CN108660742A - 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法 - Google Patents

一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法 Download PDF

Info

Publication number
CN108660742A
CN108660742A CN201810488735.1A CN201810488735A CN108660742A CN 108660742 A CN108660742 A CN 108660742A CN 201810488735 A CN201810488735 A CN 201810488735A CN 108660742 A CN108660742 A CN 108660742A
Authority
CN
China
Prior art keywords
fibers
fiber
tube
dopamine
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810488735.1A
Other languages
English (en)
Inventor
汪晓东
韩恩林
武德珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Original Assignee
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute for Advanced Materials Beijing University of Chemical Technology filed Critical Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority to CN201810488735.1A priority Critical patent/CN108660742A/zh
Publication of CN108660742A publication Critical patent/CN108660742A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/368Hydroxyalkylamines; Derivatives thereof, e.g. Kritchevsky bases
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2455/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2423/00 - C08J2453/00
    • C08J2455/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚酰亚胺(PI)纤维表面化学修饰碳纳米管的制备方法,其特征在于:将经过表面清洁处理的PI纤维与多巴胺分散在三羟甲基氨基甲烷‑盐酸缓冲溶液中,在室温下反应,在PI表面形成聚多巴胺包覆层。然后将一定量的聚乙烯亚胺加入到上述反应溶液中,通过与聚多巴胺反应形成表面氨基官能化的PI纤维,最后加入羧基官能化多壁碳纳米管,通过碳纳米管表面羧基官能团与PI纤维表面氨基官能团反应,获得表面化学修饰多壁碳纳米管的PI纤维。通过本发明的方法可有效提高了聚酰亚胺纤维的表面粗糙度、降低表面能、提高其亲水性和比表面积,同时提高了纤维与基体树脂的界面结合性能,从而有利于其应用于热塑性塑料的增强改性。

Description

一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法
技术领域
本发明涉及复合材料领域,具体是涉及一种碳纳米管表面化学修饰聚酰亚胺(PI)纤维的制备方法。
背景技术
PI纤维在保留原来PI突出性能的基础上,又兼具纤维适用性更广的特点,PI纤维强度大模量高、耐高温、化学介质腐蚀,主要用于高温烟气除尘过滤袋、纺织防酸碱面料、耐火面料、工业阻燃隔热保温型材料、多元功能性新型复合材料等领域。但是PI纤维表面没有活性官能团,性能稳定,结构光滑,与基体结合性能较差,限制了复合材料力学性能和机械性能的进一步提高。
PI纤维具有的耐高低温性能、耐辐射性能、高强度和高模量等优异性能,可用其制作纤维复合材料,从而应用在耐高低温和耐辐射等应用领域,比较有代表性的就是国防和航空航天领域。PI纤维在高温下可稳定存在数小时,可用其制作火箭的零部件和航空航天器的一些零部件,用来应对外太空的苛刻温度环境,俄国的利尔索特公司将PI纤维与其它金属线一起制成了轻质耐热电缆屏蔽护套来应用在特种用途飞机上。
碳纳米管独特的结构决定了其有着许多独特的物理性质和化学性质。因为碳纳米管中的C=C共价键被认为是自然界中最为稳定的化学键,所以碳纳米管有着优异的力学性能,同时经过理论计算可以得出,碳纳米管也具有极其优异的强度和韧性,碳纳米管除了力学性能优异外,还具有良好的导电性能。通过在复合材料中掺杂微量的碳纳米管,然后碳纳米管进行合适的取向,使得复合材料的导热率有了很大的改善。
同时复合材料的性能不仅仅取决于其基体材料的性能,同时也很大程度的取决于各个组分之间的界面结合情况。复合材料的界面是增强相和基体相之间的中间桥梁,也是能量和信息的传递者,良好的界面结合性可以有效的传递载荷从而提高复合材料的力学性能。因此充分利用良好界面效应的优越性,提高PI纤维表面的粗糙度和比表面积,提高PI纤维与基体材料的界面结合性能,可以很大程度的提高复合材料的力学性能和机械性能。
发明内容
本发明所要解决的问题是改变PI纤维表面惰性,提高了PI纤维的表面粗糙度、降低表面能、提高其亲水性和比表面积,同时提高了纤维与基体树脂的界面结合性能,从而有利于其应用于热塑性塑料的增强改性。
本发明通过如下技术方案实现:
(1)对PI纤维进行清洗;(2)将经过表面清洁处理的PI纤维与多巴胺分散在缓冲溶液中,反应后在PI表面形成聚多巴胺包覆层;(3)将一定量的聚乙烯亚胺加入到上述反应溶液中,通过与聚多巴胺反应形成表面氨基官能化的PI纤维;(4)加入羧基官能化多壁碳纳米管,通过碳纳米管表面羧基官能团与PI纤维表面氨基官能团反应,获得表面化学修饰多壁碳纳米管的PI纤维。
所述的PI纤维是一种高强高模且表面惰性的有机合成纤维,其形式可以是连续长纤维,也可以是短切纤维。
所述的缓冲溶液由浓度为1.2mg/mL的三羟甲基氨基甲烷溶液和浓度为1mol/L的盐酸溶液配置而成,其pH值为8.5。反应溶液中多巴胺的浓度为1.0~5.0mg/mL,反应温度为室温,反应时间为2h。
所述的聚乙烯亚胺的体积分数为1.0~5.0vol.%,反应温度为室温,反应时间为30min。
所述的碳纳米管为羧基官能化多壁碳纳米管,其质量分数为:1.0~2.0wt.%,反应温度为室温,反应时间为6h。
通过如上的方法得到了碳纳米管化学修饰的PI纤维,提高了PI纤维的表面粗糙度、降低表面能、提高其亲水性和比表面积,同时提高了纤维与基体树脂的界面结合性能,从而有利于其应用于热塑性塑料的增强改性。
具体实施方式
以下是结合本发明技术方案所提供的PI纤维表面化学修饰碳纳米管的制备方法所做的实施例,用以进一步解释本发明。
实例1
对PI纤维进行切丝处理,使其长度为1mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取1.0g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取1mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取0.05g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到67.5°,PI纤维的亲水性得到极大提高。
实例2
对PI纤维进行切丝处理,使其长度为3mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取0.5g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取0.5mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取0.05g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到71.7°,PI纤维的亲水性得到极大提高。
实例3
对PI纤维进行切丝处理,使其长度为5mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取2.0g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取2mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取0.05g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到63.1°,PI纤维的亲水性得到极大提高。
实例4
对PI纤维进行切丝处理,使其长度为1mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取2g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取2mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取0.1g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到61.9°,PI纤维的亲水性得到极大提高。
实例5
对PI纤维进行切丝处理,使其长度为3mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取1.0g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取1mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取0.1g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到67.4°,PI纤维的亲水性得到极大提高。
实例6
对PI纤维进行切丝处理,使其长度为1mm,然后将5.0g的PI纤维在丙酮溶剂中超声环境下进行清洗2h。丙酮清洗结束后,用乙醇和去离子水分别清洗3次,将洗净的PI纤维放入鼓风干燥烘箱中烘干;称取0.6g的三羟甲基氨基甲烷加入到500mL去离子水中,配置浓度为1.2mg/mL的溶液,用酸度计测定pH值,然后用1mol/L的盐酸溶液将三羟甲基氨基甲烷溶液的pH值调节至8.5,得到三羟甲基氨基甲烷-盐酸缓冲溶液;称取0.5g多巴胺粉末加入到三羟甲基氨基甲烷-盐酸缓冲溶液中,随之将5.0g处理过的PI纤维加入到反应体系中,将其搅拌均匀后,室温条件下反应2h。量取0.5mL的聚乙烯亚胺,加入到反应体系中,在室温条件下进行共聚反应30min;称取1.0g羧基官能化多壁碳纳米管,加入到反应体系中,在室温条件下进行共聚反应6h,用去离子水清洗3次,将洗净的碳纳米管修饰过的PI纤维放入鼓风干燥烘箱中干燥,然后用自封袋密封保存。对得到的氧化石墨烯修饰过的PI纤维进行静态接触角测试,测试结果表明,PI纤维的接触角由120.4°降低到72.5°,PI纤维的亲水性得到极大提高。
上述本发明的一种PI纤维表面化学修饰碳纳米管的制备方法的技术创新对于现今同行业的技术人员来说均具有许多可取之处。通过本发明得到的碳纳米管化学修饰的PI纤维,其表面粗糙度得到很大的提高,亲水性和比表面积提高显著,且纤维与基体树脂的界面结合性能增强,从而有利于PI纤维更好的应用于热塑性塑料的增强改性以及复合材料制备等相关领域。
利用本发明技术制备得到的长度为5mm的碳纳米管化学修饰的短切PI纤维,当在其在增强改性的PC/ABS复合材料中质量分数为20wt.%时,拉伸强度可达145MPa、弯曲模量可达7.0GPa左右的,显著改善了PC/ABS的综合力学性能。利用本发明制备的碳纳米管化学修饰的PI纤维增强热塑性复合材料可广泛应用于电子电气制品、机械零部件及其它对高力学性能有较高要求的结构部件的制造。
以上所述,仅是本发明制备的较佳示例而已,并非本发明作任何形式上的限制,虽然本发明以较佳实例揭露如上,然而并非用以限定本发明人还是熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施实例所做的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (6)

1.一种聚酰亚胺(PI)纤维表面化学修饰碳纳米管的制备方法,其特征在于:采用化学接枝法对PI纤维表面进行碳纳米管修饰,从而增强其表面粗糙程度、降低表面能、提高其亲水性和比表面积。
2.如权利要求1所述的一种PI纤维表面化学修饰碳纳米管的制备方法,其特征在于:由以下步骤制备而成:(1)对PI纤维进行清洗;(2)将经过表面清洁处理的PI纤维与多巴胺分散在缓冲溶液中,在室温下反应,PI表面形成聚多巴胺包覆层;(3)将一定量的聚乙烯亚胺加入到上述反应溶液中,通过与聚多巴胺反应形成表面氨基官能化的PI纤维;(4)加入羧基官能化多壁碳纳米管,通过碳纳米管表面羧基官能团与PI纤维表面氨基官能团反应,获得表面化学修饰多壁碳纳米管的PI纤维。
3.如权利要求2所述的一种PI纤维表面化学修饰碳纳米管的制备方法,其特征在于:步骤(1)中所述的PI纤维是一种高强高模且表面惰性的有机合成纤维,其形式可以是连续长纤维,也可以是短切纤维。
4.如权利要求2所述的一种PI纤维表面化学修饰碳纳米管的制备方法,其特征在于:步骤(2)中所述的缓冲溶液由浓度为1.2mg/mL的三羟甲基氨基甲烷溶液和浓度为1mol/L的盐酸溶液配置而成,其pH值为8.5。反应溶液中多巴胺的浓度为1.0~5.0mg/mL,反应温度为室温,反应时间为2h。
5.如权利要求2所述的一种PI纤维表面化学修饰碳纳米管的制备方法,其特征在于:步骤(3)中所述的聚乙烯亚胺的体积分数为1.0~5.0vol.%,反应温度为室温,反应时间为30min。
6.如权利要求2所述的一种PI纤维表面化学修饰碳纳米管的制备方法,其特征在于:步骤(4)中所述的碳纳米管为羧基官能化多壁碳纳米管,其质量分数为:1.0~2.0wt.%,反应温度为室温,反应时间为6h。
CN201810488735.1A 2018-05-21 2018-05-21 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法 Pending CN108660742A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810488735.1A CN108660742A (zh) 2018-05-21 2018-05-21 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810488735.1A CN108660742A (zh) 2018-05-21 2018-05-21 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法

Publications (1)

Publication Number Publication Date
CN108660742A true CN108660742A (zh) 2018-10-16

Family

ID=63776257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810488735.1A Pending CN108660742A (zh) 2018-05-21 2018-05-21 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN108660742A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183277A (zh) * 2018-11-08 2019-01-11 上海师范大学 一种导电纤维柔性膜及其制备方法
CN109736079A (zh) * 2019-01-07 2019-05-10 东华大学 一种镍磷/碳纳米管/织物基功能材料及其制备和应用
CN109824895A (zh) * 2019-02-27 2019-05-31 济南大学 一种改性超支化聚酰亚胺树脂的制备及其应用
CN110066505A (zh) * 2019-05-27 2019-07-30 王飞 哑光pc-abs合金材料及其制备方法
CN110820349A (zh) * 2019-11-20 2020-02-21 中国科学院兰州化学物理研究所 多巴胺-聚乙烯亚胺-纳米颗粒联合改性聚四氟乙烯-芳纶混纺织物的方法
CN113121872A (zh) * 2019-12-30 2021-07-16 华东交通大学 一种聚多巴胺/聚乙烯亚胺共沉积涂层修饰细菌纤维素及其制备方法
CN113292796A (zh) * 2021-05-25 2021-08-24 天津蔚领新材料有限公司 一种高导热的超高分子量聚乙烯复合材料的制备方法
CN115418093A (zh) * 2022-08-15 2022-12-02 广东超邦科技有限公司 一种高强度塑胶玩具生产工艺
CN115787286A (zh) * 2022-11-14 2023-03-14 福建星海通信科技有限公司 一种用于电磁屏蔽的导电棉织物的制备方法
WO2023221235A1 (zh) * 2022-05-19 2023-11-23 无锡太平针织有限公司 一种抗静电碳纳米管改性羊毛纤维的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709973A (zh) * 2005-06-30 2005-12-21 北京航空航天大学 一种无机纳米复合的纤维增强聚酰亚胺复合材料及其制备方法
CN101831800A (zh) * 2010-03-17 2010-09-15 北京理工大学 一种碳纳米管改性芳纶纤维的方法
CN102120866A (zh) * 2011-01-12 2011-07-13 同济大学 石墨及功能化碳纤维改性环氧树脂复合材料的制备方法
CN102181153A (zh) * 2011-03-30 2011-09-14 同济大学 碳纳米管及功能化碳纤维增强聚酰亚胺复合材料的制备方法
CN102321279A (zh) * 2011-09-29 2012-01-18 北京化工大学 一种多巴胺改性碳纳米管/橡胶复合材料及其制备方法
CN104233777A (zh) * 2014-09-04 2014-12-24 中国科学院长春应用化学研究所 表面改性的聚酰亚胺纤维的制备方法及其应用
CN105113260A (zh) * 2015-08-19 2015-12-02 上海交通大学 一种碳纤维表面胺基功能化的方法
CN107493029A (zh) * 2017-07-10 2017-12-19 东华大学 表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709973A (zh) * 2005-06-30 2005-12-21 北京航空航天大学 一种无机纳米复合的纤维增强聚酰亚胺复合材料及其制备方法
CN101831800A (zh) * 2010-03-17 2010-09-15 北京理工大学 一种碳纳米管改性芳纶纤维的方法
CN102120866A (zh) * 2011-01-12 2011-07-13 同济大学 石墨及功能化碳纤维改性环氧树脂复合材料的制备方法
CN102181153A (zh) * 2011-03-30 2011-09-14 同济大学 碳纳米管及功能化碳纤维增强聚酰亚胺复合材料的制备方法
CN102321279A (zh) * 2011-09-29 2012-01-18 北京化工大学 一种多巴胺改性碳纳米管/橡胶复合材料及其制备方法
CN104233777A (zh) * 2014-09-04 2014-12-24 中国科学院长春应用化学研究所 表面改性的聚酰亚胺纤维的制备方法及其应用
CN105113260A (zh) * 2015-08-19 2015-12-02 上海交通大学 一种碳纤维表面胺基功能化的方法
CN107493029A (zh) * 2017-07-10 2017-12-19 东华大学 表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183277A (zh) * 2018-11-08 2019-01-11 上海师范大学 一种导电纤维柔性膜及其制备方法
CN109736079A (zh) * 2019-01-07 2019-05-10 东华大学 一种镍磷/碳纳米管/织物基功能材料及其制备和应用
CN109824895A (zh) * 2019-02-27 2019-05-31 济南大学 一种改性超支化聚酰亚胺树脂的制备及其应用
CN110066505A (zh) * 2019-05-27 2019-07-30 王飞 哑光pc-abs合金材料及其制备方法
CN110066505B (zh) * 2019-05-27 2021-07-02 陈伟成 哑光pc-abs合金材料及其制备方法
CN110820349B (zh) * 2019-11-20 2021-08-24 中国科学院兰州化学物理研究所 多巴胺-聚乙烯亚胺-纳米颗粒联合改性聚四氟乙烯-芳纶混纺织物的方法
CN110820349A (zh) * 2019-11-20 2020-02-21 中国科学院兰州化学物理研究所 多巴胺-聚乙烯亚胺-纳米颗粒联合改性聚四氟乙烯-芳纶混纺织物的方法
CN113121872A (zh) * 2019-12-30 2021-07-16 华东交通大学 一种聚多巴胺/聚乙烯亚胺共沉积涂层修饰细菌纤维素及其制备方法
CN113292796A (zh) * 2021-05-25 2021-08-24 天津蔚领新材料有限公司 一种高导热的超高分子量聚乙烯复合材料的制备方法
CN113292796B (zh) * 2021-05-25 2022-08-23 深圳市鹏塑科技发展有限公司 一种高导热的超高分子量聚乙烯复合材料的制备方法
WO2023221235A1 (zh) * 2022-05-19 2023-11-23 无锡太平针织有限公司 一种抗静电碳纳米管改性羊毛纤维的制备方法
CN115418093A (zh) * 2022-08-15 2022-12-02 广东超邦科技有限公司 一种高强度塑胶玩具生产工艺
CN115787286A (zh) * 2022-11-14 2023-03-14 福建星海通信科技有限公司 一种用于电磁屏蔽的导电棉织物的制备方法

Similar Documents

Publication Publication Date Title
CN108660742A (zh) 一种聚酰亚胺纤维表面化学修饰碳纳米管的制备方法
Sun et al. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions
Liu et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor
Dikshit et al. Multiscale polymer composites: A review of the interlaminar fracture toughness improvement
Liao et al. Flexible and printable paper-based strain sensors for wearable and large-area green electronics
Ayatollahi et al. Mechanical properties of adhesively single lap-bonded joints reinforced with multi-‌‌‌walled carbon nanotubes and silica nanoparticles
CN106500886B (zh) 一种基于纳米导电材料的柔性应力传感器的制备方法
Meguid et al. On the tensile and shear strength of nano-reinforced composite interfaces
Kim et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes
Preda et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites
Zhang et al. Polyhedral oligomeric silsesquioxanes/carbon nanotube/carbon fiber multiscale composite: influence of a novel hierarchical reinforcement on the interfacial properties
Wang et al. Multi‐scale hybrid composites‐based carbon nanotubes
Wu et al. Stable, superfast and self-healing fluid coating with active corrosion resistance
CN1314749C (zh) 纳米复合树脂材料及其制备方法
CN109763322A (zh) 一种新颖的碳纤维表面接枝氧化石墨的新方法
Chen et al. Functionalized carbon fibers with MXene via electrochemistry aryl diazonium salt reaction to improve the interfacial properties of carbon fiber/epoxy composites
CN101215410B (zh) 聚对苯二甲酸丁二醇酯改性树脂
Yu et al. Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes
Ma et al. Micro-/nanofiber-coupled superhydrophobic and conductive textile for underwater wearable strain sensors with full-scale human motion detection ability
CN107936525A (zh) 层层共价连接的氧化石墨烯材料填充的聚合物材料及其制备方法
CN110255513B (zh) 一种亲水改性白石墨烯及其制备方法
CN106149357B (zh) 一种碳纤维表面负载碳纳米管的方法
Sharma et al. Synthesis and investigation of mechanical behavior of aluminum oxide/silicon carbide filled bi-directional woven E-glass fiber reinforcement epoxy polymer composites
CN113174233B (zh) 一种防静电无醛胶黏剂及其制备方法及应用
CN108625163A (zh) 一种聚酰亚胺纤维表面修饰氧化石墨烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181016