CN108711876A - 一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法 - Google Patents

一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法 Download PDF

Info

Publication number
CN108711876A
CN108711876A CN201810582282.9A CN201810582282A CN108711876A CN 108711876 A CN108711876 A CN 108711876A CN 201810582282 A CN201810582282 A CN 201810582282A CN 108711876 A CN108711876 A CN 108711876A
Authority
CN
China
Prior art keywords
pole
mmc
systems
phase
hvdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810582282.9A
Other languages
English (en)
Other versions
CN108711876B (zh
Inventor
姚骏
裴金鑫
王雪微
骆悦
张田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810582282.9A priority Critical patent/CN108711876B/zh
Publication of CN108711876A publication Critical patent/CN108711876A/zh
Application granted granted Critical
Publication of CN108711876B publication Critical patent/CN108711876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法,所述短路故障为正负两极中仅其中一极发生的单极接地短路故障,本控制方法涉及故障所在极的控制和与故障所在极相对的另一极的控制。本方法不仅明确了MMC‑HVDC***在发生直流单极接地短路故障时送端和受端正、负极(故障所在极及另一极)的控制目标,并优化了其有功和无功功率配置原则,能够充分利用MMC‑HVDC***容量为电网提供有功和无功支撑,使得MMC‑HVDC能够在直流单极接地短路故障下充分利用自身容量实现故障穿越,从而提高MMC‑HVDC***在直流单极接地短路下故障穿越能力及其所联交流电网的稳定运行能力。

Description

一种适用于模块化多电平换流器的增强直流短路故障穿越控 制方法
技术领域
本发明涉及电力***柔性直流输配电,具体涉及一种适用于模块化多电平换流器直流单极接地短路故障的故障穿越控制方法,属于输配电技术领域。
背景技术
相比传统的两电平和三电平换流器,模块化多电平换流器(Modular MultilevelConvener,MMC)运行损耗更低,输出电压波形质量更高,可以通过增加子模块数灵活地扩展其电压功率等级,能够有效避免大量开关器件串联使用所带来的一系列问题,在柔性直流输电领域取得了广泛的应用。
模块化多电平变流器高压直流(modular multi-level converter-high voltagedirect current,MMC-HVDC)输电***发生直流单极接地短路故障时,该极不仅失去了输电能力,且桥臂电容的迅速放电,也会引起严重的过电流问题,此时MMC-HVDC***的正、负两极的控制目标不再相同,对应的控制指令需要重新制定,有功无功的容量分配也需要重新优化。因此,为了提高MMC-HVDC在直流单极接地短路故障下的故障穿越能力,提出直流单极接地短路故障下的故障穿越控制方法,需进一步对直流单极接地短路故障下MMC-HVDC的故障穿越控制方法进行深入研究。目前,针对MMC-HVDC的直流侧故障穿越控制技术,国内外学者已开展了相关研究,如已公开的下列文献:
(1)孔明,汤广福,贺之渊.子模块混合型MMC-HVDC直流故障穿越控制策略[J].中国电机工程学报,2014,34(30):5343-5351.
(2)Yu Xinyu,Wei Yingdong,Jiang Qirong.STATCOM operation scheme oftheCDSM-MMC during a pole-to-pole DC fault[J].IEEE Transactions on PowerDelivery,2016,31(3):1150-1159.
文献(1)和(2)针对MMC-HVDC***直流双极短路故障场景,提出了相应的故障穿越控制策略,但并没有考虑MMC-HVDC***单极接地短路故障。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提出一种适用于MMC-HVDC***直流单极接地短路故障下的故障穿越控制方法,本方法不仅明确了MMC-HVDC***在发生直流单极接地短路故障时送端和受端正、负极(故障所在极及另一极)的控制目标,并优化了其有功和无功功率配置原则,能够充分利用MMC-HVDC***容量为电网提供有功和无功支撑,从而提高MMC-HVDC***在直流单极接地短路下故障穿越能力及其所联交流电网的稳定运行能力。
本发明的技术方案是这样实现的:
一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法,所述短路故障为正负两极中仅其中一极发生的单极接地短路故障,其特征在于:本控制方法涉及故障所在极的控制和与故障所在极相对的另一极的控制,各极控制步骤分别如下:
(A)对故障所在极的控制步骤为:
A1)分别采集交流电网三相电压信号uabc,MMC-HVDC***的故障所在极三相桥臂电流信号iuabc,以及子模块电容电压Ucj,j=1...N,其中N为桥臂的子模块数;
A2)将交流电网三相电压信号uabc经过静止三相abc坐标系到静止两相αβ坐标轴系的恒功率坐标变换,转换为静止两相αβ坐标轴系下的电压信号,即uα、uβ
A3)采用电网电压d轴定向方式,分别将步骤A2)所得静止两相αβ坐标轴系下的电压信号uα、uβ经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换,得到交流电网三相电压在正向同步旋转坐标轴系下的dq轴分量,即ud、uq
A4)将采集到的MMC-HVDC***故障所在极三相桥臂电流信号iuabc经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
A5)将步骤A4)所得静止两相αβ坐标轴系下MMC-HVDC***故障所在极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***故障所在极三相桥臂电流在正向同步旋转坐标轴系下的dq轴分量,即iud、iuq
A6)将步骤A3)所得到交流电网三相电压在正向同步旋转坐标系下的dq轴分量ud、uq,各子模块电容电压Ucj,以及该故障所在极的无功功率指令Qu *,按照下式计算故障所在极dq轴电流的输出参考值,得到MMC-HVDC***送、受端故障所在极能够维持各子模块电容电压恒定,并提供相应无功支撑所需的未经限幅的dq轴电流参考值
其中,Uc0为子模块电容电压的额定值,Kp1和τi1分别为控制***中功率和电压外环PI控制器的比例系数和积分时间常数,Qu *为MMC-HVDC***故障所在极的无功功率给定值,Qu为故障所在极提供的实际无功功率,|Qu *|最大不得超过故障所在极额定容量;
A7)将步骤A6)计算得到电流参考值输送至MMC-HVDC***的电流内环控制环节,得到MMC-HVDC***故障所在极在正向同步旋转坐标系下的正序控制电压dq轴分量
A8)将步骤A7)得到的MMC-HVDC***故障所在极的正序控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
A9)将步骤A8)得到的MMC-HVDC***故障所在极的正序控制电压vαβ通过调制产生PWM驱动信号;
(B)对MMC-HVDC***与故障所在极相对的另一极的控制步骤为:
B1)采集MMC-HVDC***该另一极三相桥臂电流信号ilabc
B2)将采集到的MMC-HVDC***该另一极三相桥臂电流信号ilabc经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
B3)将步骤B2)所得静止两相αβ坐标轴系下MMC-HVDC***该另一极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***该另一极三相桥臂电流在正向同步旋转坐标轴系下的dq轴分量,即ild、ilq
B4)将步骤A3)所得到的交流电网电压在正向同步旋转坐标系下的dq轴分量ud、uq,该另一极的无功功率指令Ql *和有功功率指令Pl *,按照下式,计算该另一极dq轴电流参考值,以确定MMC-HVDC***送端该另一极能够维持该极直流母线电压恒定,并将剩余容量提供无功需求的未经限幅的dq轴电流参考值
其中,为MMC-HVDC***正负极直流母线电压的额定值,Udc为该极直流母线电压的实际值;Kp4和τi4分别为控制***中外环PI控制器的比例系数和积分时间常数,Kp5和τi5分别为控制***中功率外环PI控制器的比例系数和积分时间常数,Pl和Ql分别为该另一极提供的实际有功功率和无功功率,Qref为整个MMC-HVDC***的无功总指令,Pl *和Ql *分别为MMC-HVDC***该另一极的有功、无功功率给定值,Pl *和Ql *值需满足下式限制:
其中,Sl为该另一极的额定视在功率,且Sl=0.5p.u.;
B5)将步骤B4)计算得到的送、受端该另一极电流参考值输送至MMC-HVDC***的该另一极电流内环控制环节,得到MMC-HVDC***该另一极在正向同步旋转坐标系下的正序控制电压dq轴分量
B6)将步骤B5)得到的MMC-HVDC***该另一极的正序控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
B7)将步骤B6)得到的MMC-HVDC***该另一极的正序控制电压vαβ通过调制产生PWM驱动信号。
与现有技术相比,本发明具有如下有益效果:
本发明在MMC-HVDC***单极接地短路故障期间,充分考虑MMC-HVDC单极容量和运行工况,经合理优化和分配后,分别得到MMC-HVDC***故障所在极及另一极的功率给定指令,使得MMC-HVDC能够在直流单极接地短路故障下充分利用自身容量实现故障穿越,从而显著提高MMC-HVDC的故障穿越能力及其所联交流电网的稳定运行能力。
附图说明
图1为全桥型MMC-HVDC***的拓扑结构图。
图2为全桥型MMC-HVDC***子模块的拓扑结构图。
图3为直流单极接地故障控制下MMC-HVDC***仿真运行效果图。
图4为直流单极接地故障控制下MMC-HVDC***正负极桥臂子模块电容电压图。
具体实施方式
以下结合附图对本发明的具体实施方案做详细描述。
图1为MMC-HVDC***的拓扑结构,其MMC-HVDC***子模块均为图2所示的全桥型子模块。
本发明短路故障为正负两极中仅其中一极发生的单极接地短路故障,控制方法涉及故障所在极的控制和与故障所在极相对的另一极的控制,具体实施步骤如下:
(A)假设MMC-HVDC***正极发生单极接地短路故障,此时正极即为故障所在极,此时对正极的控制步骤为:
A1)利用电压霍尔传感器采集交流电网三相电压信号uabc,子模块电容电压Ucj(j=1...N),其中N为桥臂包含子模块数,利用电流霍尔传感器采集MMC-HVDC***正极直流电流信号Idc_P,以及正极三相桥臂的电流信号iuabc
A2)将采集的交流电网三相电压信号uabc低通滤波后,经静止三相abc坐标系到静止两相αβ坐标轴系的恒功率坐标变换,转换为静止两相αβ坐标轴系下的电压信号,即uα、uβ
A3)采用电网电压d轴定向方式,分别将步骤A2)所得静止两相αβ坐标轴系下的电压信号uα、uβ经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换,得到交流电网三相电压在正向同步旋转坐标轴系下的dq轴分量,即ud、uq
A4)将采集到的MMC-HVDC***正极三相桥臂电流信号iuabc低通滤波后,经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
A5)将步骤A4)所得静止两相αβ坐标轴系下MMC-HVDC***正极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***正极三相桥臂电流在正向同步旋转坐标系下的dq轴分量,即iud、iuq
A6)将步骤A3)所得的交流电网三相电压在正向同步旋转坐标系下的dq轴分量ud、uq,和步骤A1)采集到的各子模块电容电压Ucj,以及正极的无功功率指令Qu *输送至电流参考值计算模块,可确定MMC-HVDC***送、受端正极能够将各子模块电容电压维持恒定,并提供相应无功支撑所需输出的未经限幅的电流参考值该正极电流参考值计算模块如下式所示:
其中,Uc0为子模块电容电压的设计值,Kp1和τi1分别为控制***中功率外环PI控制器的比例系数和积分时间常数,Qu *为MMC-HVDC***的正极的无功功率给定值,Qu为正极提供的实际无功功率,|Qu *|最大不得超过正极额定容量;
A7)将步骤A6)计算得到电流参考值输送至MMC-HVDC***的电流内环控制环节,得到MMC-HVDC***正极在正向同步旋转坐标系下的正序控制电压dq轴分量
A8)将步骤A7)得到的MMC-HVDC***正极控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
A9)将步骤A8)得到的MMC-HVDC***控制电压vαβ通过改进的最近电平调制算法,调制产生PWM驱动信号作用于正极的子模块;
(B)模块化多电平换流器负极的控制步骤为:
B1)利用电压霍尔传感器采集交流电网三相电压信号uabc,子模块电容电压Ucj(j=1...N),其中N为桥臂包含子模块数,利用电流霍尔传感器采集MMC-HVDC***负极直流电流信号Idc_N,以及负极三相桥臂电流信号ilabc
B2)将采集到的交流电网三相电压信号uabc低通滤波后,经过静止三相abc坐标系到静止两相αβ坐标轴系的恒功率坐标变换,转换为静止两相αβ坐标轴系下的电压信号,即uα、uβ
B3)采用电网电压d轴定向方式,分别将步骤B2)所得静止两相αβ坐标轴系下的电压信号uα、uβ经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换,得到交流电网三相电压的正向同步旋转坐标轴系下的dq轴分量,即ud、uq
B4)将采集到的MMC-HVDC***负极三相桥臂电流信号ilabc低通滤波后,经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
B5)将步骤B4)所得静止两相αβ坐标轴系下MMC负极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***负极三相桥臂电流在正向同步旋转坐标系下的dq轴分量,即ild、ilq
B6)将步骤B3)所得的交流电网电压在正向同步旋转坐标系下的dq轴分量ud、uq,该负极的无功功率指令Ql *和有功功率指令Pl *,以及整个MMC-HVDC******的无功总指令Qref输送至电流参考值计算模块,可确定MMC-HVDC***送、受端负极能够维持该极直流母线电压恒定,并将剩余容量提供无功需求所需输出的未经限幅的电流参考值负极电流参考值计算模块如下式所示:
其中,为MMC-HVDC***正负极直流母线电压的额定值,Udc为该极直流母线电压的实际值;Kp4和τi4分别为控制***中外环PI控制器的比例系数和积分时间常数,Kp5和τi5分别为控制***中功率外环PI控制器的比例系数和积分时间常数,Pl和Ql分别为负极提供的实际有功无功功率,Pl *和Ql *值需满足下式限制:
其中,Sl为负极的额定视在功率,且Sl=0.5p.u.;
B7)将步骤B6)计算得到电流参考值输送至MMC-HVDC***负极的电流内环控制环节,得到MMC-HVDC***负极在正向同步旋转坐标系下的正序控制电压dq轴分量
B8)将步骤B7)得到的MMC-HVDC***负极控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
B9)将步骤B8)得到的MMC-HVDC***正、负序控制电压uαβ通过改进的最近电平调制算法,调制产生PWM驱动信号作用于负极的子模块。
如果MMC-HVDC***负极发生单极接地短路故障,此时负极即为故障所在极,此时负极的控制步骤跟前述正极发生单极接地短路故障下正极的控制完全类似,负极故障下正极的控制步骤跟正极故障下负极的控制也完全类似,故在此不赘述。
本发明在不增设硬件设备的前提下,实现了MMC-HVDC***在直流单极接地故障下的故障穿越控制,充分考虑MMC-HVDC单极容量和运行工况,在保证***安全运行的同时,最大限度地保证有功传输和无功支撑,以提高MMC-HVDC***在直流单极接地短路故障下的故障穿越能力和经济运行效益。
图3和图4分别为采用所提控制策略下,MMC-HVDC送端和受端***的仿真效果图,2.5s时MMC-HVDC***正极发生接地短路故障,故障发生1ms时投入本发明所提控制方法,MMC-HVDC送端***在整个故障穿越期间无功指令设为0,MMC-HVDC受端***无功指令在2.5s-2.575s设为0,在2.575s-2.82s设为0.3p.u.,在2.82s-3.8s设为-0.6p.u.。MMC-HVDC***的有功指令在2.5s-3.225s设为-0.6p.u.,在3.225s-3.575s设为0,在3.575s-3.8s设置为0.6p.u.,由图3和图4可知,MMC-HVDC送端***的直流母线电压Udc由额定值40kV降为额定值的一半,即20kV,正负极桥臂子模块电压均在采用所提控制策略后稳定在了4kV的额定电压值,正极直流母线电流Idc_P逐渐降为0,***的过压过流得到抑制,其MMC-HVDC送端***的负极还可以输送一定容量的有功功率。MMC-HVDC受端***正负极桥臂子模块电压均在采用所提控制策略后也稳定在了4kV的额定电压值,***在保证优先传输有功功率的同时,还可以迅速为所联交流电网提供一定的无功功率。
最后需要说明的是,本发明的上述实例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。尽管申请人参照较佳实施例对本发明进行了详细说明,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (1)

1.一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法,所述短路故障为正负两极中仅其中一极发生的单极接地短路故障,其特征在于:本控制方法涉及故障所在极的控制和与故障所在极相对的另一极的控制,各极控制步骤分别如下:
(A)对故障所在极的控制步骤为:
A1)分别采集交流电网三相电压信号uabc,MMC-HVDC***的故障所在极三相桥臂电流信号iuabc,以及子模块电容电压Ucj,j=1...N,其中N为桥臂的子模块数;
A2)将交流电网三相电压信号uabc经过静止三相abc坐标系到静止两相αβ坐标轴系的恒功率坐标变换,转换为静止两相αβ坐标轴系下的电压信号,即uα、uβ
A3)采用电网电压d轴定向方式,分别将步骤A2)所得静止两相αβ坐标轴系下的电压信号uα、uβ经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换,得到交流电网三相电压在正向同步旋转坐标轴系下的dq轴分量,即ud、uq
A4)将采集到的MMC-HVDC***故障所在极三相桥臂电流信号iuabc经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
A5)将步骤A4)所得静止两相αβ坐标轴系下MMC-HVDC***故障所在极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***故障所在极三相桥臂电流在正向同步旋转坐标轴系下的dq轴分量,即iud、iuq
A6)将步骤A3)所得到交流电网三相电压在正向同步旋转坐标系下的dq轴分量ud、uq,各子模块电容电压Ucj,以及该故障所在极的无功功率指令Qu *,按照下式计算故障所在极dq轴电流的输出参考值,得到MMC-HVDC***送、受端故障所在极能够维持各子模块电容电压恒定,并提供相应无功支撑所需的未经限幅的dq轴电流参考值
其中,Uc0为子模块电容电压的额定值,Kp1和τi1分别为控制***中功率和电压外环PI控制器的比例系数和积分时间常数,Qu *为MMC-HVDC***故障所在极的无功功率给定值,Qu为故障所在极提供的实际无功功率,|Qu *|最大不得超过故障所在极额定容量;
A7)将步骤A6)计算得到电流参考值输送至MMC-HVDC***的电流内环控制环节,得到MMC-HVDC***故障所在极在正向同步旋转坐标系下的正序控制电压dq轴分量
A8)将步骤A7)得到的MMC-HVDC***故障所在极的正序控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
A9)将步骤A8)得到的MMC-HVDC***故障所在极的正序控制电压vαβ通过调制产生PWM驱动信号;
(B)对MMC-HVDC***与故障所在极相对的另一极的控制步骤为:
B1)采集MMC-HVDC***该另一极三相桥臂电流信号ilabc
B2)将采集到的MMC-HVDC***该另一极三相桥臂电流信号ilabc经过静止三相abc坐标轴系到静止两相αβ坐标轴系的恒功率坐标变换得到静止两相αβ坐标轴系下的电流i、i
B3)将步骤B2)所得静止两相αβ坐标轴系下MMC-HVDC***该另一极三相桥臂电流i、i经静止两相αβ坐标轴系到正向同步旋转坐标轴系的恒功率变换得到MMC-HVDC***该另一极三相桥臂电流在正向同步旋转坐标轴系下的dq轴分量,即ild、ilq
B4)将步骤A3)所得到的交流电网电压在正向同步旋转坐标系下的dq轴分量ud、uq,该另一极的无功功率指令Ql *和有功功率指令Pl *,按照下式,计算该另一极dq轴电流参考值,以确定MMC-HVDC***送端该另一极能够维持该极直流母线电压恒定,并将剩余容量提供无功需求的未经限幅的dq轴电流参考值
其中,为MMC-HVDC***正负极直流母线电压的额定值,Udc为该极直流母线电压的实际值;Kp4和τi4分别为控制***中外环PI控制器的比例系数和积分时间常数,Kp5和τi5分别为控制***中功率外环PI控制器的比例系数和积分时间常数,Pl和Ql分别为该另一极提供的实际有功功率和无功功率,Qref为整个MMC-HVDC***的无功总指令,Pl *和Ql *分别为MMC-HVDC***该另一极的有功、无功功率给定值,Pl *和Ql *值需满足下式限制:
其中,Sl为该另一极的额定视在功率,且Sl=0.5p.u.;
B5)将步骤B4)计算得到的送、受端该另一极电流参考值输送至MMC-HVDC***的该另一极电流内环控制环节,得到MMC-HVDC***该另一极在正向同步旋转坐标系下的正序控制电压dq轴分量
B6)将步骤B5)得到的MMC-HVDC***该另一极的正序控制电压dq轴分量分别经过正向同步旋转坐标轴系到静止两相αβ坐标轴系的恒功率变换得到静止两相αβ坐标轴系下正序控制电压vαβ
B7)将步骤B6)得到的MMC-HVDC***该另一极的正序控制电压vαβ通过调制产生PWM驱动信号。
CN201810582282.9A 2018-06-07 2018-06-07 一种模块化多电平换流器的直流短路故障穿越控制方法 Active CN108711876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810582282.9A CN108711876B (zh) 2018-06-07 2018-06-07 一种模块化多电平换流器的直流短路故障穿越控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810582282.9A CN108711876B (zh) 2018-06-07 2018-06-07 一种模块化多电平换流器的直流短路故障穿越控制方法

Publications (2)

Publication Number Publication Date
CN108711876A true CN108711876A (zh) 2018-10-26
CN108711876B CN108711876B (zh) 2020-06-23

Family

ID=63871478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810582282.9A Active CN108711876B (zh) 2018-06-07 2018-06-07 一种模块化多电平换流器的直流短路故障穿越控制方法

Country Status (1)

Country Link
CN (1) CN108711876B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031726A (zh) * 2019-05-17 2019-07-19 云南电网有限责任公司电力科学研究院 一种柔性直流线路故障检测方法及装置
CN110504688A (zh) * 2019-08-12 2019-11-26 上海交通大学 具备交直流故障不间断运行能力的固态变压器及控制方法
CN113358973A (zh) * 2021-06-07 2021-09-07 重庆大学 一种柔性直流电网故障检测方法
CN114268120A (zh) * 2021-12-03 2022-04-01 国网福建省电力有限公司经济技术研究院 一种mmc交流侧近端不对称故障短路电流计算方法
CN115133505A (zh) * 2022-06-29 2022-09-30 国网经济技术研究院有限公司 柔直换流阀馈入交流***短路电流快速抑制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218573A (zh) * 2014-08-29 2014-12-17 华南理工大学 一种受端电网发生故障时mmc-hvdc的控制方法
CN104901524A (zh) * 2015-05-26 2015-09-09 清华大学 一种模块化多电平变流器的直流双极短路故障穿越方法
CN107069679A (zh) * 2017-03-30 2017-08-18 华中科技大学 一种对称双极mmc直流侧单极接地故障穿越和恢复方法
CN107147144A (zh) * 2017-06-08 2017-09-08 重庆大学 电网不对称故障下混合风电场群协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218573A (zh) * 2014-08-29 2014-12-17 华南理工大学 一种受端电网发生故障时mmc-hvdc的控制方法
CN104901524A (zh) * 2015-05-26 2015-09-09 清华大学 一种模块化多电平变流器的直流双极短路故障穿越方法
CN107069679A (zh) * 2017-03-30 2017-08-18 华中科技大学 一种对称双极mmc直流侧单极接地故障穿越和恢复方法
CN107147144A (zh) * 2017-06-08 2017-09-08 重庆大学 电网不对称故障下混合风电场群协调控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031726A (zh) * 2019-05-17 2019-07-19 云南电网有限责任公司电力科学研究院 一种柔性直流线路故障检测方法及装置
CN110504688A (zh) * 2019-08-12 2019-11-26 上海交通大学 具备交直流故障不间断运行能力的固态变压器及控制方法
US11431263B2 (en) 2019-08-12 2022-08-30 Shanghai Jiao Tong University Solid-state transformer having uninterrupted operation ability under AC/DC fault and control method thereof
CN113358973A (zh) * 2021-06-07 2021-09-07 重庆大学 一种柔性直流电网故障检测方法
CN113358973B (zh) * 2021-06-07 2023-11-28 重庆大学 一种柔性直流电网故障检测方法
CN114268120A (zh) * 2021-12-03 2022-04-01 国网福建省电力有限公司经济技术研究院 一种mmc交流侧近端不对称故障短路电流计算方法
CN114268120B (zh) * 2021-12-03 2024-02-27 国网福建省电力有限公司经济技术研究院 一种mmc交流侧近端不对称故障短路电流计算方法
CN115133505A (zh) * 2022-06-29 2022-09-30 国网经济技术研究院有限公司 柔直换流阀馈入交流***短路电流快速抑制方法及***

Also Published As

Publication number Publication date
CN108711876B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN108711876A (zh) 一种适用于模块化多电平换流器的增强直流短路故障穿越控制方法
CN109842142B (zh) 混合三端高压直流输电***及其直流故障快速限流方法
Liang et al. A multi-terminal HVDC transmission system for offshore wind farms with induction generators
EP2671310B1 (en) Power electronic converter
CN109347144B (zh) 一种风电柔性直流送出***的低电压穿越方法
CN108336750B (zh) 换流器、基于半vsc三极直流***及其故障转移控制方法
CN106099968A (zh) 海上风电场直流输电***直流短路故障穿越方法和***
CN106712089B (zh) 一种基于九开关管逆变器的多功能分布式电源并网装置
CN111521908B (zh) 一种应用于四端风电直流电网的交流故障定位方法
CN115224717A (zh) 一种新能源孤岛电网送出***的送端交流故障穿越方法
CN110460083B (zh) Lcc-vsc直流输电***功率协调控制方法和装置
Xin et al. AC fault ride-through coordinated control strategy of LCC-MMC hybrid DC transmission system connected to passive networks
CN113394819B (zh) 孤岛海上风电场混合直流并网***的协调控制方法及***
CN112086988B (zh) 一种电压源型换流器控制策略平滑切换方法
CN113991731A (zh) 一种大型燃机储能***黑启动方法
CN113067358A (zh) 一种减小mmc型直流电网直流侧限流电抗器的方法
CN207743702U (zh) 一种链式statcom直流母线电压控制装置
Jahanpour-Dehkordi et al. An improved combined control for PMSG-based wind energy systems to enhance power quality and grid integration capability
Torres-Olguin et al. Grid Integration of offshore wind farms using a Hybrid HVDC composed by an MMC with an LCC-based transmission system
CN113141010A (zh) 双极性直流供电电路
Kavya et al. Comparison of controllers of hybrid HVDC link in multi-infeed application
CN113013917A (zh) 用于电力电子变流器的混合型相位同步控制器及控制方法
CN110299726B (zh) 一种光伏直流并网***故障恢复控制方法
CN112769117B (zh) 一种防止直流电网过电压的控制方法
Rong et al. Voltage Regulation Method of Series Compensator Based on Impedance in Weak Distribution Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant