CN108686655B - 一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法 - Google Patents

一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法 Download PDF

Info

Publication number
CN108686655B
CN108686655B CN201810380964.1A CN201810380964A CN108686655B CN 108686655 B CN108686655 B CN 108686655B CN 201810380964 A CN201810380964 A CN 201810380964A CN 108686655 B CN108686655 B CN 108686655B
Authority
CN
China
Prior art keywords
tio
photocatalyst
fenton
dynamic
hollow microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810380964.1A
Other languages
English (en)
Other versions
CN108686655A (zh
Inventor
刘超
林阳
董雨菲
鲍艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201810380964.1A priority Critical patent/CN108686655B/zh
Publication of CN108686655A publication Critical patent/CN108686655A/zh
Application granted granted Critical
Publication of CN108686655B publication Critical patent/CN108686655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种用于环境修复的动态芬顿‑二氧化钛耦合光催化剂的制备方法,将TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,然后加入还原剂后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;将Fe0负载的TiO2复合中空微球置于铝箔表面,再在微球的半球面沉积上金属层;通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集。该制备方法操作简单、成本低,所制备的耦合光催化剂具有极强的光降解能力,该类耦合光催化剂能够实现自驱动,在无需机械搅拌的作用下,实现“动态”环境修复的功能,且催化剂可采用磁诱导回收。

Description

一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制 备方法
技术领域
本发明具体涉及无机功能材料和光催化废水处理技术领域,特别是一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法。
背景技术
随着染料化学工业的迅猛发展,纺织、印染、皮革、食品和日用化工等行业生产中越来越多地应用合成染料,染料废水已成为不容忽视的水体污染源。由于染料在使用过程中约有10%~15%随着废水排入环境中,且染料品种繁多、生物可降解性差、多数染料及其中间产物具有致癌、致崎和致突变性,已对环境和人类健康构成极大的威胁,染料废水的处理已成为人们重点关注的问题之一。
近年来,采用臭氧、TiO2、紫外光和Fenton试剂(Fe2+/H2O2)等高级氧化技术处理印染废水得到了广泛的关注。其中,Fenton试剂和TiO2紫外光(UV)催化氧化法处理有机染料均具有矿化能力强、操作简便且成本低廉等特点,被视为目前最具发展潜力和应用前景的水处理技术,正受到环境科学工作者的重视。但是,Fenton技术调节不当也会出现H2O2、Fe投入量大,导致铁污泥生成量大、色度高,增加后续处理费用等问题;而TiO2由于受自身禁带宽度(锐钛矿,3.2eV)的局限,只能受到UV激发产生电子与空穴,对太阳光的利用率低。另外,光生电子与空穴容易复合,导致光量子效率低下,这些对TiO2的实际应用造成了很大的限制。目前,已有研究证实由Fenton试剂和TiO2组成的复合体系,其二者间存在着一种协同效应,从而显著提高催化效率。但已有复合体系常通过简单的溶液共混(在含Fenton试剂溶液中加入TiO2或在含TiO2溶液中加入Fe0、Fe2+或Fe3+和H2O2),虽可降低铁盐或H2O2的投入量,但仍无法解决铁污泥的产生和TiO2仅受紫外光激发的问题(参考文献:费学宁,等.零价铁(Fe~0)共存下TiO2光催化降解特性的研究.环境污染与防治,2014,36(11):46-49.)。同时,现有催化剂均为“静态”粒子,还需引入搅拌装置才可提高催化剂的催化效率。而对于像染料废水这种大面积废水的处理,则需引入更大的搅拌设备提供动力,这势必会大大增加废水处理的成本。
发明内容
为了提高TiO2的光催化效率并降低大面积印染废水处理的成本,本发明的目的是提供一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,该种光催化剂集制备方法简单、光驱动、作用效率高等特点与一体,可以实现无需引入搅拌设备即可实现对印染废水的快速、高效降解,而且其结构中Fe的存在使光催化剂能够通过磁诱导进行回收再利用,因而其在实际污染水环境的修复方面具有潜在的应用价值。
为实现上述目的,本发明的技术方案如下:
一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,具体包括以下步骤:
(1)将TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,通氮气保护,超声后,加入还原剂后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;其中,Fe0在TiO2表面的质量负载量为0.5~10%;
(2)将所制备的Fe0负载的TiO2复合中空微球置于铝箔表面,再在微球的半球面沉积上金属层;通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集,得到不对称球形动态Fenton-TiO2耦合光催化剂。
本发明进一步的改进在于,TiO2中空微球的粒径为50nm~10μm。
本发明进一步的改进在于,去离子水和无水乙醇的体积比为1:(1~10)。
本发明进一步的改进在于,TiO2中空微球和混合溶剂质量比为1:(20~1000)。
本发明进一步的改进在于,还原剂为水合肼、硼氢化钾、硼氢化钠、柠檬酸钠或抗坏血酸。
本发明进一步的改进在于,还原剂和铁盐的摩尔比1:(5~150)。
本发明进一步的改进在于,铁盐是二价或三价铁盐。
本发明进一步的改进在于,二价铁盐为FeCl2·4H2O、FeSO4·7H2O、Fe(NO3)2·6H2O或(NH4)2Fe(SO4)2·6H2O;三价铁盐为Fe2(SO4)3·9H2O、Fe(NO3)3·9H2O或FeCl3·6H2O。
本发明进一步的改进在于,金属层是金、银、铜、铁、镍或钨;通过电子束蒸镀、喷涂或电化学沉积方法在微球的半球面沉积上金属层。
本发明进一步的改进在于,金属层的质量占不对称球形动态耦合光催化剂总质量的2~30%。
与现有技术相比,本发明的有益效果:本发明提供了一种用于环境修复的动态Fenton-TiO2耦合光催化剂的制备方法,该制备方法操作简单、成本低,所制备的Fenton-TiO2耦合光催化剂复合了Fenton试剂和TiO2光催化剂两种高级氧化技术的优点,极大的提升了其降解有机染料的能力,而且相比于传统的“静态”催化剂,该类耦合光催化剂能够实现自驱动,在无需机械搅拌的作用下,实现“动态”环境修复的功能,且催化剂可采用磁诱导回收。因而其在实际污染水环境的修复方面具有潜在的应用价值。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明陈述的内容之后,本领域技术人员可以对本发明作各种改动和修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明包括以下步骤:
(1)将商品化的粒径为50nm~10μm的TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,通氮气保护,超声后,加入还原剂后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;其中,Fe0在TiO2表面的质量负载量为0.5~10%;TiO2中空微球和混合溶剂质量比为1:(20~1000),去离子水和无水乙醇的体积比为1:(1~10)。
(2)将所制备的Fe0负载的TiO2复合中空微球置于铝箔表面,再通过电子束蒸镀、喷涂或电化学沉积方法在微球的半球面沉积上金属层;通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集,得到不对称球形动态Fenton-TiO2耦合光催化剂。
还原剂和铁盐的摩尔比1:(5~150)。还原剂为水合肼(质量浓度80%)、硼氢化钾KBH4、硼氢化钠NaBH4、柠檬酸钠或抗坏血酸。
铁盐是二价或三价铁盐。二价铁盐为FeCl2·4H2O、FeSO4·7H2O、Fe(NO3)2·6H2O或(NH4)2Fe(SO4)2·6H2O;三价铁盐为Fe2(SO4)3·9H2O、Fe(NO3)3·9H2O或FeCl3·6H2O。
金属层是金、银、铜、铁、镍或钨;金属层的质量占不对称球形动态Fenton-TiO2耦合光催化剂总质量的2~30%。
实施例1
将商品化的TiO2中空微球(粒径~500nm)分散于含有0.55g FeSO4·7H2O的体积比为1(去离子水):1(无水乙醇)的溶液中,通氮气保护并超声处理30min后,加入0.01molNaBH4后室温反应4h,产物经磁倾析收集并采用去离子水和无水乙醇先后洗涤各三次,氮气吹扫干燥后,即得灰黑色固体Fe0负载的TiO2复合中空微球,记为:Fe0-TiO2复合中空微球(Fe0质量负载量约为3%),置于真空干燥装置中待用。其中,TiO2中空微球和混合溶剂质量比为1:20。
将Fe0-TiO2复合中空微球置于铝箔表面,置于磁控溅射镀膜机中以Fe靶在微球的半球面上进行沉积后,将其置于去离子水中避光超声使制备的复合光催化剂分离并采用磁倾析收集,即得Fe/Fe0-TiO2复合光催化剂(Fe层占复合光催化剂总质量的20%)。
研究发现,对于300mL初始浓度为100mg/L的酸性红B染料废水,在TiO2中空微球(粒径~500nm)和Fe/Fe0-TiO2复合光催化剂投加量分别为1g/L,pH为3,H2O2为1mmol/L,不进行搅拌的条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~500nm)和Fe/Fe0-TiO2复合光催化剂对染料废水的降解率分别为19%和75%;500转/分钟搅拌条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~500nm)和Fe/Fe0-TiO2复合光催化剂对染料废水的降解率分别为61%和92%。
实施例2
将商品化的TiO2中空微球(粒径~800nm)分散于含有0.5g FeCl2·4H2O的体积比为1(去离子水):3(无水乙醇)的溶液中,通氮气保护并超声处理30min后,加入2.5g柠檬酸三钠后室温反应2h,产物经磁倾析收集并采用去离子水和无水乙醇先后洗涤各三次,氮气吹扫干燥后,即得灰黑色固体Fe0-TiO2复合中空微球(Fe0质量负载量约为5%),置于真空干燥装置中待用。其中,TiO2中空微球和混合溶剂质量比为1:1000。
将Fe0-TiO2复合中空微球置于铝箔表面,置于磁控溅射镀膜机中以Au靶在微球的半球面上进行沉积后,将其置于去离子水中避光超声使制备的复合光催化剂分离并采用磁倾析收集,即得Au/Fe0-TiO2复合光催化剂(Au层占复合光催化剂总质量的2%)。
研究发现,对于300mL初始浓度为100mg/L的亚甲基蓝染料废水,在TiO2中空微球(粒径~800nm)和Au/Fe0-TiO2复合光催化剂投加量分别为1g/L,pH为3.5,H2O2为1mmol/L,不进行搅拌的条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~800nm)和Au/Fe0-TiO2复合光催化剂对染料废水的降解率分别为19%和53%;500转/分钟搅拌条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~500nm)和Fe/Fe0-TiO2复合光催化剂对染料废水的降解率分别为57%和94%。
实施例3
将商品化的TiO2中空微球(粒径~10μm)分散于含有3.2g FeCl3·6H2O的体积比为1(去离子水):5(无水乙醇)的溶液中,通氮气保护并超声处理30min后,加入10mL水合肼(80%)后室温反应2h,产物经磁倾析收集并采用去离子水和无水乙醇先后洗涤各三次,氮气吹扫干燥后,即得灰黑色固体Fe0-TiO2复合中空微球(Fe0质量负载量约为10%),置于真空干燥装置中待用。其中,TiO2中空微球和混合溶剂质量比为1:500。
将Fe0-TiO2复合中空微球置于铝箔表面,置于磁控溅射镀膜机中以Ag靶在微球的半球面上进行沉积后,将其置于去离子水中避光超声使制备的复合光催化剂分离并采用磁倾析收集,即得Ag/Fe0-TiO2复合光催化剂(Ag层占复合光催化剂总质量的10%)。
研究发现,对于300mL初始浓度为100mg/L的分散红3B(R60#)染料废水,在TiO2中空微球(粒径~10μm)和Ag/Fe0-TiO2复合光催化剂投加量分别为1g/L,pH为3.5,H2O2为1mmol/L,不进行搅拌的条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~10μm)和Au/Fe0-TiO2复合光催化剂对染料废水的降解率分别为15%和47%;500转/分钟搅拌条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~10μm)和Fe/Fe0-TiO2复合光催化剂对染料废水的降解率分别为68%和97%。
实施例4
将购买的TiO2中空微球(粒径~50nm)分散于含有0.08g Fe2(SO4)3·9H2O的体积比为1(去离子水):10(无水乙醇)的溶液中,通氮气保护并超声处理30min后,加入1g抗坏血酸后室温反应2h,产物经磁倾析收集并采用去离子水和无水乙醇先后洗涤各三次,氮气吹扫干燥后,即得灰黑色固体Fe0-TiO2复合中空微球(Fe0质量负载量约为0.5%),置于真空干燥装置中待用。其中,TiO2中空微球和混合溶剂质量比为1:800。
将Fe0-TiO2复合中空微球置于铝箔表面,置于磁控溅射镀膜机中以Ni靶在微球的半球面上进行沉积后,将其置于去离子水中避光超声使制备的复合光催化剂分离并采用磁倾析收集,即得Ni/Fe0-TiO2复合光催化剂(Ni层占复合光催化剂总质量的30%)。
研究发现,对于300mL初始浓度为100mg/L的苏丹Ⅲ染料废水,在TiO2中空微球(粒径~50nm)和Ni/Fe0-TiO2复合光催化剂投加量分别为1g/L,pH为3.5,H2O2为1mmol/L,不进行搅拌的条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~50nm)和Ni/Fe0-TiO2复合光催化剂对染料废水的降解率分别为45%和77%;500转/分钟搅拌条件下,300W紫外光照射60分钟时,TiO2中空微球(粒径~50nm)和Ni/Fe0-TiO2复合光催化剂对染料废水的降解率分别为79%和99%。
实施例5
(1)将粒径为50nm~10μm的TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,通氮气保护,超声后,加入硼氢化钠后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;其中,Fe0在TiO2表面的质量负载量为7%;其中,TiO2中空微球和混合溶剂质量比为1:700,去离子水和无水乙醇的体积比为1:5。硼氢化钠与铁盐的摩尔比1:150,铁盐为(NH4)2Fe(SO4)2·6H2O;
(2)将所制备的Fe0负载的TiO2复合中空微球置于铝箔表面,再通过喷涂法在微球的半球面沉积上镍层,通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集,得到不对称球形动态Fenton-TiO2耦合光催化剂。其中,镍层的质量占不对称球形动态Fenton-TiO2耦合光催化剂总质量的7%。
实施例6
(1)将粒径为50nm~10μm的TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,通氮气保护,超声后,加入抗坏血酸后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;其中,Fe0在TiO2表面的质量负载量为1%;其中,TiO2中空微球和混合溶剂质量比为1:200,去离子水和无水乙醇的体积比为1:8。抗坏血酸与铁盐的摩尔比1:5,铁盐为Fe(NO3)3·9H2O;
(2)将所制备的Fe0负载的TiO2复合中空微球置于铝箔表面,再通过电子束蒸镀在微球的半球面沉积上钨层,通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集,得到不对称球形动态Fenton-TiO2耦合光催化剂。其中,钨层的质量占不对称球形动态Fenton-TiO2耦合光催化剂总质量的15%。
经过重复的深入研究发现,在含有H2O2的酸性水体系中,将Fe0与TiO2进行复合能够有效提高TiO2的光催化效率且二者存在协同效应。同时,通过一定的结构设计和加工可实现其复合光催化剂的自驱动,从而制备出一种动态Fenton-TiO2耦合光催化剂。该动态Fenton-TiO2耦合光催化剂在无需搅拌条件下,对染料废水展现出极佳的降解效率,能够大大降低废水处理成本,因而在废水处理领域具有巨大的潜在实际应用价值。本发明的催化剂除了可以在光催化作用下实现自驱动外,还可在磁场诱导或电场诱导作用下实现自驱动。

Claims (7)

1.一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,具体包括以下步骤:
(1)将TiO2中空微球加入含有铁盐的无水乙醇和去离子水的混合溶剂中,通氮气保护,超声后,加入还原剂后,再继续搅拌并室温反应至溶液为黑色,产物通过磁倾析收集后洗涤多次、氮气干燥后,得到Fe0负载的TiO2复合中空微球;其中,Fe0在TiO2表面的质量负载量为0.5~10%;
(2)将所制备的Fe0负载的TiO2复合中空微球置于铝箔表面,再在微球的半球面沉积上金属层;通过超声作用使所制备的微球从铝箔表面脱落并通过磁诱导收集,得到不对称球形动态Fenton-TiO2耦合光催化剂;
其中,TiO2中空微球的粒径为50nm~10μm;
铁盐是二价或三价铁盐;
二价铁盐为FeCl2·4H2O、FeSO4·7H2O、Fe(NO3)2·6H2O或(NH4)2Fe(SO4)2·6H2O;三价铁盐为Fe2(SO4)3·9H2O、Fe(NO3)3·9H2O或FeCl3·6H2O。
2.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,去离子水和无水乙醇的体积比为1:(1~10)。
3.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,TiO2中空微球和混合溶剂质量比为1:(20~1000)。
4.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,还原剂为水合肼、硼氢化钾、硼氢化钠、柠檬酸钠或抗坏血酸。
5.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,还原剂和铁盐的摩尔比1:(5~150)。
6.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,金属层是金、银、铜、铁、镍或钨;通过电子束蒸镀、喷涂或电化学沉积方法在微球的半球面沉积上金属层。
7.根据权利要求1所述的一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法,其特征在于,金属层的质量占不对称球形动态芬顿-二氧化钛耦合光催化剂总质量的2~30%。
CN201810380964.1A 2018-04-25 2018-04-25 一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法 Active CN108686655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810380964.1A CN108686655B (zh) 2018-04-25 2018-04-25 一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810380964.1A CN108686655B (zh) 2018-04-25 2018-04-25 一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108686655A CN108686655A (zh) 2018-10-23
CN108686655B true CN108686655B (zh) 2021-01-12

Family

ID=63845145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810380964.1A Active CN108686655B (zh) 2018-04-25 2018-04-25 一种用于环境修复的动态芬顿-二氧化钛耦合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108686655B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646615B (zh) * 2020-06-15 2021-02-09 北京环球中科水务科技有限公司 撬装式光芬顿水处理设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077478A (zh) * 2006-05-24 2007-11-28 深圳成霖洁具股份有限公司 光催化剂复合结构体及其制备方法
BRPI1002600A2 (pt) * 2010-06-14 2012-02-07 Univ Minas Gerais catalisador de metal de transição ou de óxido de metal de transição suportado em concreto celular autoclavado
CN103803695A (zh) * 2014-02-25 2014-05-21 天津城建大学 零价铁与TiO2光催化耦合的类芬顿光催化反应体系的方法
CN104525201A (zh) * 2015-01-05 2015-04-22 华东理工大学 一种具有磁性的非均相类Fenton催化剂及其制备方法和应用
CN105776783A (zh) * 2016-04-12 2016-07-20 浙江奇彩环境科技股份有限公司 一种膜法循环利用Fenton铁泥的方法
CN106732691A (zh) * 2017-01-20 2017-05-31 四川师范大学 一种降解有机氯污染物的复合催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077478A (zh) * 2006-05-24 2007-11-28 深圳成霖洁具股份有限公司 光催化剂复合结构体及其制备方法
BRPI1002600A2 (pt) * 2010-06-14 2012-02-07 Univ Minas Gerais catalisador de metal de transição ou de óxido de metal de transição suportado em concreto celular autoclavado
CN103803695A (zh) * 2014-02-25 2014-05-21 天津城建大学 零价铁与TiO2光催化耦合的类芬顿光催化反应体系的方法
CN104525201A (zh) * 2015-01-05 2015-04-22 华东理工大学 一种具有磁性的非均相类Fenton催化剂及其制备方法和应用
CN105776783A (zh) * 2016-04-12 2016-07-20 浙江奇彩环境科技股份有限公司 一种膜法循环利用Fenton铁泥的方法
CN106732691A (zh) * 2017-01-20 2017-05-31 四川师范大学 一种降解有机氯污染物的复合催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst";Banic, Nemanja et al.,;《APPLIED CATALYSIS B-ENVIRONMENTAL》;20110803;第107卷(第3期);第363-371页 *

Also Published As

Publication number Publication date
CN108686655A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
Narzary et al. Visible light active, magnetically retrievable Fe3O4@ SiO2@ g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants
Li et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism
Wang et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation
Guo et al. Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: Pathways and mechanism insight
Xu et al. Photocatalytic activity and mechanism of bisphenol a removal over TiO2− x/rGO nanocomposite driven by visible light
Wang et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen
Qamar et al. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations
Zheng et al. Z-Scheme heterojunction Ag/NH2-MIL-125 (Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates
Xu et al. Facile synthesis of magnetically retrievable Fe3O4/BiVO4/CdS heterojunction composite for enhanced photocatalytic degradation of tetracycline under visible light
Lu et al. Facile construction of CoO/Bi2WO6 pn heterojunction with following Z-Scheme pathways for simultaneous elimination of tetracycline and Cr (VI) under visible light irradiation
Wang et al. The efficient degradation of organic pollutants by Z-scheme MIL-88A@ TiO2 heterojunction photo-Fenton catalyst: The synergistic effect of photocatalysis and Fenton catalysis
Wang et al. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism
Zheng et al. Ultrafast photodegradation of nitenpyram by Ag/Ag3PO4/Zn–Al LDH composites activated by persulfate system: removal efficiency, degradation pathway and reaction mechanism
Wu et al. Enhanced degradation of chloramphenicol through peroxymonosulfate and visible light over Z-scheme Photocatalysts: Synergetic performance and mechanism insights
Chuaicham et al. Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite
Wang et al. Design and performance of a novel direct Z-scheme NiGa2O4/CeO2 nanocomposite with enhanced sonocatalytic activity
Sun et al. High-efficient degradation of oxytetracycline by visible photo-Fenton process using MnFe2O4/g-C3N4: Performance and mechanisms
Wu et al. Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration
Katwal et al. An overview on degradation kinetics of organic dyes by photocatalysis using nanostructured electrocatalyst
CN103071493A (zh) 一种Ag/ZnO中空微球光催化剂的制备方法
Wang et al. Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system
Wu et al. Retracted: Visible‐light‐driven mitigation of antibiotic oxytetracycline and disinfection of Escherichia coli using magnetic recyclable Ag‐modified zinc ferrite/diatomite ternary hybrid material
Moharana et al. Role of nanostructured metal oxides in photocatalysis: An overview
Thambiliyagodage et al. Fabrication of dual Z-scheme g-C3N4/Fe2TiO5/Fe2O3 ternary nanocomposite using natural ilmenite for efficient photocatalysis and photosterilization under visible light
Xu et al. Electronic structure modulation of g-C3N4 by Hydroxyl-grafting for enhanced photocatalytic peroxymonosulfate Activation: Combined experimental and theoretical analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant