CN108682716A - 一种高性能半导体氧化物复合结构紫外光探测器的制备方法 - Google Patents

一种高性能半导体氧化物复合结构紫外光探测器的制备方法 Download PDF

Info

Publication number
CN108682716A
CN108682716A CN201810466389.7A CN201810466389A CN108682716A CN 108682716 A CN108682716 A CN 108682716A CN 201810466389 A CN201810466389 A CN 201810466389A CN 108682716 A CN108682716 A CN 108682716A
Authority
CN
China
Prior art keywords
preparation
tin oxide
ultraviolet light
stick array
light detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810466389.7A
Other languages
English (en)
Other versions
CN108682716B (zh
Inventor
郑文姬
董雅楠
丁锐
贺高红
焉晓明
代岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810466389.7A priority Critical patent/CN108682716B/zh
Publication of CN108682716A publication Critical patent/CN108682716A/zh
Application granted granted Critical
Publication of CN108682716B publication Critical patent/CN108682716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高性能半导体氧化物复合结构紫外光探测器的制备方法,属于半导体光电探测技术领域。本发明首先水热合成了有序排列的SnO2纳米棒阵列,再在其表面担载具有大量分枝结构的TiO2纳米颗粒,构成多级分枝结构,其制备方法简单、操作费用低。之后,将所制得电极板材料导电面面对面贴合,构成结构简单的三明治结构的紫外光探测器。该探测器不仅具有极好的紫外光选择性、较高的探测灵敏度,而且具有优异的紫外光响应度和光响应速率,解决了紫外光探测器高响应度和高响应速率难以兼得的问题,是一种高性能的紫外光探测器。

Description

一种高性能半导体氧化物复合结构紫外光探测器的制备方法
技术领域
本发明属于半导体光电探测技术领域,具体涉及一种金属氧化物半导体纳米复合材料电极制备的方法。
背景技术
光探测器是一种能够把光辐射能量转换成便于测量的物理量的器件,其原理是光电效应——在高于一个特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来生成电流,即光生电。其中,紫外光探测器在军事、医疗、科学研究等各个领域中均有广泛应用,如环境监测、紫外通信、紫外预警及生物化学分析等。然而,商业化的紫外光探测器仍具有紫外光选择性差、响应时间长、响应度低等缺点,这不仅有碍于紫外光监测,还会产生大量能源消耗。因此,亟需制备高性能的紫外光探测器。
已经商业化的紫外光探测器半导体材料禁带宽度较窄,紫外光选择性较差,需配有可见、红外光过滤器,器件复杂且成本较高。而禁带宽度大于3eV的宽带隙材料,具有本征的对可见光不响应的特点,具有优异的紫外光选择性。以宽禁带材料为吸收介质研制的探测器将对紫外光子产生直接响应,可简化光通道,大幅降低成本,并在热导、热稳定性、抗腐蚀方面有很大的优势。氧化锡半导体材料在常温下禁带宽度为3.6eV,不仅具有较大的禁带宽度,而且具有较高的电子稳定性及电子传输能力,引起了研究者的广泛关注。研究发现,氧化锡纳米材料具有极高的紫外光响应度,但响应速率较低,需对其进行进一步的改进。
发明内容
基于现有技术中存在的问题,本发明的目的在于制备一种兼具高光响应度和高光响应速率的紫外光探测器的方法。
本发明的技术方案:
一种高性能半导体氧化物复合结构紫外光探测器的制备方法,步骤如下:
在掺杂F的氧化锡(FTO)导电玻璃上旋涂一层氧化锡晶种,水热法在其上生长有序排列的氧化锡纳米棒阵列,沉积法在氧化锡纳米棒阵列表面上担载多分枝结构的氧化钛纳米颗粒。
所述的晶种层的制备方法如下:将1.0~5.0mM醋酸亚锡的乙醇溶液旋涂于FTO导电玻璃上,旋涂速率2000~3000r/min,旋涂时间30s,旋涂4~10次后,在400℃条件下高温煅烧30~60min;
所述的氧化锡纳米棒阵列的制备方法如下:向浓度为6.0-14.0mM
SnCl4·5H2O溶液中加入37~38wt%HCl,其中,SnCl4·5H2O溶液中使用的溶剂为体积比为1:1的去离子水和无水乙醇,SnCl4·5H2O溶液与37~38wt%HCl的体积比不大于2:3~7;磁力搅拌10min后,加入涂有晶种层的FTO导电玻璃,140~200℃反应6~14h;反应结束冷却至室温,去离子水和无水乙醇交替冲洗3次后60℃干燥,400℃条件下高温煅烧30min。
所述的氧化锡纳米棒阵列直径为8~70nm,长度为120~200nm。
所述的多分枝结构的氧化钛纳米颗粒的制备方法如下:将长有氧化锡纳米棒阵列的FTO导电玻璃置于0.1~0.4M TiCl4的水溶液中,室温条件下反应24~72h。
所述的氧化钛纳米颗粒具有大量分枝结构,其直径分布在200-450nm之间。
本发明的有益效果:该紫外光探测器对可见光及红外光几乎无吸收能力,具有极好的紫外光选择性和较高的探测灵敏度,且兼具优异的紫外光响应度和光响应速率。
附图说明
图1是氧化锡纳米棒阵列表面电镜图(实施例1)。
图2是氧化锡纳米棒阵列-氧化钛纳米颗粒复合结构表面电镜图(实施例2)。
图3是本发明的高性能半导体氧化物复合结构紫外光探测器示意图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
配置13mM的SnCl4·5H2O溶液(去离子水:无水乙醇=1:1)60mL,加入3mL HCl(wt%=37~38%),磁力搅拌10min后,加入涂有晶种层的FTO导电玻璃,180℃反应12h。反应结束冷却至室温,去离子水和无水乙醇交替冲洗3次后60℃干燥,400℃条件下高温煅烧30min,即得到所要SnO2纳米棒阵列结构。
氧化锡纳米棒直径为30nm,长度为200nm。
实施例2
配置13mM的SnCl4·5H2O溶液(去离子水:无水乙醇=1:1)60mL,加入4mL HCl(wt%=37~38%),磁力搅拌10min后,加入涂有晶种层的FTO导电玻璃,180℃反应12h。反应结束冷却至室温,去离子水和无水乙醇交替冲洗3次后60℃干燥,400℃条件下高温煅烧30min。将所得产物置于30mL、0.2M TiCl4水溶液中,室温条件下反应36h后,去离子水和无水乙醇交替冲洗3次后室温干燥。
所得氧化钛纳米颗粒直径约为450nm,具有大量的分枝结构,有利于光电子的生成。
氧化锡纳米棒阵列-氧化钛纳米颗粒复合结构紫外光光探测器的光响应度达21.61AW-1,响应时间小于1s,紫外光选择性达113。复合结构光探测器的光电流随紫外光光强的增加而增大,在较低的光强度183nW下,仍具有较好的光响应度,即具有较高的探测灵敏度。并且,该光探测器对可见光及红外光几乎无吸收能力,具有极好的紫外光选择性。

Claims (10)

1.一种高性能半导体氧化物复合结构紫外光探测器的制备方法,其特征在于,步骤如下:
在掺杂F的氧化锡导电玻璃FTO上旋涂氧化锡晶种层,水热法在其上生长有序排列的氧化锡纳米棒阵列,沉积法在氧化锡纳米棒阵列表面上担载多分枝结构的氧化钛纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于,所述的氧化锡晶种层的制备方法如下:将1.0~5.0mM醋酸亚锡的乙醇溶液旋涂于FTO导电玻璃上,旋涂速率2000~3000r/min,旋涂时间30s,旋涂4~10次后,在400℃条件下高温煅烧30~60min。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的氧化锡纳米棒阵列的制备方法如下:向浓度为6.0-14.0mM SnCl4·5H2O溶液中加入37~38wt%HCl,其中,SnCl4·5H2O溶液中使用的溶剂为体积比为1:1的去离子水和无水乙醇,SnCl4·5H2O溶液与37~38wt%HCl的体积比不大于2:3~7;磁力搅拌10min后,加入涂有晶种层的FTO导电玻璃,140~200℃反应6~14h;反应结束冷却至室温,去离子水和无水乙醇交替冲洗3次后60℃干燥,400℃条件下高温煅烧30min。
4.根据权利要求1或2所述的制备方法,其特征在于,所述的氧化锡纳米棒阵列直径为8~70nm,长度为120~200nm。
5.根据权利要求3所述的制备方法,其特征在于,所述的氧化锡纳米棒阵列直径为8~70nm,长度为120~200nm。
6.根据权利要求1、2或5所述的制备方法,其特征在于,所述的多分枝结构的氧化钛纳米颗粒的制备方法如下:将长有氧化锡纳米棒阵列的FTO导电玻璃置于0.1~0.4M TiCl4的水溶液中,室温条件下反应24~72h。
7.根据权利要求3所述的制备方法,其特征在于,所述的多分枝结构的氧化钛纳米颗粒的制备方法如下:将长有氧化锡纳米棒阵列的FTO导电玻璃置于0.1~0.4M TiCl4的水溶液中,室温条件下反应24~72h。
8.根据权利要求4所述的制备方法,其特征在于,所述的多分枝结构的氧化钛纳米颗粒的制备方法如下:将长有氧化锡纳米棒阵列的FTO导电玻璃置于0.1~0.4M TiCl4的水溶液中,室温条件下反应24~72h。
9.根据权利要求1、2、5、7或8所述的制备方法,其特征在于,所述的氧化钛纳米颗粒具有大量分枝结构,其直径分布在200-450nm之间。
10.根据权利要求6所述的制备方法,其特征在于,所述的氧化钛纳米颗粒具有大量分枝结构,其直径分布在200-450nm之间。
CN201810466389.7A 2018-05-09 2018-05-09 一种高性能半导体氧化物复合结构紫外光探测器的制备方法 Active CN108682716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810466389.7A CN108682716B (zh) 2018-05-09 2018-05-09 一种高性能半导体氧化物复合结构紫外光探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810466389.7A CN108682716B (zh) 2018-05-09 2018-05-09 一种高性能半导体氧化物复合结构紫外光探测器的制备方法

Publications (2)

Publication Number Publication Date
CN108682716A true CN108682716A (zh) 2018-10-19
CN108682716B CN108682716B (zh) 2020-06-16

Family

ID=63806551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810466389.7A Active CN108682716B (zh) 2018-05-09 2018-05-09 一种高性能半导体氧化物复合结构紫外光探测器的制备方法

Country Status (1)

Country Link
CN (1) CN108682716B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740014A (zh) * 2020-06-16 2020-10-02 湖北文理学院 太阳能电池用二维/一维/零维复合SnO2纳米晶电子传输层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275981A (zh) * 2011-07-15 2011-12-14 东华大学 一种自基底的SnO2纳米棒阵列的制备方法
CN103400937A (zh) * 2013-08-13 2013-11-20 西南大学 TiO2/SnO2复合纳米棒电阻开关的制备方法
CN104528810A (zh) * 2015-01-20 2015-04-22 天津大学 一步水热法制备二氧化锡纳米棒簇的制备方法
CN104692453A (zh) * 2015-02-28 2015-06-10 云南大学 一种超细纳米棒丛SnO2纳米材料的合成方法
CN105271374A (zh) * 2015-11-21 2016-01-27 河南师范大学 一种具有定向连接微结构二氧化锡微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275981A (zh) * 2011-07-15 2011-12-14 东华大学 一种自基底的SnO2纳米棒阵列的制备方法
CN103400937A (zh) * 2013-08-13 2013-11-20 西南大学 TiO2/SnO2复合纳米棒电阻开关的制备方法
CN104528810A (zh) * 2015-01-20 2015-04-22 天津大学 一步水热法制备二氧化锡纳米棒簇的制备方法
CN104692453A (zh) * 2015-02-28 2015-06-10 云南大学 一种超细纳米棒丛SnO2纳米材料的合成方法
CN105271374A (zh) * 2015-11-21 2016-01-27 河南师范大学 一种具有定向连接微结构二氧化锡微球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUO CHEN等: "High-Performance Self-Powered UV Detector Based on SnO2-TiO2 Nanomace Arrays", 《NANO EXPRESS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740014A (zh) * 2020-06-16 2020-10-02 湖北文理学院 太阳能电池用二维/一维/零维复合SnO2纳米晶电子传输层的制备方法
CN111740014B (zh) * 2020-06-16 2022-08-30 湖北文理学院 太阳能电池用二维/一维/零维复合SnO2纳米晶电子传输层的制备方法

Also Published As

Publication number Publication date
CN108682716B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
Nguyen et al. Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction
Chen et al. High-performance self-powered UV detector based on SnO 2-TiO 2 nanomace arrays
Gao et al. High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2–TiO2 core–shell electrodes
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
Yang et al. Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells
Reda Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells
CN107195787B (zh) 基于石墨烯电极和钙钛矿吸光层的自驱动光电探测器及其制备方法
CN104966781B (zh) 一种钙钛矿纳米纤维膜太阳能电池及其制备方法
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
CN104638049A (zh) 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法
Zhao et al. The better photoelectric performance of thin-film TiO2/c-Si heterojunction solar cells based on surface plasmon resonance
CN101901693A (zh) 石墨烯复合染料敏化太阳能电池的光阳极及其制备方法
CN109119511A (zh) 一种氧化锡-氧化锌纳米棒阵列异质结结构紫外光探测器的制备方法
Yang et al. A high-performance NiO/TiO 2 UV photodetector: the influence of the NiO layer position
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
Yang et al. Enhanced response speed of TiO2 nanoarrays based all solid-state ultraviolet photodetector via SiO2 dielectric layer
Huang et al. A high-performance self-powered UV photodetector based on SnO 2 mesoporous spheres@ TiO 2
Song et al. The synthesis of TiO2 nanoflowers and their application in electron field emission and self-powered ultraviolet photodetector
Chou et al. The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
Wang et al. Structural, optical and flexible properties of CH3NH3PbI3 perovskite films deposited on paper substrates
Payandehdarinejad et al. A new approach to fabrication of UV photodiodes based on ZnO/PPy on carbon clothe substrate
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
Bai et al. Fast response and high sensitive photoelectrochemical ultraviolet detectors based on electrospinning SrTiO3 nanowires
Abdalla et al. TiCl4 surface-treated SnO2 photoanodes for self-powered UV photodetectors and dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant