CN108699656A - 钢材和油井用钢管 - Google Patents

钢材和油井用钢管 Download PDF

Info

Publication number
CN108699656A
CN108699656A CN201780014799.1A CN201780014799A CN108699656A CN 108699656 A CN108699656 A CN 108699656A CN 201780014799 A CN201780014799 A CN 201780014799A CN 108699656 A CN108699656 A CN 108699656A
Authority
CN
China
Prior art keywords
steel
ssc
less
resistance
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780014799.1A
Other languages
English (en)
Other versions
CN108699656B (zh
Inventor
荒井勇次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of CN108699656A publication Critical patent/CN108699656A/zh
Application granted granted Critical
Publication of CN108699656B publication Critical patent/CN108699656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

提供一种在高压H2S环境下也具有优异的耐SSC性的钢材。本发明的钢材具有如下化学组成:以质量%计,含有C:0.15~0.45%、Si:0.10~1.0%、Mn:0.10%以上且小于0.90%、P:0.05%以下、S:0.01%以下、Al:0.01~0.1%、N:0.010%以下、Cr:0.1~2.5%、Mo:0.35~3.0%和Co:0.50~3.0%,满足式(1)和(2),以体积率计含有90%以上的回火马氏体。C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50(1)(3C+Mo+3Co)/(3Mn+Cr)≥1.0(2)有效B=B-11(N-Ti/3.4)/14(3)其中,式(1)的α在由式(3)定义的有效B(质量%)为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。

Description

钢材和油井用钢管
技术领域
本发明涉及钢材和油井用钢管,更详细而言涉及适用于酸性环境的钢材和油井用钢管。
背景技术
由于油井、天然气井(以下将油井和天然气井总称为“油井”)的深井化,要求油井用钢管更高强度化。具体而言,80ksi级(屈服应力为80~95ksi,即551~654MPa)、95ksi级(屈服应力为95~110ksi,即654~758MPa)的油井用钢管被广泛利用。
深井大多是含有具有腐蚀性的硫化氢的酸性环境。在这种酸性环境下使用的油井用钢管不仅要求具备高强度,还要有耐硫化物应力裂纹性(耐Sulfide Stress Cracking性:以下称为耐SSC性)。
对于具备高强度且提高了耐氢脆化特性(耐SSC性、耐延迟断裂性)的钢,在特开昭56-5949号公报(专利文献1)和特开昭57-35622号公报(专利文献2)中有提及。这些文献公开的钢通过含有Co来提高耐氢脆化特性(耐SSC性、耐延迟断裂性)。
具体而言,专利文献1公开的高张力钢,是将具有下述化学组成的钢进行淬火回火而得到,具有60kg/mm2以上的条件屈服强度:含有C:0.05~0.50%、Si:0.10~0.28%、Mn:0.10~2.0%、Co:0.05~1.50%、Al:0.01~0.10%、余量为Fe和不可避免的杂质。
专利文献2公开的高强度油井用钢,是将具有下述化学组成的钢以880~980℃进行淬火,然后以650~700℃进行回火而得到:含有C:0.27~0.50%、Si:0.08~0.30%、Mn:0.90~1.30%、Cr:0.5~0.9%、Ni:0.03%以下、V:0.04~0.11%、Nb:0.01~0.10%、Mo:0.60~0.80%、Al:0.1%以下、和Co:3%以下,余量为Fe和不可避免的杂质,杂质中P:0.005%以下、S:0.003%以下。
现有技术文献
专利文献
专利文献1:特开昭56-5949号公报
专利文献2:特开昭57-35622号公报
另一方面,目前对钢材的耐SSC性的评价,主流是基于例如NACE(NationalAssociation of Corrosion Engineers)TM0177规定的Method A试验或Method B试验等拉伸试验或弯曲试验的方式。
但是,这些试验由于采用平滑试验片,没有考虑到SSC的传播停止特性。因此,即使是在这些试验中被评价为耐SSC性优异的钢材,也有可能出现由于钢中潜在裂纹的传播导致产生SSC的情况。
进而,由于近年来油井等的深井化,酸性环境中H2S的气压高达5~15atm的水平。这种高压H2S环境下使用的钢材需要比现有钢材具备更优异的耐SSC性。为了得到优异的耐SSC性,不仅要抑制SSC的发生,优选还能抑制SSC的传播。因此,最近人们谋求在NACETM0177规定的Method D的DCB(Double Cantilever Beam)试验中具有高断裂韧性值KISSC的优异的耐SSC性。
专利文献1和专利文献2中,没有评价在H2S分压为5~15atm的高压H2S环境下的耐SSC性,有可能出现高压H2S环境下的断裂韧性值KISSC低的情况。
发明内容
发明要解决的问题
本发明的目的在于,提供一种在高压H2S环境下也具有优异的耐SSC性的钢材。
用于解决问题的方案
本发明的钢材的特征在于,具有如下化学组成:以质量%计,含有C:0.15~0.45%、Si:0.10~1.0%、Mn:0.10%以上且小于0.90%、P:0.05%以下、S:0.01%以下、Al:0.01~0.1%、N:0.010%以下、Cr:0.1~2.5%、Mo:0.35~3.0%、Co:0.50~3.0%、Cu:0~0.5%、Ni:0~0.5%、Ti:0~0.03%、Nb:0~0.15%、V:0~0.5%、B:0~0.003%、Ca:0~0.004%、Mg:0~0.004%、Zr:0~0.004%、和稀土元素:0~0.004%,余量为Fe和杂质,且所述化学组成满足式(1)和(2),显微组织以体积率计含有90%以上的回火马氏体。
C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50 (1)
(3C+Mo+3Co)/(3Mn+Cr)≥1.0 (2)
有效B=B-11(N-Ti/3.4)/14 (3)
其中,式(1)的α在由式(3)定义的有效B(质量%)为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。式(1)~式(3)中的各元素符号代入对应元素的含量(质量%)。
发明的效果
本发明的钢材在高压H2S环境下也具有优异的耐SSC性。
附图说明
图1为示出Co含量(质量%)与断裂韧性值KISSC(单位为MPa√m)之间关系的图。
图2为示出F2=(3C+Mo+3Co)/(3Mn+Cr)与断裂韧性值KISSC(单位为MPa√m)之间关系的图。
图3A为实施例的DCB试验所用的DCB试验片的侧面图和截面图。图3A中的数值表示对应部位的尺寸(单位为mm)。
图3B为实施例的DCB试验所用的楔子的立体图。图3B中的数值表示对应部位的尺寸(单位为mm)。
具体实施方式
本发明人对5~15atm的高压H2S环境下的耐SSC性进行调查研究后,得到下述发现。
(1)Co可提高耐SSC性。尤其是在具有如下化学组成的钢材中,含有0.50%~3.0%的Co时,可得到优异的耐SSC性:以质量%计,含有C:0.15~0.45%、Si:0.10~1.0%、Mn:0.10%以上且小于0.90%、P:0.05%以下、S:0.01%以下、Al:0.01~0.1%、N:0.010%以下、Cr:0.1~2.5%、Mo:0.35~3.0%、Cu:0~0.5%、Ni:0~0.5%、Ti:0~0.03%、Nb:0~0.15%、V:0~0.5%、B:0~0.003%、Ca:0~0.004%、Mg:0~0.004%、Zr:0~0.004%、和稀土元素:0~0.004%。
图1为下述实施例的DCB试验中得到的高压H2S环境下的Co含量(质量%)与断裂韧性值KISSC(单位为MPa√m)之间关系的图。由图1可知,随着Co含量由0%开始增加,断裂韧性值KISSC迅速上升,在Co含量为0.50%以上时达到35MPa√m以上。另一方面,虽然当Co含量超过0.80%时,断裂韧性值KISSC有所下降,但在Co含量超过1.0%到Co含量达到3.0%之前,断裂韧性值KISSC均为高于35MPa√m的值且基本保持不变。另外,Co含量超过3.0%时,断裂韧性值KISSC缓慢下降,变得小于35MPa√m。
总之,上述化学组成中,Co含量为0.50~3.0%时,可得到能够实现高断裂韧性值KISSC,且能抑制SSC传播的优异的耐SSC性。其原因虽然尚未完全明确,但认为可能是下述原因。在酸性环境下使用的过程中,Co会富集于钢材的表层。富集于表层的Co能够抑制氢侵入至钢中。认为由此使得耐SSC性提高。
(2)如上所述,含有特定量的Co时,由于Co在表层富集,可得到优异的耐SSC性。但是,Co不同于其它合金元素(C、Mn、Cr、V、Cu、Ni等),它会降低钢的淬火性。因此,Co含量如果与C、Mn、Cr、V、Cu和Ni含量相比较高,淬火性就会下降。在该情况下,显微组织不是仅含回火马氏体,而是含有贝氏体、残留奥氏体的不均匀组织。因此,由于显微组织,导致耐SSC性下降。为此,本发明人对耐SSC性中的Co与其它合金元素的关系进行研究,结果得到下述发现。
只要化学组成进一步满足式(1)和式(2),就能维持淬火性,且可得到优异的耐SSC性。
C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50 (1)
(3C+Mo+3Co)/(3Mn+Cr)≥1.0 (2)
有效B=B-11(N-Ti/3.4)/14 (3)
其中,式(1)的α在由式(3)定义的有效B(质量%)为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。式(1)~式(3)中的各元素符号代入对应元素的含量(质量%)。
[关于式(1)]
定义F1=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α。F1为淬火性的指标。C、Mn、Cr、Mo、V、Cu,和规定量的有效B(固溶的B)会提高钢的淬火性。另一方面,如上所述,Co会降低钢的淬火性。F1为0.50以上时,即使含有Co,也可得到优异的淬火性,能够提高显微组织中回火马氏体的体积率。
显微组织基本由回火马氏体形成的情况下,可得到优异的耐SSC性。另一方面,显微组织为由回火马氏体与其它相(贝氏体、残留奥氏体等)形成的不均匀组织的情况下,耐SSC性下降。F1满足式(1)的情况下,显微组织中的回火马氏体的体积率为90%以上,可得到优异的耐SSC性。
[关于式(2)]
F1满足式(1)时,显微组织基本上是回火马氏体。但是,如果过多地含有合金元素,由于钢材中会捕捉(积存)氢,耐SSC性反而下降。在提高淬火性的元素中,尤其是Mn和Cr可提高淬火性,但也可能使耐SSC性下降。另一方面,与上述Co一起,C和Mo为提高钢的耐SSC性的元素。
定义F2=(3C+Mo+3Co)/(3Mn+Cr)。F2为耐SSC性的指标。
图2为示出F2与断裂韧性值KISSC(单位为MPa√m)之间关系的图。图2是通过在下述实施例中对相当于API标准的C110级别的钢板进行DCB试验而得到的。由图2可知,F2到达1.0附近时,断裂韧性值KISSC迅速上升。F2超过1.0之后,断裂韧性值KISSC为高于35MPa√m的值且基本保持不变。即,F2=1.0处存在拐点。
综上,F2为1.0以上的情况下,即提高耐SSC性的元素(C、Mo和Co)的含量与Mn和Cr含量之比值大的情况下,可得到优异的耐SSC性。
基于以上发现完成的本发明的钢材,其特征在于,具有如下化学组成:以质量%计,含有C:0.15~0.45%、Si:0.10~1.0%、Mn:0.10%以上且小于0.90%、P:0.05%以下、S:0.01%以下、Al:0.01~0.1%、N:0.010%以下,Cr:0.1~2.5%、Mo:0.35~3.0%、Co:0.50~3.0%、Cu:0~0.5%、Ni:0~0.5%、Ti:0~0.03%、Nb:0~0.15%、V:0~0.5%、B:0~0.003%、Ca:0~0.004%、Mg:0~0.004%、Zr:0~0.004%、和稀土元素:0~0.004%,余量为Fe和杂质,且所述化学组成满足式(1)和(2),显微组织以体积率计含有90%以上的回火马氏体。
C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50 (1)
(3C+Mo+3Co)/(3Mn+Cr)≥1.0 (2)
有效B=B-11(N-Ti/3.4)/14 (3)
其中,式(1)的α在由式(3)定义的有效B(质量%)为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。式(1)~式(3)中的各元素符号代入对应元素的含量(质量%)。
上述化学组成还可含有选自由Cu:0.02~0.5%、和Ni:0.02~0.5%组成的组中的一种以上。
上述化学组成还可含有选自由Ti:0.003~0.03%、Nb:0.003~0.15%、和V:0.005~0.5%组成的组中的一种或两种以上。
上述化学组成还可含有B:0.0003~0.003%。
上述化学组成还可含有选自由Ca:0.0003~0.004%、Mg:0.0003~0.004%、Zr:0.0003~0.004%、和稀土元素:0.0003~0.004%组成的组中的一种或两种以上。
本发明的油井用钢管具有上述化学组成时,即使是15mm以上的壁厚,也显示出优异的强度和耐SSC性。
以下对本发明的钢材进行详细描述。涉及元素的“%”如无特别说明,均指质量%。
[化学组成]
本发明的钢材的化学组成含有下列元素。
C:0.15~0.45%
碳(C)可提高淬火性,提高钢的强度。C还会在制造工序中的回火阶段促进碳化物的球状化,提高耐SSC性。C还会与Mo或V结合形成碳化物,提高回火软化阻力。碳化物分散存在时,钢的强度会进一步提高。C含量过低时,无法获得这些效果。另一方面,C含量过高时,钢的韧性下降,容易发生淬火裂纹。因此,C含量为0.15~0.45%。C含量优选的下限为0.20%,进而优选为0.25%。C含量优选的上限为0.40%,进而优选为0.35%。
Si:0.10~1.0%
硅(Si)可使钢脱氧。Si含量过低时,无法获得该效果。另一方面,Si含量过高时,残留奥氏体会过多生成,使得耐SSC性下降。因此,Si含量为0.10~1.0%。优选的Si含量的下限为0.15%,进而优选为0.20%。优选的Si含量的上限为0.55%,进而优选为0.40%。
Mn:0.10%以上且小于0.90%
锰(Mn)可使钢脱氧。Mn还可以提高淬火性,提高钢的强度。Mn含量过低时,无法获得这些效果。另一方面,Mn含量过高时,Mn会与磷(P)和硫(S)等杂质一起,偏析于晶界。这种情况下,钢的耐SSC性下降。因此,Mn含量为0.10%以上且小于0.90%。优选的Mn含量的下限为0.25%,进而优选为0.28%。优选的Mn含量的上限为0.80%。
P:0.05%以下
磷(P)是杂质。P会偏析于晶界导致钢的耐SSC性下降。因此,P含量为0.05%以下。优选的P含量为0.02%以下。P含量优选尽可能低。
S:0.01%以下
硫(S)是杂质。S会偏析于晶界导致钢的耐SSC性下降。因此,S含量为0.01%以下。优选的S含量为0.005%以下,进而优选为0.003%以下。S含量优选尽可能低。
Al:0.01~0.1%
铝(Al)可使钢脱氧。Al含量过低时,无法获得该效果,钢的耐SSC性下降。另一方面,Al含量过高时,会生成粗大的氧化物类夹杂物,使得钢的耐SSC性下降。因此,Al含量为0.01~0.1%。Al含量优选的下限为0.015%,进而优选为0.020%。Al含量优选的上限为0.06%,进而优选为0.050%。本说明书中所述“Al”含量是指“酸溶Al”,即“sol.Al”的含量。
N:0.010%以下
氮(N)是不可避免含有的。N会形成粗大的氮化物,导致钢的耐SSC性下降。因此,N含量为0.010%以下。优选的N含量为0.005%以下,进而优选为0.004%以下。N含量优选尽可能低。不过,在含有一定量的Ti,希望通过微细氮化物的析出实现晶粒微细化的情况下,优选含有N在0.002%以上。
Cr:0.1~2.5%
铬(Cr)可提高钢的淬火性,提高钢的强度。Cr含量过低时,无法获得上述效果。另一方面,Cr含量过高时,钢的耐SSC性下降。因此,Cr含量为0.1~2.5%。Cr含量优选的下限为0.25%,进而优选为0.30%。Cr含量优选的上限为1.5%,进而优选为1.3%。
Mo:0.35~3.0%
钼(Mo)可提高钢的淬火性。Mo还可以生成微细的碳化物,提高钢的回火软化阻力,提高高压H2S环境下的耐SSC性。Mo含量过低时,无法获得该效果。另一方面,Mo含量过高时,上述效果达到饱和。因此,Mo含量为0.35~3.0%。Mo含量优选的下限为0.40%,进而优选为0.50%,进而优选为大于0.70%。Mo含量优选的上限为2.0%,进而优选为1.75%。
Co:0.50~3.0%
钴(Co)可提高高压H2S环境下钢的耐SSC性。其原因虽然尚未完全明确,但认为可能是下述原因。Co在酸性环境下会富集于钢的表面,抑制氢侵入至钢中。由此,钢的耐SSC性得到提高。Co含量过低时,无法获得该效果。另一方面,Co含量过高时,钢的淬火性下降,钢的强度变低。因此,Co含量为0.50~3.0%。Co含量优选的下限为大于0.50%,进而优选为0.7%,进而优选为1.0%。Co含量优选的上限为2.5%,进而优选为2.0%。
本发明的钢材的化学组成的余量由Fe和杂质构成。其中,杂质是指,工业上制造钢材时,从作为原料的矿石、废料、或制造环境等混入的元素,且在对本发明的钢材不会造成不良影响的范围内允许存在的元素。
[关于任意元素]
上述钢材的化学组成还可含有选自由Cu和Ni组成的组中的一种以上,来代替Fe的一部分。这些元素均为任意元素,可提高钢的强度。
Cu:0~0.5%
铜(Cu)是任意元素,可含或不含。含有的情况下,Cu可提高钢的淬火性,提高钢的强度。但是,Cu含量过高时,会倾向于捕捉氢,使得耐SSC性下降。因此,Cu含量为0~0.5%。Cu含量优选的下限为0.02%,进而优选为0.05%。Cu含量优选的上限为0.35%,进而优选为0.25%。
Ni:0~0.5%
镍(Ni)是任意元素,可含或不含。含有的情况下,Ni可提高钢的淬火性,提高钢的强度。但是,Ni含量过高时,会加速局部的腐蚀,使得耐SSC性下降。因此,Ni含量为0~0.5%。Ni含量优选的下限为0.02%,进而优选为0.05%。Ni含量优选的上限为0.35%,进而优选为0.25%。
上述的钢材的化学组成还可含有选自由Ti、Nb和V组成的组中的一种或两种以上,来代替Fe的一部分。这些元素均为任意元素,可形成碳化物、氮化物和碳氮化物的至少任意一种,从而提高钢的强度。
Ti:0~0.03%
钛(Ti)是任意元素,可含或不含。含有的情况下,Ti可形成氮化物,通过钉扎效应,使晶粒微细化。由此,钢的强度得以提高。但是,Ti含量过高时,Ti氮化物变得粗大,钢的耐SSC性下降。因此,Ti含量为0~0.03%。Ti含量优选的下限为0.003%,进而优选为0.005%。Ti含量优选的上限为0.015%,进而优选为0.012%。
Nb:0~0.15%
铌(Nb)是任意元素,可含或不含。含有的情况下,Nb与C和/或N结合,形成碳化物、氮化物或碳氮化物(以下,称为碳氮化物等)。这些碳氮化物等会使晶粒微细化,提高钢的强度。但是,Nb含量过高时,会生成粗大的析出物,导致钢的耐SSC性下降。因此,Nb含量为0~0.15%。Nb含量优选的下限为0.003%,进而优选为0.007%。Nb含量优选的上限为0.050%,进而优选为0.04%。
V:0~0.5%
钒(V)是任意元素,可含或不含。含有的情况下,V可形成碳氮化物等,使晶粒微细化,提高钢的强度。但是,V含量过高时,钢的韧性下降。因此,V含量为0~0.5%。V含量优选的下限为0.005%,进而优选为0.015%。V含量优选的上限为0.15%,进而优选为0.12%。
上述的钢材的化学组成还可含有B,来代替Fe的一部分。
B:0~0.003%
硼(B)是任意元素,可含或不含。含有的情况下,B固溶于钢,提高钢的淬火性,提高强度。但是,B含量过高时,会生成粗大的氮化物,导致钢的耐SSC性下降。因此,B含量为0~0.003%。B含量优选的下限为0.0003%,进而优选为0.0007%。B含量优选的上限为0.0015%,进而优选为0.0012%。
上述的钢材的化学组成还可含有选自由Ca、Mg、Zr、和稀土元素组成的组中的一种或两种以上,来代替Fe的一部分。这些元素均为任意元素,可改善硫化物的形状,提高钢的耐SSC性。
Ca:0~0.004%、
钙(Ca)是任意元素,可含或不含。含有的情况下,Ca与钢中的S结合。由此,钢中的硫化物变得微细,从而提高钢的耐SSC性。但是,Ca含量过高时,钢中的氧化物变得粗大,钢的耐SSC性下降。因此,Ca含量为0~0.004%。Ca含量优选的下限为0.0003%,进而优选为0.0006%。Ca含量优选的上限为0.0025%,进而优选为0.0020%。
Mg:0~0.004%
镁(Mg)是任意元素,可含或不含。含有的情况下,Mg可使钢中的硫化物变得微细,提高钢的耐SSC性。但是,Mg含量过高时,钢中的氧化物变得粗大,钢的耐SSC性下降。因此,Mg含量为0~0.004%。Mg含量优选的下限为0.0003%,进而优选为0.0006%。Mg含量优选的上限为0.0025%,进而优选为0.0020%。
Zr:0~0.004%
锆(Zr)是任意元素,可含或不含。含有的情况下,Zr可使钢中的硫化物变得微细,提高钢的耐SSC性。但是,Zr含量过高时,氧化物变得粗大,钢的耐SSC性下降。因此,Zr含量为0~0.004%。Zr含量优选的下限为0.0003%,进而优选为0.0006%。Zr含量优选的上限为0.0025%,进而优选为0.0020%。
稀土元素:0~0.004%
稀土元素(REM)是任意元素,可含或不含。含有的情况下,REM可使钢中的硫化物变得微细,提高钢的耐SSC性。REM还可与钢中的P结合,抑制晶界中P的偏析。因此,可抑制由P的偏析引起的钢的耐SSC性的下降。但是,REM含量过高时,氧化物变得粗大,钢的耐SSC性下降。因此,REM含量为0~0.004%。REM含量优选的下限为0.0003%,进而优选为0.0006%。REM含量优选的上限为0.0025%,进而优选为0.0020%。
本说明书中的REM含有Sc、Y和镧系元素(原子序数57号的La~71号的Lu)的至少一种以上,REM含量是指这些元素的总含量。
[关于式(1)和式(2)]
上述化学组成还满足式(1)和式(2)。
C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50 (1)
(3C+Mo+3Co)/(3Mn+Cr)≥1.0 (2)
有效B=B-11(N-Ti/3.4)/14 (3)
其中,式(1)的α在由式(3)定义的有效B(质量%)为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。式(1)~式(3)中的各元素符号代入对应元素的含量(质量%)。
[关于式(1)]
定义F1=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α。F1为淬火性的指标。F1为0.50以上时,即使含有Co,也可得到优异的淬火性,显微组织中的回火马氏体的体积率达到90%以上。其结果是可得到优异的耐SSC性。F1的优选的下限为0.70。
F1中的α由式(3)定义的有效B的量(固溶B的量)决定。具体而言,在由式(3)定义的有效B为0.0003%以上的情况下是0.250,在有效B小于0.0003%的情况下是0。式(3)的有效B的值超过B含量时,有效B=B含量。
[关于式(2)]
定义F2=(3C+Mo+3Co)/(3Mn+Cr)。F2为耐SSC性的指标。F2为1.0以上的情况下,提高耐SSC性的元素(C、Mo和Co)的含量与Mn和Cr含量(对淬火性有贡献但如果含量过多则可能导致耐SSC性下降的元素)的比值变大。其结果是可获得在高压H2S环境下的优异的耐SSC性。
[显微组织]
本发明的钢材的显微组织主要由回火马氏体形成。更具体而言,显微组织由以体积率计90%以上的回火马氏体形成。显微组织的其余部分为例如贝氏体、残留奥氏体等。显微组织包含以体积率计90%以上的回火马氏体时,耐SSC性得以提高。优选显微组织由回火马氏体单相形成。
显微组织中回火马氏体的体积率,与淬火和回火后的钢材中的洛氏硬度(HRC)的最大值与最小值之差相关。
将淬火和回火后的洛氏硬度的最大值定义为HRCmax。将淬火和回火后的洛氏硬度的最小值定义为HRCmin。将HRCmax与HRCmin的差定义为ΔHRC。
ΔHRC=HRCmax-HRCmin
ΔHRC小于2.0时,视为钢材的显微组织中的回火马氏体的体积率为90%以上。
例如,钢材表面的洛氏硬度为HRCmax,钢材的厚度中央部(以下称为钢材中央部)的洛氏硬度为HRCmin。其理由如下。淬火冷却时的冷却速度在钢材表面较快,在钢材中央部变慢。因此,淬火状态的钢材中,会存在钢材表面与钢材中央部之间马氏体的体积率之差变大的情况。显微组织中的马氏体的体积率与洛氏硬度相关,因此在这种情况下,钢材表面与钢材中央部之间,淬火状态的洛氏硬度之差变大。对钢材进行回火处理后,钢材表面和钢材中央部这两者的硬度均下降,钢材表面与钢材中央部之间的洛氏硬度之差也会变小,但钢材表面与钢材中央部之间的洛氏硬度之差仍残存。因此,钢材表面的洛氏硬度为HRCmax,钢材中央部的洛氏硬度为HRCmin。ΔHRC为2.0以上时,钢材中央部的硬度过低。ΔHRC小于2.0时,钢材中央部也获得足够的硬度,此时,视为钢材中央部的回火马氏体的体积率为90%以上。
ΔHRC采用下述方法测定。分别在距离淬火和回火处理后的钢材表面(如果是钢管则是外表面)2.0mm深度的部位、距离钢材背面(如果是钢管则是内表面)2.0mm深度的部位和钢材厚度方向的中央部位这三者的每一处上,任取三个地方进行基于JIS Z2245(2011)的洛氏硬度试验(C标尺),求出洛氏硬度(HRC)。将得到的硬度的最大值设为HRCmax,最小值设为HRCmin,ΔHRC小于2.0时,判断为回火马氏体的体积率为90%以上。ΔHRC为2.0以上时,判断为在HRCmin的部位上回火马氏体的体积率小于90%。
[钢材的形状]
钢材的形状并不特别限定。钢材可以是例如钢管、钢板。钢材为油井用钢管的情况下,优选的壁厚为9~60mm。本发明尤其适合作为厚壁的油井用钢管使用。更具体而言,本发明的钢材即使是15mm以上、甚至20mm以上的厚壁的油井用钢管,也表现出优异的强度和耐SSC性。
[钢材的强度]
钢材的屈服强度优选的下限为654MPa。钢材的屈服强度的上限为860MPa。本说明书中所述屈服强度是指下屈服点(MPa)。
[制造方法]
作为上述钢材的制造方法的一个示例,下面介绍油井用钢管的制造方法。油井用钢管的制造方法包括:准备坯料的工序(准备工序)、热加工坯料制造管坯的工序(热加工工序)、以及对管坯进行淬火和回火制成油井用钢管的工序(淬火工序和回火工序)。以下详细描述各工序。
[准备工序]
制造具有上述化学组成且满足式(1)和式(2)的钢水。用钢水制造坯料。具体而言,用钢水通过连续铸造法制造铸坯(板坯、大钢坯或钢坯)。也可以用钢水通过铸锭法制造钢锭。根据需要,也可以将板坯、大钢坯或钢锭进行初轧来制造钢坯。通过以上工序制得坯料(板坯、大钢坯或钢坯)。
[热加工工序]
对准备好的坯料进行热加工来制造管坯。首先,用加热炉加热钢坯。对加热炉中取出的钢坯进行热加工,制得管坯(无缝钢管)。例如,作为热加工,实施曼内斯曼法来制造管坯。这种情况下,采用穿孔机对圆钢坯进行穿孔轧制。穿孔轧制后的圆钢坯进一步通过芯棒式无缝管轧机、减径机、定径机等进行热轧从而制成管坯。
也可以通过其它热加工方法从钢坯制造管坯。例如,如果是接箍这种短的厚壁的油井用钢管,也可以通过锻造来制造管坯。通过以上工序制造出壁厚9~60mm的管坯。
通过热加工制得的管坯可进行空气冷却(As-Rolled)。通过热加工制得的钢管还可以不冷却至常温,而在热制管后进行直接淬火,或在热制管后进行补热(再加热)后,再进行淬火。不过,进行直接淬火或补热后淬火的情况下,出于抑制淬火裂纹的目的,优选在淬火中途停止冷却,或进行缓慢冷却。
热制管后直接淬火、或热制管后进行补热然后再进行淬火的情况下,出于去除残余应力的目的,优选在淬火之后、下一工序的热处理之前,进行去应力退火处理(SR处理)。以下详细描述淬火工序。
[淬火工序]
对热加工后的管坯进行淬火。优选的淬火温度为850~1000℃。
优选方式为,在最晚冷却点的温度降到Ar3温度以下之前,开始冷却速度在5℃/秒以上的强制冷却。这种情况下,易于进一步提高屈服强度。
可进行多次淬火处理。进行多次淬火处理的情况下,优选方式为,淬火处理后,在进行下一阶段的淬火处理之前,出于去除由淬火处理产生的残余应力的目的,优选进行SR处理。通过SR处理可避免发生淬火后的时效裂纹。进行SR处理的情况下,优选的处理温度为600℃以下。这种情况下,可抑制奥氏体的粗大化。
[回火工序]
完成上述的淬火处理之后,进行回火处理。通过回火处理,调整钢材的屈服强度。回火温度优选的下限为650℃。回火温度优选的上限为730℃。
在上述制造方法中,作为一个例子说明了钢管的制造方法。但是,本发明的钢材为钢板或其它形状时,钢板的制造方法也同样包括准备工序、热加工工序、淬火工序和回火工序。
实施例
[试验材料的制造方法]
制造具有表1所示化学组成的180kg的钢水。
[表1]
用上述钢水制得钢锭。热轧钢锭,制得钢板。钢板的板厚度(mm)如表2所示。
[表2]
表2
对于热轧后的各个钢板,采用表2所示淬火温度进行淬火处理。淬火后,对于各个钢板,采用表2所示回火温度进行回火处理。回火处理过程中,对回火温度进行调整,以使得钢1、2、10、11和22的钢板屈服强度达到相当于API标准的T95级别(屈服强度为655~760MPa),其它钢的钢板屈服强度达到API标准的C110级别(屈服强度为760~862MPa)。每一个钢板在回火温度下的保持时间均为60分钟。通过以上制造工序,制得钢1~钢22的钢板。
[屈服强度(YS)和拉伸强度(TS)试验]
从上述淬火和回火处理后的各个钢板的板厚度中央处,制作出直径6.35mm、平行部分长度35mm的圆棒拉伸试验片。拉伸试验片的轴向与钢板的轧制方向平行。使用各圆棒试验片,在常温(25℃)、大气中进行拉伸试验,得到各部位上的屈服强度(YS)(MPa)和拉伸强度(TS)(MPa)。需要说明的是,本实施例中将通过拉伸试验得到的下屈服点定义为各试验编号的屈服强度(YS)。
[评价试验]
[显微组织判定试验]
对于上述淬火和回火处理后的各个钢板,进行基于JIS Z2245(2011)的洛氏硬度(HRC)试验。具体而言,分别在距离钢材表面2.0mm深度的部位、距离钢材背面(如果是钢管则是内表面)2.0mm深度的部位和钢材厚度方向的中央部位这三者的每一处上,获取任意三个地方的洛氏硬度(HRC)。9个点的洛氏硬度的最大值与最小值的差ΔHRC小于2.0的情况下,视为在HRCmin的部位上回火马氏体的体积率也在90%以上,判定为合格。ΔHRC为2.0以上的情况下,视为在HRCmin的部位上回火马氏体的体积率小于90%,判定为不合格。合格与否的判定结果示于表2。
[DCB试验]
使用各个钢板进行基于NACE TM0177-96 Method D的DCB试验,对耐SSC性进行评价。具体而言,从各个钢板的厚度中央部,各取3个图3A所示DCB试验片。从钢板上进一步制作出图3B所示楔子。楔子的厚度t为2.92mm。需要说明的是,图3A和图3B中的数值表示对应部位的尺寸(单位为mm)。
将楔子打入DCB试验片的臂与臂之间。其后,将打入了楔子的DCB试验片封入到高压釜中。将已脱气的使5%食盐水、乙酸和乙酸钠混合并调整成pH3.5的溶液以高压釜中残留有气体部分的方式注入高压釜中。其后,向高压釜内加压封入10atm的硫化氢气体,搅拌液相,使该高压硫化氢气体在溶液中达到饱和。
将经过以上工序的高压釜密封后,边搅拌溶液边在25℃下保持336小时。其后,使高压釜减压,取出DCB试验片。
在取出的各DCB试验片的臂顶端形成的孔上***销杆,用拉伸试验机打出缺口部,测出楔子释放应力P。进而,在液体氮中释放DCB试验片的缺口,测出浸渍中的裂纹加剧长度a。裂纹加剧长度a通过卡尺肉眼测得。基于得到的楔子释放应力P和裂纹加剧长度a,采用式(4)求出断裂韧性值KISSC(MPa√m)。
式(4)中的h为DCB试验片的各臂的高度(mm),B为DCB试验片的厚度(mm),Bn为DCB试验片的腹板厚度(mm)。这些在NACE TM0177-96Method D中均有规定。
各试验编号均求出3个DCB试验片的断裂韧性值KISSC(MPa√m)。将各个钢板中3个DCB试验片的断裂韧性值的平均值定义为该钢板的断裂韧性值KISSC(MPa√m)。得到的断裂韧性值KISSC如表2所示。对于钢1、2、10、11和22的钢板(相当于API标准的T95级别),上述定义的断裂韧性值KISSC值为47MPa√m以上的情况下,判断为耐SSC性良好。对于其它钢(相当于API标准的C110级别),上述定义的断裂韧性值KISSC值为35MPa√m以上的情况下,判断为耐SSC性良好。需要说明的是,在试验槽中浸渍之前打入楔子时的臂的间距对KISSC值有影响。因此,事先用千分尺对臂的间距进行实际测量,确认在API标准的范围内。
[试验结果]
表2中示出了试验结果。
钢1~9和22的钢板的化学组成合适,满足式(1)和式(2)。进而,由于ΔHRC小于2.0,显微组织判定为合格,显微组织以体积率计90%以上为马氏体。其结果是,钢1、2和22的KISSC值为47MPa√m以上,钢3~9的KISSC值为35MPa√m以上,显示出了优异的耐SSC性。需要说明的是,钢1、2和22的屈服强度为654MPa以上,钢3~9的屈服强度为760MPa以上。
另一方面,钢10的钢板的F1小于式(1)的下限。因此,淬火性下降,由于ΔHRC为2.0以上,显微组织判定为不合格,显微组织中的回火马氏体以体积率计小于90%。其结果是,KISSC值小于47MPa√m,耐SSC性低。可认为其显微组织在含有回火马氏体的同时,还含有大量贝氏体,是不均匀的组织,因此断裂韧性值KISSC低。
钢11的钢板的F2小于式(2)的下限。其结果是,KISSC值小于47MPa√m,耐SSC性低。可认为其中提高耐SSC性的元素(C、Mo和Co)的含量与Mn和Cr的含量的比过低,其结果是耐SSC性低。
钢12的钢板中Mo含量低。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢13的钢板中Co含量低。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢14的钢板中Mn含量高。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢15的钢板中Cr含量高。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢16的钢板中Co含量过高,F1小于式(1)的下限。因此,淬火性下降,ΔHRC为2.0以上,因此显微组织判定为不合格,显微组织中的马氏体的体积率小于90%。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢17的钢板中C含量和Co含量过高,F1小于式(1)的下限。因此,淬火性下降,ΔHRC为2.0以上,因此显微组织判定为不合格,显微组织中的马氏体的体积率小于90%。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢18的钢板中不含Co,F2小于式(2)的下限。其结果是,KISSC值小于35MPa√m,耐SSC性低。
钢19的钢板中F1小于式(1)的下限。因此,淬火性下降,ΔHRC为2.0以上,因此显微组织判定为不合格,显微组织中的回火马氏体以体积率计小于90%。其结果是,KISSC值小于35MPa√m,耐SSC性低。可认为其显微组织在含有回火马氏体的同时,还含有大量贝氏体,是不均匀的组织,因此断裂韧性值KISSC低。
钢20的钢板中F2小于式(2)的下限。其结果是,KISSC值小于35MPa√m,耐SSC性低。可认为其中提高耐SSC性的元素(C、Mo和Co)的含量与Mn和Cr的含量的比过低,其结果是耐SSC性低。
钢21的钢板中Co含量过高。因此,淬火性下降,ΔHRC为2.0以上,因此显微组织判定为不合格,显微组织中的马氏体的体积率小于90%。其结果是,KISSC值小于35MPa√m,耐SSC性低。
以上介绍了本发明的实施方式。但上述实施方式仅为用于实施本发明的示例。因此,本发明并不限于上述实施方式,只要在本发明的思想范围内可对上述实施方式进行适当变形而实施。
产业上的可利用性
本发明的钢材可作为用于酸性环境的钢材而广泛应用,可优选作为用于油井环境的油井用钢材来使用,进而可优选作为套管、油管、管线管等油井用钢管来使用。

Claims (6)

1.一种钢材,其特征在于,具有如下化学组成:
以质量%计,含有
C:0.15~0.45%、
Si:0.10~1.0%、
Mn:0.10%以上且小于0.90%、
P:0.05%以下、
S:0.01%以下、
Al:0.01~0.1%、
N:0.010%以下、
Cr:0.1~2.5%、
Mo:0.35~3.0%、
Co:0.50~3.0%、
Cu:0~0.5%、
Ni:0~0.5%、
Ti:0~0.03%、
Nb:0~0.15%、
V:0~0.5%、
B:0~0.003%、
Ca:0~0.004%、
Mg:0~0.004%、
Zr:0~0.004%、和
稀土元素:0~0.004%,
余量为Fe和杂质,且所述化学组成满足式(1)和(2),
显微组织以体积率计含有90%以上的回火马氏体,
C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15-Co/6+α≥0.50 (1)
(3C+Mo+3Co)/(3Mn+Cr)≥1.0 (2)
有效B=B-11(N-Ti/3.4)/14 (3)
其中,式(1)的α在由式(3)定义的有效B为0.0003%以上的情况下是0.250、在所述有效B小于0.0003%的情况下是0,有效B的单位为质量%;式(1)~式(3)中的各元素符号代入对应元素的含量,单位为质量%。
2.根据权利要求1所述的钢材,其特征在于,
所述化学组成含有选自由
Cu:0.02~0.5%、和
Ni:0.02~0.5%组成的组中的一种以上。
3.根据权利要求1或权利要求2所述的钢材,其特征在于,
所述化学组成含有选自由
Ti:0.003~0.03%、
Nb:0.003~0.15%、和
V:0.005~0.5%组成的组中的一种或两种以上。
4.根据权利要求1~权利要求3的任意一项所述的钢材,其特征在于,
所述化学组成含有
B:0.0003~0.003%。
5.根据权利要求1~权利要求4的任意一项所述的钢材,其特征在于,
所述化学组成含有选自由
Ca:0.0003~0.004%、
Mg:0.0003~0.004%、
Zr:0.0003~0.004%、和
稀土元素:0.0003~0.004%组成的组中的一种或两种以上。
6.一种油井用钢管,其具有:
权利要求1~权利要求5的任意一项所述的化学组成;以及,
15mm以上的壁厚。
CN201780014799.1A 2016-03-04 2017-02-20 钢材和油井用钢管 Active CN108699656B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-041773 2016-03-04
JP2016041773 2016-03-04
PCT/JP2017/006151 WO2017150251A1 (ja) 2016-03-04 2017-02-20 鋼材及び油井用鋼管

Publications (2)

Publication Number Publication Date
CN108699656A true CN108699656A (zh) 2018-10-23
CN108699656B CN108699656B (zh) 2020-08-18

Family

ID=59742770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780014799.1A Active CN108699656B (zh) 2016-03-04 2017-02-20 钢材和油井用钢管

Country Status (12)

Country Link
US (1) US10550962B2 (zh)
EP (1) EP3425078B1 (zh)
JP (1) JP6583532B2 (zh)
CN (1) CN108699656B (zh)
AR (1) AR107740A1 (zh)
AU (1) AU2017226126C1 (zh)
BR (1) BR112018017036B1 (zh)
CA (1) CA3016288A1 (zh)
ES (1) ES2797553T3 (zh)
MX (1) MX2018010523A (zh)
RU (1) RU2690059C1 (zh)
WO (1) WO2017150251A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150252A1 (ja) * 2016-03-04 2017-09-08 新日鐵住金株式会社 鋼材及び油井用鋼管
MX2018014000A (es) * 2016-05-20 2019-04-01 Nippon Steel & Sumitomo Metal Corp "tubo de acero sin costura y metodo para producir el tubo de acero sin costura".
MX2019002291A (es) * 2016-09-01 2019-07-04 Nippon Steel & Sumitomo Metal Corp Material de acero y tuberia de acero para pozos de petroleo.
AR114712A1 (es) * 2018-03-27 2020-10-07 Nippon Steel & Sumitomo Metal Corp Material de acero adecuado para uso en entorno agrio
WO2019198459A1 (ja) * 2018-04-09 2019-10-17 日本製鉄株式会社 鋼管、及び、鋼管の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177350A (ja) * 1983-03-29 1984-10-08 Nippon Steel Corp 耐硫化物腐食割れ性の優れた鋼
CN1836056A (zh) * 2003-08-19 2006-09-20 杰富意钢铁株式会社 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法
CN1884609A (zh) * 2006-07-11 2006-12-27 张毅 高Cr系不锈钢无缝油井管及其生产方法
CN101407019A (zh) * 2008-11-25 2009-04-15 西安摩尔石油工程实验室 Co2和h2s共存环境中的耐腐蚀低铬油套管的制备工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226645A (en) * 1979-01-08 1980-10-07 Republic Steel Corp. Steel well casing and method of production
EP0021349B1 (en) * 1979-06-29 1985-04-17 Nippon Steel Corporation High tensile steel and process for producing the same
JPS609582B2 (ja) 1979-06-29 1985-03-11 新日本製鐵株式会社 耐硫化物腐食割れ性と耐腐食性の優れた高張力鋼
JPS5949284B2 (ja) * 1980-08-11 1984-12-01 住友金属工業株式会社 耐遅れ破壊性のすぐれた高強度油井用鋼の製造方法
JP3358135B2 (ja) * 1993-02-26 2002-12-16 新日本製鐵株式会社 耐硫化物応力割れ抵抗性に優れた高強度鋼およびその製造方法
JP2000119798A (ja) * 1998-10-13 2000-04-25 Nippon Steel Corp 硫化物応力割れ抵抗性に優れた高強度鋼及び油井用鋼管
FR2823226B1 (fr) * 2001-04-04 2004-02-20 V & M France Acier et tube en acier pour usage a haute temperature
RU2324760C2 (ru) * 2002-06-13 2008-05-20 Уддехольм Тулинг Актиеболаг Сталь и изготовленный из нее формовочный инструмент для пластмассы
JP4542361B2 (ja) * 2004-04-05 2010-09-15 新日本製鐵株式会社 耐溶接部再熱割れ性に優れたフェライト系電縫ボイラ鋼管および製造法
JP4609138B2 (ja) * 2005-03-24 2011-01-12 住友金属工業株式会社 耐硫化物応力割れ性に優れた油井管用鋼および油井用継目無鋼管の製造方法
CN101845939A (zh) * 2009-03-25 2010-09-29 宝山钢铁股份有限公司 一种石油套管及其制造方法
JP5728836B2 (ja) * 2009-06-24 2015-06-03 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
EA025937B1 (ru) * 2012-06-20 2017-02-28 Ниппон Стил Энд Сумитомо Метал Корпорейшн Сталь для трубных изделий нефтепромыслового сортамента и способ ее производства
MX2019002291A (es) * 2016-09-01 2019-07-04 Nippon Steel & Sumitomo Metal Corp Material de acero y tuberia de acero para pozos de petroleo.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177350A (ja) * 1983-03-29 1984-10-08 Nippon Steel Corp 耐硫化物腐食割れ性の優れた鋼
CN1836056A (zh) * 2003-08-19 2006-09-20 杰富意钢铁株式会社 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法
CN1884609A (zh) * 2006-07-11 2006-12-27 张毅 高Cr系不锈钢无缝油井管及其生产方法
CN101407019A (zh) * 2008-11-25 2009-04-15 西安摩尔石油工程实验室 Co2和h2s共存环境中的耐腐蚀低铬油套管的制备工艺

Also Published As

Publication number Publication date
CA3016288A1 (en) 2017-09-08
AU2017226126B2 (en) 2020-04-30
MX2018010523A (es) 2019-03-28
AU2017226126A1 (en) 2018-09-20
AU2017226126C1 (en) 2020-09-17
BR112018017036B1 (pt) 2022-09-06
WO2017150251A1 (ja) 2017-09-08
EP3425078B1 (en) 2020-03-25
EP3425078A1 (en) 2019-01-09
CN108699656B (zh) 2020-08-18
JPWO2017150251A1 (ja) 2018-12-13
RU2690059C1 (ru) 2019-05-30
AR107740A1 (es) 2018-05-30
US10550962B2 (en) 2020-02-04
US20190063641A1 (en) 2019-02-28
BR112018017036A2 (pt) 2018-12-26
JP6583532B2 (ja) 2019-10-02
EP3425078A4 (en) 2019-08-14
ES2797553T3 (es) 2020-12-02

Similar Documents

Publication Publication Date Title
US10287645B2 (en) Method for producing high-strength steel material excellent in sulfide stress cracking resistance
WO2018043570A1 (ja) 鋼材及び油井用鋼管
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
US8293037B2 (en) Method for producing duplex stainless steel pipe
RU2643735C1 (ru) Низколегированная стальная труба для нефтяной скважины
AU2017226127B2 (en) Steel material and oil-well steel pipe
JP5097017B2 (ja) 高Crフェライト系耐熱鋼材の製造方法
CN108699656A (zh) 钢材和油井用钢管
MX2015005321A (es) Acero de baja aleacion para productos tubulares usados en la industria petrolera que tiene excelente resistencia a grietas por estres de sulfuro y metodo de fabricacion del mismo.
JPWO2019167945A1 (ja) サワー環境での使用に適した鋼材
JP2017020086A (ja) マルテンサイト鋼材
AU2012393719B9 (en) Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes
JP2017075343A (ja) マルテンサイト鋼材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Tokyo, Japan, Japan

Applicant after: Nippon Iron & Steel Corporation

Address before: Tokyo, Japan, Japan

Applicant before: Nippon Steel Corporation

GR01 Patent grant
GR01 Patent grant