CN108661862B - 一种自封闭型电磁耦合调速风电机组控制方法 - Google Patents

一种自封闭型电磁耦合调速风电机组控制方法 Download PDF

Info

Publication number
CN108661862B
CN108661862B CN201810448663.8A CN201810448663A CN108661862B CN 108661862 B CN108661862 B CN 108661862B CN 201810448663 A CN201810448663 A CN 201810448663A CN 108661862 B CN108661862 B CN 108661862B
Authority
CN
China
Prior art keywords
cmd
current
frequency converter
grid voltage
rated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810448663.8A
Other languages
English (en)
Other versions
CN108661862A (zh
Inventor
由蕤
柴建云
孙旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810448663.8A priority Critical patent/CN108661862B/zh
Publication of CN108661862A publication Critical patent/CN108661862A/zh
Application granted granted Critical
Publication of CN108661862B publication Critical patent/CN108661862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明提出了一种自封闭型电磁耦合调速风电机组控制方法,电网电压跌落期间,先计算有功电流,判断是否在电网电压跌落期间减小变频器转矩指令,再进行无功电流iq计算,控制电励磁同步发电机发出无功电流iq。本发明由风轮转速判断风电机组输出有功功率大小,利用该机组在电网电压发生跌落期间能够发出有功功率的特点(因变频器可以正常供电),在保证对电网电压进行有效支撑的基础上,考虑变桨***载荷情况,避免变桨***在电网电压跌落后承受较大载荷,优化变桨***和传动链载荷,从而延长变桨***和整个机组的寿命。

Description

一种自封闭型电磁耦合调速风电机组控制方法
技术领域
本发明涉及风力发电机组领域,特别涉及一种用于自封闭型电磁耦合调速风电机组的控制方法。
背景技术
如图1所示,自封闭型电磁耦合调速风电机组采用自封闭型电磁耦合调速装置联接齿轮箱高速轴和电励磁同步发电机转子轴,使功率从齿轮箱2侧向电励磁同步发电机侧传递,并网接口为电励磁同步发电机5;自封闭型电磁耦合调速装置由电磁耦合器4、变频器6以及永磁同步发电机3组成,永磁同步发电机3用于给变频器6供电;电磁耦合器4有两根转轴,分别与齿轮箱2和电励磁同步发电机5相联并都转动,变频器6控制电磁耦合器4两根转轴的相对转速和电磁转矩;齿轮箱的高速轴与电磁耦合器的一根轴相联构成前轴系,电磁耦合器的另一根轴与电励磁同步发电机5的转子轴相联构成后轴系,前、后轴系为2个独立的轴系,永磁同步发电机3与前轴系同轴实现对所述变频器6供电。
当电网出现故障时,电网电压发生跌落并超出正常范围,自封闭型电磁耦合调速风电机组的现有控制策略就转入低电压穿越控制模式,由于变频器是由与齿轮箱高速轴同轴的永磁同步发电机供电,电网电压的跌落不会对变频器的供电产生影响,为了保持机组输出有功电流恒定,变频器转矩指令值Tcmd_LVRT的计算公式为:
Tcmd_LVRT=kTcmd (1)
式中,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值,该变频器转矩指令值是由自封闭型电磁耦合调速风电机组风轮最优机械特性曲线所求得,桨距角的求取与电网电压正常时相同,根据风轮转速目标值和实测值采用PI调节器求得。
但现有的控制策略并没有考虑电网故障时,风速对***的影响,Tcmd为自封闭型电磁耦合调速风电机组基本运行时由风轮最优机械特性曲线所求得的变频器转矩指令值,风速越大,Tcmd越大,风速越小,Tcmd越小。由于△Tcmd=(1-k)Tcmd,因此,风速越大,△Tcmd越大,风速越小,△Tcmd越小,△Tcmd是变桨***需要承受的载荷,变桨***包括风机风轮以及附属的用于变桨的电机,△Tcmd越大,对风轮以及变桨电机的使用寿命会造成较大影响。
目前,自封闭型电磁耦合调速风电机组在电网故障时并没有考虑风速对变频器转矩指令值的影响,因此,当变桨***承受较大时,会对变桨***的使用寿命产生影响。
发明内容
为解决上述现有技术的不足,本发明提出了一种自封闭型电磁耦合调速风电机组控制方法。
本发明的技术方案是这样实现的:
一种自封闭型电磁耦合调速风电机组的控制方法,采用自封闭型电磁耦合调速装置联接齿轮箱高速轴和电励磁同步发电机转子轴,使功率从齿轮箱侧向电励磁同步发电机侧传递,并网接口为所述电励磁同步发电机;所述自封闭型电磁耦合调速装置由电磁耦合器、变频器以及永磁同步发电机组成,永磁同步发电机用于给变频器供电;所述电磁耦合器有两根转轴,分别与齿轮箱和电励磁同步发电机相联并都转动,变频器控制电磁耦合器两根转轴的相对转速和电磁转矩;其特征在于:
电网电压跌落期间,先计算有功电流,判断是否在电网电压跌落期间减小变频器转矩指令,具体如下:
当电网电压发生跌落时的风轮转速小于标幺值t时,
有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is≤ismax,保持电网电压跌落时刻的有功电流is不变,变频器转矩指令值Tcmd_LVRT计算公式为:
Tcmd_LVRT=kTcmd (1)
如果is>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (2)
式中,is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
当电网电压发生跌落时的风轮转速大于或者等于t时,有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is/k≤ismax,保持电网电压跌落之前的变频器转矩指令不变化,Tcmd_LVRT=Tcmd
如果is/k>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (3)
is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
再进行无功电流iq计算,控制电励磁同步发电机发出无功电流iq
iq计算公式如下:
式中,irated为额定电流,iqmax为最大允许无功电流值,即当iqmax>3irated时,无功电流iq为三倍额定电流;当iqmax≤3irated时,无功电流iq为最大允许无功电流值iqmax,最大允许无功电流值iqmax根据下式计算:
imax是并网的电励磁同步发电机短时最大允许电流值,is为电网电压跌落时刻测得的有功电流。
本发明的有益效果是:
(1)本发明由风轮转速判断风电机组输出有功功率大小,利用该机组在电网电压发生跌落期间能够发出有功功率的特点(因变频器可以正常供电),在保证对电网电压进行有效支撑的基础上,考虑变桨***载荷情况,避免变桨***在电网电压跌落后承受较大载荷,优化变桨***和传动链载荷,从而延长变桨***和整个机组的寿命;
(2)常规电厂中,同步发电机在电网电压发生跌落期间,能够发出高达三倍额定电流的无功电流对电网电压进行有效支撑,由于本发明的风电机组并网接口也为电励磁同步发电机,因此模拟常规电厂中的同步发电机,使该机组在电网电压跌落期间发出三倍额定电流的无功电流,对电网电压进行有效支撑。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为自封闭型电磁耦合调速风电机组的原理示意图;
图2为本发明的控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有的自封闭型电磁耦合调速风电机组的控制策略在电网故障时并没有考虑风速对变频器转矩指令值的影响,因此,当变桨***承受载荷较大时,会对变桨***的使用寿命产生影响。
本发明提出了一种采用有功功率优先模式的自封闭型电磁耦合调速风电机组的控制方法,考虑风速对变桨***承受载荷的影响,实现了对变桨***的保护。
本发明的控制方法用于对如图1所示自封闭型电磁耦合调速风电机组在电网故障期间的控制,在电网电压跌落期间,先计算有功电流,判断是否在电网电压跌落期间减小变频器转矩指令,具体如下:
当电网电压发生跌落时的风轮转速小于标幺值t时,
有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is≤ismax,保持电网电压跌落时刻的有功电流is不变,变频器转矩指令值Tcmd_LVRT计算公式为:
Tcmd_LVRT=kTcmd (1)
如果is>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (2)
式中,is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
当电网电压发生跌落时的风轮转速大于或者等于t时,有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is/k≤ismax,保持电网电压跌落之前的变频器转矩指令不变化,Tcmd_LVRT=Tcmd
如果is/k>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (3)
is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
根据上述方法计算变频器转矩指令之后,再进行无功电流iq计算,控制电励磁同步发电机发出无功电流iq,iq计算公式如下:
式中,irated为额定电流,iqmax为最大允许无功电流值,即当iqmax>3irated时,无功电流iq为三倍额定电流,风电机组发出高达三倍额定电流的无功电流对电网电压进行有效支撑;当iqmax≤3irated时,表明三倍的额定电流值已大于最大允许电流值,无法发出三倍额定电流的无功电流,因此无功电流iq为最大允许无功电流值iqmax,最大允许无功电流值iqmax根据下式计算:
imax是并网的电励磁同步发电机短时最大允许电流值,is为测得的有功电流。
本发明由风轮转速判断风电机组输出有功功率大小,利用该机组在电网电压发生跌落期间能够发出有功功率的特点(因变频器可以正常供电),在保证对电网电压进行有效支撑的基础上,考虑变桨***载荷情况,避免变桨***在电网电压跌落后承受较大载荷,优化变桨***和传动链载荷,从而延长变桨***和整个机组的寿命。
常规电厂中,同步发电机在电网电压发生跌落期间,能够发出高达三倍额定电流的无功电流对电网电压进行有效支撑,由于本发明的风电机组并网接口也为电励磁同步发电机,因此模拟常规电厂中的同步发电机,使该机组在电网电压跌落期间发出三倍额定电流的无功电流,对电网电压进行有效支撑。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种自封闭型电磁耦合调速风电机组控制方法,采用自封闭型电磁耦合调速装置联接齿轮箱高速轴和电励磁同步发电机转子轴,使功率从齿轮箱侧向电励磁同步发电机侧传递,并网接口为所述电励磁同步发电机;所述自封闭型电磁耦合调速装置由电磁耦合器、变频器以及永磁同步发电机组成,永磁同步发电机用于给变频器供电;所述电磁耦合器有两根转轴,分别与齿轮箱和电励磁同步发电机相联并都转动,变频器控制电磁耦合器两根转轴的相对转速和电磁转矩;其特征在于:
电网电压跌落期间,先计算有功电流,判断是否在电网电压跌落期间减小变频器转矩指令,具体如下:
当电网电压发生跌落时的风轮转速小于标幺值t时,
有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is≤ismax,保持电网电压跌落时刻的有功电流is不变,变频器转矩指令值Tcmd_LVRT计算公式为:
Tcmd_LVRT=kTcmd (1)
如果is>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (2)
式中,is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
当电网电压发生跌落时的风轮转速大于或者等于t时,有功电流is的最大限制值即最大允许有功电流值ismax计算如下:
imax是并网的电励磁同步发电机短时最大允许电流值,irated为额定电流;
如果is/k≤ismax,保持电网电压跌落之前的变频器转矩指令不变化,Tcmd_LVRT=Tcmd
如果is/k>ismax,变频器转矩指令Tcmd_LVRT计算公式为:
Tcmd_LVRT=Tcmd*(ismax/is) (3)
is为电网电压跌落时刻的有功电流,k为电网电压的标幺值,Tcmd为电网电压跌落时刻变频器转矩指令值;
再进行无功电流iq计算,控制电励磁同步发电机发出无功电流iq
iq计算公式如下:
式中,irated为额定电流,iqmax为最大允许无功电流值,即当iqmax>3irated时,无功电流iq为三倍额定电流;当iqmax≤3irated时,无功电流iq为最大允许无功电流值iqmax,最大允许无功电流值iqmax根据下式计算:
imax是并网的电励磁同步发电机短时最大允许电流值,is为电网电压跌落时刻测得的有功电流。
CN201810448663.8A 2018-05-11 2018-05-11 一种自封闭型电磁耦合调速风电机组控制方法 Active CN108661862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810448663.8A CN108661862B (zh) 2018-05-11 2018-05-11 一种自封闭型电磁耦合调速风电机组控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810448663.8A CN108661862B (zh) 2018-05-11 2018-05-11 一种自封闭型电磁耦合调速风电机组控制方法

Publications (2)

Publication Number Publication Date
CN108661862A CN108661862A (zh) 2018-10-16
CN108661862B true CN108661862B (zh) 2019-07-09

Family

ID=63779091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810448663.8A Active CN108661862B (zh) 2018-05-11 2018-05-11 一种自封闭型电磁耦合调速风电机组控制方法

Country Status (1)

Country Link
CN (1) CN108661862B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155356A (zh) * 2011-03-22 2011-08-17 国电联合动力技术有限公司 一种基于电磁耦合器调速前端的风电机组运行控制方法
CN103094917A (zh) * 2012-11-27 2013-05-08 哈电通用风能(江苏)有限公司 全功率高速永磁同步风机的低电压穿越控制方法
CN103762919A (zh) * 2014-01-09 2014-04-30 华北电力大学 用于直驱式风力发电机低电压穿越的功率控制装置及方法
CN104704700A (zh) * 2012-10-12 2015-06-10 西门子公司 用于在高电压条件期间连续操作多个电能生成机器的方法和控制器
CN106130076A (zh) * 2016-08-17 2016-11-16 青岛大学 一种用于自封闭型电磁耦合调速风电机组的低电压穿越控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659178B2 (en) * 2009-02-27 2014-02-25 Acciona Windpower, S.A. Wind turbine control method, control unit and wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155356A (zh) * 2011-03-22 2011-08-17 国电联合动力技术有限公司 一种基于电磁耦合器调速前端的风电机组运行控制方法
CN104704700A (zh) * 2012-10-12 2015-06-10 西门子公司 用于在高电压条件期间连续操作多个电能生成机器的方法和控制器
CN103094917A (zh) * 2012-11-27 2013-05-08 哈电通用风能(江苏)有限公司 全功率高速永磁同步风机的低电压穿越控制方法
CN103762919A (zh) * 2014-01-09 2014-04-30 华北电力大学 用于直驱式风力发电机低电压穿越的功率控制装置及方法
CN106130076A (zh) * 2016-08-17 2016-11-16 青岛大学 一种用于自封闭型电磁耦合调速风电机组的低电压穿越控制方法

Also Published As

Publication number Publication date
CN108661862A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5473592B2 (ja) 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン
EP2384540B1 (en) Power system frequency inertia for power generation system
CN108235717B (zh) 在没有电网连接的情况下操作风力涡轮机的方法以及风力涡轮机
US20110285130A1 (en) Power System Frequency Inertia for Wind Turbines
KR102607778B1 (ko) 블랙 스타트 복원
CN102035213B (zh) 用于可再生能源的多用途能量存储器
EP2451073B1 (en) Variable-speed power generation device and control method therefor
CN101440783B (zh) 风力发电***运行控制方法
US20030057703A1 (en) Method of controlling electrical rotating machines connected to a common shaft
EP2573896A1 (en) Methods of controlling a combined plant including at least one generator and an energy store
CN106130075A (zh) 一种自封闭型电磁耦合调速风电机组及其控制方法
CN102852726B (zh) 基于差速机构自适应调速复合传动的并网风力发电***
CN108667366A (zh) 一种采用有功功率优先模式的自封闭型电磁耦合调速风电机组控制方法
CN106130076A (zh) 一种用于自封闭型电磁耦合调速风电机组的低电压穿越控制方法
CN108661862B (zh) 一种自封闭型电磁耦合调速风电机组控制方法
CN109980675B (zh) 柔性直流输电用双馈型磁悬浮垂直轴风力发电***及其控制方法
CN202284522U (zh) 一种电网友好型风力发电机组
EP2562417A1 (en) Three-phase electrical generator and system for turbines
CN108667081A (zh) 一种采用无功功率优先模式的自封闭型电磁耦合调速风电机组控制方法
Abulanwar et al. Mitigation of DC wind farm power fluctuations based battery energy storage system
CN114244211B (zh) 海上双馈风力发电***宽压频范围控制***及方法
CN102510082B (zh) 一种电网友好型风力发电机组的控制方法
Gangikunta et al. Doubly Fed Induction Generator: Grid Integration and Performance Analysis
Wang et al. An electromechanical transient model of direct-driven permanent magnet synchronous generator based wind power system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 266000 Shandong city of Qingdao province Ningxia City Road No. 308

Patentee after: Qingdao University

Address before: 266000 No. 308, Ningxia Road, Qingdao, Shandong

Patentee before: Qingdao University

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181016

Assignee: JIANGSU MAGNET VALLEY TECHNOLOGIES Co.,Ltd.

Assignor: QINGDAO University

Contract record no.: X2022370010005

Denomination of invention: A control method of self sealing closed electromagnetic coupling speed regulating wind turbine

Granted publication date: 20190709

License type: Common License

Record date: 20220301