CN108707965A - 一种cvd单晶金刚石异质外延衬底的结构及制备方法 - Google Patents

一种cvd单晶金刚石异质外延衬底的结构及制备方法 Download PDF

Info

Publication number
CN108707965A
CN108707965A CN201810621757.0A CN201810621757A CN108707965A CN 108707965 A CN108707965 A CN 108707965A CN 201810621757 A CN201810621757 A CN 201810621757A CN 108707965 A CN108707965 A CN 108707965A
Authority
CN
China
Prior art keywords
sapphire substrate
metal
polishing
layers
biass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810621757.0A
Other languages
English (en)
Inventor
左浩
李升�
刘宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Carbon Star Semiconductor Technology Co Ltd
Original Assignee
Xi'an Carbon Star Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Carbon Star Semiconductor Technology Co Ltd filed Critical Xi'an Carbon Star Semiconductor Technology Co Ltd
Priority to CN201810621757.0A priority Critical patent/CN108707965A/zh
Publication of CN108707965A publication Critical patent/CN108707965A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种CVD单晶金刚石异质外延衬底的结构及制备方法,其结构,包括蓝宝石衬底,所述蓝宝石衬底的顶部外壁设置有金属IR层,且金属IR层的顶部外壁设置有纳米晶金刚石成核层,且结构的制备方法,包括在蓝宝石衬底的顶部外壁通过剖光***进行单面剖光,并通过表面粗糙度检测仪进行粗糙度检测,若蓝宝石衬底单面剖光不合格时则继剖光,直至合格,同时通过吸尘设备吸取废渣,使用磁控溅射方法,在S1中单面剖光后的蓝宝石衬底的外壁淀积一层厚度为100‑300nm的金属IR层。本发明实现大面积单晶金刚石的低成本生长,可用于生长英寸级的大面积单晶金刚石,能够实时检测蓝宝石衬底单面剖光的光滑度。

Description

一种CVD单晶金刚石异质外延衬底的结构及制备方法
技术领域
本发明涉及金刚石外延衬底技术领域,尤其涉及一种CVD单晶金刚石异质外延衬底的结构及制备方法。
背景技术
VD(Chemical Vapor Deposition化学气相沉积)金刚石。含碳气体和氧气的混合物在高温和低于标准大气压的压力下被激发分解,形成活性金刚石碳原子,并在基体上沉积交互生长成聚晶金刚石(或控制沉积生长条件沉积生长金刚石单晶或者准单晶)。
经检索,中国专利申请号为CN201410794743.0的专利,公开了一种异质外延生长大尺寸单晶金刚石的衬底及其制备方法。所述衬底自下而上依次为Si衬底、TiN单晶籽晶层、金属氧化物单晶薄膜层、铱单晶薄膜层。上述专利中的一种异质外延生长大尺寸单晶金刚石的衬底及其制备方法存在以下不足:不能够实现大面积单晶金刚石的低成本成长,不利于英寸级的大面积单晶金刚石。
发明内容
基于背景技术存在的技术问题,本发明提出了一种CVD单晶金刚石异质外延衬底的结构及制备方法。
本发明提出的一种CVD单晶金刚石异质外延衬底的结构,包括蓝宝石衬底,所述蓝宝石衬底的顶部外壁设置有金属IR层,且金属IR层的顶部外壁设置有纳米晶金刚石成核层。
一种CVD单晶金刚石异质外延衬底结构的制备方法,包括以下步骤:
S1:在蓝宝石衬底的顶部外壁通过剖光***进行单面剖光,并通过表面粗糙度检测仪进行粗糙度检测,若蓝宝石衬底单面剖光不合格时则继剖光,直至合格,同时通过吸尘设备吸取废渣;
S2:使用磁控溅射方法,在S1中单面剖光后的蓝宝石衬底的外壁淀积一层厚度为100-300nm的金属IR层;
S3:在金属IR层上使用微波等离子体化学气相淀积设备低压力低功率密度下生长一层纳米晶金刚石层,并通过低压力低功率控制***实施控制,保证纳米晶金刚石层的生长质量,纳米晶金刚石层即为纳米晶金刚石成核层。
优选地,所述磁控溅射方法包括以下步骤:
S1:将待溅射的蓝宝石衬底送入磁控溅射设备的装卸腔,并在装卸腔内设置匀速旋转放置架,待溅射的蓝宝石衬底固定在旋转放置架上,匀速旋转放置架将蓝宝石衬底旋转入磁控溅射设备内的反应仓内,并在反应仓内充入氩气;
S2:5-7秒后,对金属IR靶材施加1600W~1800W的第一DC偏压,进行起辉;
S3:5-7秒后,停止通入氩气;
S4:16-18秒后,将S2中的第一DC偏压增加至第二DC偏压,第二偏压的功率为10000W-20000W,在下电极上以1000W/s-3000W/s的速率加载RF偏压,RF偏压的功率为1000W-1500W;
S5:10-14秒后,停止施加DC偏压及RF偏压,继续向反应腔室中通入氩气,完成产品冷却,得到金属IR层。
优选地,所述低压力低功率控制***包括检测装置和调节装置,且检测装置包括压力检测器和功率检测仪。
优选地,所述剖光***包括金刚石剖光机和吸尘机,且吸尘机的输入端插接有弹簧式塑料软管,弹簧式塑料软管远离吸尘机的一端插接有聚风罩,吸尘机的输出端插接有导尘管,导尘管远离吸尘机的一端插接有集渣箱。
本发明的有益效果为:
1、使用微波等离子体化学气相淀积设备在蓝宝石/Ir基底上的纳米晶金刚石层作为单晶生长的成核层,实现大面积单晶金刚石的低成本生长,可用于生长英寸级的大面积单晶金刚石。
2、通过设置表面镀粗糙度检测仪,能够实时检测蓝宝石衬底单面剖光的光滑度,为后续制备打下了良好的基础,同时设置吸尘机和集渣箱,能够将剖光后产生的废渣集中处理,避免了环境污染和资源浪费。
附图说明
图1为本发明提出的一种CVD单晶金刚石异质外延衬底的结构示意图;
图2为本发明提出的一种CVD单晶金刚石异质外延衬底结构的制备方法示意图。
图中:1纳米晶金刚石成核层、2金属IR层、3蓝宝石衬底。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
参照图1,一种CVD单晶金刚石异质外延衬底的结构,包括蓝宝石衬底3,蓝宝石衬底3的顶部外壁设置有金属IR层2,且金属IR层2的顶部外壁设置有纳米晶金刚石成核层1。
参照图2,一种CVD单晶金刚石异质外延衬底结构的制备方法,包括以下步骤:
S1:在蓝宝石衬底3的顶部外壁通过剖光***进行单面剖光,并通过表面粗糙度检测仪进行粗糙度检测,若蓝宝石衬底单面剖光不合格时则继剖光,直至合格,同时通过吸尘设备吸取废渣;
S2:使用磁控溅射方法,在S1中单面剖光后的蓝宝石衬底3的外壁淀积一层厚度为100-300nm的金属IR层2;
S3:在金属IR层2上使用微波等离子体化学气相淀积设备低压力低功率密度下生长一层纳米晶金刚石层,并通过低压力低功率控制***实施控制,保证纳米晶金刚石层的生长质量,纳米晶金刚石层即为纳米晶金刚石成核层1。
本发明中,磁控溅射方法包括以下步骤:
S1:将待溅射的蓝宝石衬底3送入磁控溅射设备的装卸腔,并在装卸腔内设置匀速旋转放置架,待溅射的蓝宝石衬底3固定在旋转放置架上,匀速旋转放置架将蓝宝石衬底3旋转入磁控溅射设备内的反应仓内,并在反应仓内充入氩气;
S2:5-7秒后,对金属IR靶材施加1600W~1800W的第一DC偏压,进行起辉;
S3:5-7秒后,停止通入氩气;
S4:16-18秒后,将S2中的第一DC偏压增加至第二DC偏压,第二偏压的功率为10000W-20000W,在下电极上以1000W/s-3000W/s的速率加载RF偏压,RF偏压的功率为1000W-1500W;
S5:10-14秒后,停止施加DC偏压及RF偏压,继续向反应腔室中通入氩气,完成产品冷却,得到金属IR层2。
本发明中,低压力低功率控制***包括检测装置和调节装置,且检测装置包括压力检测器和功率检测仪,剖光***包括金刚石剖光机和吸尘机,且吸尘机的输入端插接有弹簧式塑料软管,弹簧式塑料软管远离吸尘机的一端插接有聚风罩,吸尘机的输出端插接有导尘管,导尘管远离吸尘机的一端插接有集渣箱,在蓝宝石衬底3剖光时,吸尘机实时工作,将剖光产生的灰尘通过弹簧式塑料软管和导尘管引入至集渣箱内,避免环境污染,剖光后,表面粗糙度检测仪检测剖光后的蓝宝石衬底3的光滑度,避免剖光不合格的蓝宝石衬底3直接进行磁控溅射,造成CVD单晶金刚石异质外延衬底制备质量下降。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种CVD单晶金刚石异质外延衬底的结构,包括蓝宝石衬底(3),其特征在于,所述蓝宝石衬底(3)的顶部外壁设置有金属IR层(2),且金属IR层(2)的顶部外壁设置有纳米晶金刚石成核层(1)。
2.一种CVD单晶金刚石异质外延衬底结构的制备方法,其特征在于,包括以下步骤:
S1:在蓝宝石衬底(3)的顶部外壁通过剖光***进行单面剖光,并通过表面粗糙度检测仪进行粗糙度检测,若蓝宝石衬底单面剖光不合格时则继剖光,直至合格,同时通过吸尘设备吸取废渣;
S2:使用磁控溅射方法,在S1中单面剖光后的蓝宝石衬底(3)的外壁淀积一层厚度为100-300nm的金属IR层(2);
S3:在金属IR层(2)上使用微波等离子体化学气相淀积设备低压力低功率密度下生长一层纳米晶金刚石层,并通过低压力低功率控制***实施控制,保证纳米晶金刚石层的生长质量,纳米晶金刚石层即为纳米晶金刚石成核层(1)。
3.根据权利要求2所述的一种CVD单晶金刚石异质外延衬底结构的制备方法,其特征在于,所述磁控溅射方法包括以下步骤:
S1:将待溅射的蓝宝石衬底(3)送入磁控溅射设备的装卸腔,并在装卸腔内设置匀速旋转放置架,待溅射的蓝宝石衬底(3)固定在旋转放置架上,匀速旋转放置架将蓝宝石衬底(3)旋转入磁控溅射设备内的反应仓内,并在反应仓内充入氩气;
S2:5-7秒后,对金属IR靶材施加1600W~1800W的第一DC偏压,进行起辉;
S3:5-7秒后,停止通入氩气;
S4:16-18秒后,将S2中的第一DC偏压增加至第二DC偏压,第二偏压的功率为10000W-20000W,在下电极上以1000W/s-3000W/s的速率加载RF偏压,RF偏压的功率为1000W-1500W;
S5:10-14秒后,停止施加DC偏压及RF偏压,继续向反应腔室中通入氩气,完成产品冷却,得到金属IR层(2)。
4.根据权利要求2所述的一种CVD单晶金刚石异质外延衬底结构的制备方法,其特征在于,所述低压力低功率控制***包括检测装置和调节装置,且检测装置包括压力检测器和功率检测仪。
5.根据权利要求2所述的一种CVD单晶金刚石异质外延衬底结构的制备方法,其特征在于,所述剖光***包括金刚石剖光机和吸尘机,且吸尘机的输入端插接有弹簧式塑料软管,弹簧式塑料软管远离吸尘机的一端插接有聚风罩,吸尘机的输出端插接有导尘管,导尘管远离吸尘机的一端插接有集渣箱。
CN201810621757.0A 2018-06-15 2018-06-15 一种cvd单晶金刚石异质外延衬底的结构及制备方法 Pending CN108707965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810621757.0A CN108707965A (zh) 2018-06-15 2018-06-15 一种cvd单晶金刚石异质外延衬底的结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810621757.0A CN108707965A (zh) 2018-06-15 2018-06-15 一种cvd单晶金刚石异质外延衬底的结构及制备方法

Publications (1)

Publication Number Publication Date
CN108707965A true CN108707965A (zh) 2018-10-26

Family

ID=63871786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810621757.0A Pending CN108707965A (zh) 2018-06-15 2018-06-15 一种cvd单晶金刚石异质外延衬底的结构及制备方法

Country Status (1)

Country Link
CN (1) CN108707965A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321466A (zh) * 2020-03-25 2020-06-23 武汉大学 大尺寸单晶金刚石生长方法及生长用复合基底
CN111826714A (zh) * 2020-07-27 2020-10-27 哈尔滨工业大学 基于射频电源施加偏压以增强cvd金刚石异质外延形核的方法
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN112831834A (zh) * 2020-12-31 2021-05-25 西安交通大学 一种在Ru(0001)薄膜上异质外延生长金刚石(111)薄膜的制备方法
CN114381802A (zh) * 2020-10-22 2022-04-22 国立大学法人长冈技术科学大学 金刚石形成用结构体、及金刚石形成用结构体的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176114A1 (en) * 2006-03-31 2009-07-09 Atsuhito Sawabe Base Substrate for Epitaxial Diamond Film, Method for Producing the Base Substrate for Epitaxial Diamond Film, Epitaxial Diamond Film produced With the Base Substrate for Epitaxial Diamond Film, and Method for Producing the Epitaxial Diamond Film
CN102031561A (zh) * 2009-10-02 2011-04-27 信越化学工业株式会社 单晶金刚石生长用基材及单晶金刚石基板的制造方法
CN104499047A (zh) * 2014-12-20 2015-04-08 哈尔滨工业大学 一种异质外延生长大尺寸单晶金刚石的衬底及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176114A1 (en) * 2006-03-31 2009-07-09 Atsuhito Sawabe Base Substrate for Epitaxial Diamond Film, Method for Producing the Base Substrate for Epitaxial Diamond Film, Epitaxial Diamond Film produced With the Base Substrate for Epitaxial Diamond Film, and Method for Producing the Epitaxial Diamond Film
CN102031561A (zh) * 2009-10-02 2011-04-27 信越化学工业株式会社 单晶金刚石生长用基材及单晶金刚石基板的制造方法
CN104499047A (zh) * 2014-12-20 2015-04-08 哈尔滨工业大学 一种异质外延生长大尺寸单晶金刚石的衬底及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321466A (zh) * 2020-03-25 2020-06-23 武汉大学 大尺寸单晶金刚石生长方法及生长用复合基底
CN111826714A (zh) * 2020-07-27 2020-10-27 哈尔滨工业大学 基于射频电源施加偏压以增强cvd金刚石异质外延形核的方法
CN111826714B (zh) * 2020-07-27 2021-10-01 哈尔滨工业大学 基于射频电源施加偏压以增强cvd金刚石异质外延形核的方法
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN111933514B (zh) * 2020-08-12 2023-02-24 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN114381802A (zh) * 2020-10-22 2022-04-22 国立大学法人长冈技术科学大学 金刚石形成用结构体、及金刚石形成用结构体的制造方法
CN114381802B (zh) * 2020-10-22 2023-04-07 国立大学法人长冈技术科学大学 金刚石形成用结构体、及金刚石形成用结构体的制造方法
CN112831834A (zh) * 2020-12-31 2021-05-25 西安交通大学 一种在Ru(0001)薄膜上异质外延生长金刚石(111)薄膜的制备方法

Similar Documents

Publication Publication Date Title
CN108707965A (zh) 一种cvd单晶金刚石异质外延衬底的结构及制备方法
CN100500951C (zh) 高速生长金刚石单晶的装置和方法
Sundqvist et al. Growth of SnO2 thin films by atomic layer deposition and chemical vapour deposition: A comparative study
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
Ohuchi et al. AlN thin films with controlled crystallographic orientations and their microstructure
CN109545657A (zh) 一种改善碳化硅衬底上生长的氧化镓薄膜的方法
EP1346085A4 (en) METHOD AND DEVICE FOR PRODUCING MN-BASED MATERIALS
CN101587902B (zh) 一种纳米绝缘体上硅结构材料及其制作方法
US7396408B2 (en) Monocrystalline diamond layer and method for the production thereof
Park et al. Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition
CN106567049B (zh) 一种max相陶瓷涂层及其制备方法和制备装置
CN108447773A (zh) 石墨烯单晶薄膜及其制备方法
Yin et al. Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering
EP0582228B1 (en) Process of forming hydrogenated amorphous silicon film
Björketun et al. Interfacial void formation during vapor phase growth of 3C-SiC on Si (0 0 1) and Si (1 1 1) substrates. Characterization by transmission electron microscopy
US6902716B2 (en) Fabrication of single crystal diamond tips and their arrays
CN100395378C (zh) 大颗粒单晶金刚石的直流等离子体沉降制备方法
CN106744931A (zh) 一种等离子体刻蚀石墨制备金刚石颗粒的方法
CN108728817B (zh) 一种具有电磁屏蔽功能的红外透明窗口及其制备方法
KR100991770B1 (ko) 입방정계 질화붕소 박막의 증착 방법
CN101736313B (zh) 一种在锗基片上制备类金刚石膜的方法
Wu et al. Novel plasma immersion ion implantation and deposition hardware and technique based on high power pulsed magnetron discharge
Chen et al. Effect of deposition temperature and quality of free-standing diamond substrates on the properties of RF sputtering ZnO films
Black et al. MOCVD of ZnO thin films for potential use as compliant layers for GaN on Si
CN108546995A (zh) 在石墨烯衬底上定向生长碲锌镉薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181026