,制备出了高稳定性、高致密度、高透过率的CaLa2S4红外透明陶瓷。与现有陶瓷烧结技术相比,该方法利用了硫系玻璃当助熔剂,明显降低了烧结温度,使得烧结温度低于CaLa2S4粉体的氧化温度,有效避免了CaLa2S4烧结陶瓷体易氧化的问题。同时该技术工艺简单、效率高,适合于批量制备CaLa2S4红外透明陶瓷,具有广阔的应用前景。
具体实施方式
现结合实施例对本发明作进一步描述:
实施例1:一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
步骤1、LaS2粉体的制备:取分析纯级La(OH)CO3·n(H2O)粉体5.0克置于管式炉中,通入流量为30ml/min的Ar气作为保护气体,管式炉以速率3℃/min升温;当炉温升至400℃时,将通入的气体改为Ar气与CS2的混合气体,气流量不变,其中混合气体体积比为Ar:CS2=1:1,保温2h;保温结束后,将混合气体再改为流量为30ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在70℃、真空度5Pa下,保持6小时干燥,取出干燥粉体得到LaS2粉体4.6克;
步骤2、CaLa2S4粉体的制备:取步骤1制得的LaS2粉体4克与分析纯级CaCl2粉体1.10克充分研磨以混合均匀,将均匀混合的粉体置于管式炉中,通入流量为30ml/min的Ar气作为保护气体,以速率3℃/min升温;当炉温升至600℃时,将通入的气体改为Ar气与CS2的混合气体,流量为30ml/min,其中混合气体体积比为Ar:CS2=1:1;管式炉继续升温至750℃,保温3h;保温结束后管式炉自然冷却,当炉温降至600℃时,将混合气体再改为流量为30ml/min的Ar气;待管式炉自然冷却至室温,取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在70℃、真空度5Pa下,干燥6小时,取出粉体即得到CaLa2S4粉体3.1克;
步骤3、CaLa2S4红外透明陶瓷的热压制备:取步骤2所得CaLa2S4粉体2.8克和Ge-S玻璃0.08克研磨混合均匀,加入到模具中,将装好料的模具放入热压炉中,通入流量为50ml/min的Ar气作为保护气体,将粉体所受压强加至1000MPa,通气10min后将热压炉以20℃/min的速率先升温至1200℃,再以20℃/min的速率降至800℃,保温5h,保温结束后撤去压力,热压炉自然冷却至室温;取出样品得到热压块体CaLa2S4陶瓷,将其抛光后,获得厚度为0.50mm,在8~14μm长波红外波段最高透过率为49.6%的CaLa2S4红外透明陶瓷。
实施例2:一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
步骤1、LaS2粉体的制备:取分析纯级La(OH)CO3·n(H2O)粉体5.0克置于管式炉中,通入流量为50ml/min的Ar气作为保护气体,管式炉以速率5℃/min升温;当炉温升至600℃时,将通入的气体改为Ar气与H2S的混合气体,气流量不变,其中混合气体体积比为Ar:H2S=1:1,保温5h;保温结束后,将混合气体再改为流量为50ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,保持12小时干燥,取出干燥粉体得到LaS2粉体4.5克;
步骤2、CaLa2S4粉体的制备:取步骤1制得的LaS2粉体4克与分析纯级CaBr2粉体1.97克充分研磨以混合均匀,将混合均匀的粉体置于管式炉中,通入流量为50ml/min的Ar气作为保护气体,以速率5℃/min升温;当炉温升至750℃时,将通入的气体改为Ar气与H2S的混合气体,流量为50ml/min,其中混合气体体积比为Ar:H2S=1:1;管式炉继续升温至850℃,保温5h;保温结束后管式炉自然冷却,当炉温降至750℃时,将混合气体再改为流量为50ml/min的Ar气;待管式炉自然冷却至室温,取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,干燥12小时,取出粉体即得到CaLa2S4粉体3.0克;
步骤3、CaLa2S4红外透明陶瓷的热压制备:取步骤2所得CaLa2S4粉体2.8克和Ge-S玻璃粉体0.34g研磨混合均匀,加入到模具中,将装好料的模具放入热压炉中,通入流量为70ml/min的Ar气作为保护气体,将粉体所受压强加至200MPa,通气10min后将热压炉以40℃/min的速率先升温至1300℃,再以40℃/min的速率降温至1000℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温;取出样品得到热压块体CaLa2S4陶瓷,将其抛光后,获得厚度为0.52mm,在8~14μm长波红外波段最高透过率为45.7%的CaLa2S4红外透明陶瓷。
实施例3:一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
步骤1、LaS2粉体的制备:取分析纯级La(OH)CO3·n(H2O)粉体5.0克置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,管式炉以速率4.12℃/min升温;当炉温升至600℃时,将通入的气体改为Ar气与CS2的混合气体,气流量不变,其中混合气体体积比为Ar:CS2=1:1,保温4h;保温结束后,将混合气体再改为流量为40ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,保持6小时干燥,取出干燥粉体得到LaS2粉体4.6克;
步骤2、CaLa2S4粉体的制备:取步骤1制得的LaS2粉体4克与分析纯级CaI2粉体2.89克充分研磨以混合均匀,将混合均匀的粉体置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,以速率4.12℃/min升温;当炉温升至700℃时,将通入的气体改为Ar气与CS2的混合气体,流量为40ml/min,其中混合气体体积比为Ar:CS2=1:1;管式炉继续升温至800℃,保温4h;保温结束后管式炉自然冷却,当炉温降至700℃时,将混合气体再改为流量为40ml/min的Ar气;待管式炉自然冷却至室温,取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,干燥6小时,取出粉体即得到CaLa2S4粉体3.0克;
步骤3、CaLa2S4红外透明陶瓷的热压制备:取步骤2所得CaLa2S4粉体2.8克和Ge-S玻璃粉体0.20克研磨混合均匀,加入到模具中,将装好料的模具放入热压炉中,通入流量为60ml/min的Ar气作为保护气体,将粉体所受压强加至500MPa,通气10min后将热压炉以30℃/min的速率先升温至1250℃,再以30℃/min的速率降温至900℃,保温4h,保温结束后撤去压力,热压炉自然冷却至室温;取出样品得到热压块体CaLa2S4陶瓷,将其抛光后,获得厚度为0.49mm,在8~14μm长波红外波段最高透过率为49.3%的CaLa2S4红外透明陶瓷。
实施例4:一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
步骤1、LaS2粉体的制备:取分析纯级La(OH)CO3·n(H2O)粉体5.0克置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,管式炉以速率4.12℃/min升温;当炉温升至600℃时,将通入的气体改为Ar气与CS2的混合气体,气流量不变,其中混合气体体积比为Ar:CS2=1:1,保温4h;保温结束后,将混合气体再改为流量为40ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,保持6小时干燥,取出干燥粉体得到LaS2粉体4.6克;
步骤2、CaLa2S4粉体的制备:将步骤1制得的LaS2粉体4克与分析纯级CaCl2粉体1.25克充分研磨以混合均匀,将混合均匀的粉体置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,以速率4.12℃/min升温;当炉温升至700℃时,将通入的气体改为Ar气与CS2的混合气体,流量为40ml/min,其中混合气体体积比为Ar:CS2=1:1;管式炉继续升温至800℃,保温4h;保温结束后管式炉自然冷却,当炉温降至700℃时,将混合气体再改为流量为40ml/min的Ar气;待管式炉自然冷却至室温,取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,干燥6小时,取出粉体即得到CaLa2S4粉体3.2克;
步骤3、CaLa2S4红外透明陶瓷的热压制备:取步骤2所得CaLa2S4粉体2.8克和Ge-Se-Te玻璃粉体0.08克研磨混合均匀,加入到模具中,将装好料的模具放入热压炉中,通入流量为60ml/min的Ar气作为保护气体,将粉体所受压强加至700MPa,通气10min后将热压炉以30℃/min的速率先升温至1250℃,再以30℃/min的速率降温至900℃,保温4h,保温结束后撤去压力,热压炉自然冷却至室温;取出样品得到热压块体CaLa2S4陶瓷,将其抛光后,获得厚度为0.48mm,在8~14μm长波红外波段最高透过率为47.8%的CaLa2S4红外透明陶瓷。
实施例5:
步骤1、LaS2粉体的制备:取分析纯级La(OH)CO3·n(H2O)粉体5.0克置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,管式炉以速率4.12℃/min升温;当炉温升至600℃时,将通入的气体改为Ar气与CS2的混合气体,气流量不变,其中混合气体体积比为Ar:CS2=1:1,保温4h;保温结束后,将混合气体再改为流量为40ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,保持6小时干燥,取出干燥粉体得到LaS2粉体4.6克;
步骤2、CaLa2S4粉体的制备:将步骤1制得的LaS2粉体4克与分析纯级CaCl2粉体1.32克充分研磨以混合均匀,将混合均匀的粉体置于管式炉中,通入流量为40ml/min的Ar气作为保护气体,以速率4.12℃/min升温;当炉温升至700℃时,将通入的气体改为Ar气与CS2的混合气体,流量为40ml/min,其中混合气体体积比为Ar:CS2=1:1;管式炉继续升温至800℃,保温4h;保温结束后管式炉自然冷却,当炉温降至700℃时,将混合气体再改为流量为40ml/min的Ar气;待管式炉自然冷却至室温,取出粉体,先用去离子水洗涤粉体2次,再用无水乙醇洗涤粉体2次,然后将粉体在80℃、真空度5Pa下,干燥6小时,取出粉体即得到CaLa2S4粉体3.2克;
步骤3、CaLa2S4红外透明陶瓷的热压制备:取步骤2所得CaLa2S4粉体2.8克和Ge-Se-Te粉体0.34克研磨混合均匀,加入到模具中,将装好料的模具放入热压炉中,通入流量为60ml/min的Ar气作为保护气体,将粉体所受压强加至300MPa,通气10min后将热压炉以30℃/min的速率先升温至1250℃,再以30℃/min的速率降温至1000℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温;取出样品得到热压块体CaLa2S4陶瓷,将其抛光后,获得厚度为0.52mm,在8~14μm长波红外波段最高透过率为46.8%的CaLa2S4红外透明陶瓷。

Claims (8)

1.一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于步骤如下:
步骤1、LaS2粉体的制备:将La(OH)CO3·n(H2O)粉体置于管式炉中,通入流量为30-50ml/min的Ar气作为保护气体,管式炉以速率3-5℃/min升温;当炉温升至400-600℃时,将通入气体改为混合气体,流量为30-50ml/min,保温2-5h结束后,将混合气体再改为流量为30-50ml/min的Ar气,管式炉自然冷却至室温;取出粉体,先用去离子水洗涤粉体多次,再用无水乙醇洗涤粉体多次,然后将粉体在70-80℃、真空度5Pa下,保持6-12小时干燥,取出干燥粉体得到LaS2粉体;
所述La(OH)CO3·n(H2O)中,n=1~8,n数值表示粉体的干燥程度;
步骤2、CaLa2S4粉体的制备:将LaS2粉体与卤族元素钙盐充分研磨混合,将混合后的粉体置于管式炉中,通入流量为30-50ml/min的Ar气作为保护气体,以速率3-5℃/min升温;当炉温升至600-750℃时,将通入的气体改为混合气体,流量为30-50ml/min,管式炉继续升温至750-850℃,保温3-5h;保温结束后管式炉自然冷却,当炉温降至600-750℃时,将混合气体再改为流量为30-50ml/min的Ar气;待管式炉冷却至室温,取出粉体,先用去离子水洗涤粉体多次,再用无水乙醇洗涤粉体多次,然后将粉体在70-80℃、真空度5Pa下,干燥6-12小时,取出干燥粉体即为CaLa2S4粉体;
所述LaS2粉体与卤族元素钙盐混合后的La:Ca的物质的量之比为(1.8-2.2):1;
步骤3、CaLa2S4红外透明陶瓷的热压制备:将步骤2所得CaLa2S4粉体与硫系玻璃粉体研磨混合,加入模具中并具放入热压炉中,通入流量为50-70ml/min的Ar气作为保护气体,将粉体所受压强加至200~1000MPa,通气10min后将热压炉以20-40℃/min的速率先升温至1200-1300℃,再以20-40℃/min的速率降至800~1000℃,保温3~5h,保温结束后撤去压力,热压炉自然冷却至室温;取出得到热压块体CaLa2S4陶瓷,将其抛光后,获得在8~14μm长波红外波段最高透过率≥45%的CaLa2S4红外透明陶瓷;
所述硫系玻璃粉体与CaLa2S4粉体的质量比为3%~12%;
所述步骤1和2采用的混合气体为Ar气和CS2或者Ar气和H2S的混合气体,混合气体体积比为Ar:CS2=1:1或Ar:H2S=1:1。
2.根据权利要求1所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述La(OH)CO3·n(H2O)粉体采用分析纯级粉体。
3.根据权利要求1所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述卤族元素钙盐采用分析纯级别。
4.根据权利要求1或2所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述卤族元素钙盐为CaCl2、CaBr2或CaI2
5.根据权利要求1所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述硫系玻璃为250~300目的粉体。
6.根据权利要求1或5所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述硫系玻璃为Ge-S或Ge-Se-Te。
7.根据权利要求1所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述步骤1~2采用去离子水洗涤粉体多次为2次。
8.根据权利要求1所述制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法,其特征在于:所述步骤1~2采用无水乙醇洗涤粉体多次为2次。
CN201810569782.9A 2018-06-05 2018-06-05 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法 Expired - Fee Related CN108715550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810569782.9A CN108715550B (zh) 2018-06-05 2018-06-05 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810569782.9A CN108715550B (zh) 2018-06-05 2018-06-05 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN108715550A true CN108715550A (zh) 2018-10-30
CN108715550B CN108715550B (zh) 2021-01-05

Family

ID=63912669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810569782.9A Expired - Fee Related CN108715550B (zh) 2018-06-05 2018-06-05 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN108715550B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149651A (zh) * 2021-05-28 2021-07-23 武汉理工大学 一种高能球磨+SPS烧结CaLa2S4红外透明陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193756A (ja) * 1990-11-27 1992-07-13 Tech Res & Dev Inst Of Japan Def Agency 硫化物セラミックスの製造方法
CN106518072A (zh) * 2016-10-18 2017-03-22 西北工业大学 一种制备高透过率NaLaS2红外透明陶瓷的方法
CN106518073A (zh) * 2016-10-18 2017-03-22 西北工业大学 一种高红外透过率的γ‑La2S3红外透明陶瓷制备方法
CN107001153A (zh) * 2014-07-10 2017-08-01 国立科学研究中心 制造基于硫化物的陶瓷元件的方法,特别是用于ir光学应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193756A (ja) * 1990-11-27 1992-07-13 Tech Res & Dev Inst Of Japan Def Agency 硫化物セラミックスの製造方法
CN107001153A (zh) * 2014-07-10 2017-08-01 国立科学研究中心 制造基于硫化物的陶瓷元件的方法,特别是用于ir光学应用
CN106518072A (zh) * 2016-10-18 2017-03-22 西北工业大学 一种制备高透过率NaLaS2红外透明陶瓷的方法
CN106518073A (zh) * 2016-10-18 2017-03-22 西北工业大学 一种高红外透过率的γ‑La2S3红外透明陶瓷制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BOR JOU TSAY ET AL.: "Formation and densification of CaLa2S4 powders by sulfidization", 《MATERIALS SCIENCE AND ENGINEERING:B》 *
LI PEISEN ET AL.: "Stabilization of Lanthanum Sulfi des with", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED.》 *
MING SHYONG TSAI & MIN HSIUNG HON: "Phase Formation and Thermal Stability of Calcium Lanthanum Sulfide Powder", 《CERAMICS INTERNATIONAL》 *
ODILE MERDRIGNAC-CONANEC ET AL.,: "Elaboration of CaLa2S4 transparent ceramics from novel", 《CERAMICS INTERNATIONAL》 *
P.J. WALKER AND R.C.C. WARD: "THE PREPARATION OF SOME TERNARY SULPHIDES", 《MATERIALS RESEARCH BULLETIN》 *
YONG HAN AND MUFIT AKINC: "Preparation of Calcium lanthanum Sulfide Powders via Alkoxide SuIfurization", 《JOURNAL AMERICAN CERAMIC SOCIETY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149651A (zh) * 2021-05-28 2021-07-23 武汉理工大学 一种高能球磨+SPS烧结CaLa2S4红外透明陶瓷的制备方法

Also Published As

Publication number Publication date
CN108715550B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Khanra Production of boron carbide powder by carbothermal synthesis of gel material
CN113789161B (zh) 一种传热储热材料及其制备方法和应用
CN106540733A (zh) 一种制备石墨相氮化碳材料的方法
CN107758670A (zh) 一种碳化硼超细粉体的制备方法
CN108358205A (zh) 一种Ti3SiC2粉体的合成方法
Gao et al. A low cost, low energy, environmentally friendly process for producing high-purity boron carbide
CN108715550A (zh) 一种制备CaLa2S4粉体及热压烧结红外透明陶瓷的方法
Carter et al. Structure and phase transformation of lanthanum chromate
CN106082228B (zh) 一种b4c纳米片的制备方法及b4c纳米片
JP5383688B2 (ja) ケイ素を製造する方法及び装置
Choudhary et al. Lithium orthosilicate ceramics with preceramic polymer as silica source
CN108928822B (zh) 气态还原氧化钼制备碳化钼的方法
CN107416837B (zh) 一种以硅酸盐玻璃为原料制备多孔纳米碳化硅的方法
CN105543968B (zh) 一种低成本制备氮化镓晶体的方法
CN108675792B (zh) 一种反应热压烧结制备CaLa2S4红外透明陶瓷的方法
CN105502400A (zh) 一种b4c晶须的制备方法
CN101220516B (zh) 纳米MgO晶须的低温制备方法
CN102358950A (zh) 一种钨酸镉单晶纳米带的制备方法
CN109052476A (zh) 一种短流程制备二氧化钼的方法
Tsay et al. Formation and densification of CaLa2S4 powders by sulfidization of modified metal alkoxides in different atmospheres
CN108715551B (zh) 一种低温烧结稀土硫化物γ-Ln2S3红外透明陶瓷的方法
CN108584958B (zh) 一种碳化锆纳米粉体的原位合成方法
CN106833648A (zh) 一种高效合成具有黄铜矿结构的CuInSe2量子点的方法
CN108715549B (zh) 一种制备稀土硫化物γ-Ln2S3透明陶瓷的方法
CN105036138B (zh) 一种碱土硅化物热电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210105

Termination date: 20210605