CN108654676A - 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用 - Google Patents

竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用 Download PDF

Info

Publication number
CN108654676A
CN108654676A CN201710211581.7A CN201710211581A CN108654676A CN 108654676 A CN108654676 A CN 108654676A CN 201710211581 A CN201710211581 A CN 201710211581A CN 108654676 A CN108654676 A CN 108654676A
Authority
CN
China
Prior art keywords
catalyst
electrochemical oxidation
base metal
nitrogen
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710211581.7A
Other languages
English (en)
Other versions
CN108654676B (zh
Inventor
侯明
赵卿
蒋尚峰
邵志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201710211581.7A priority Critical patent/CN108654676B/zh
Publication of CN108654676A publication Critical patent/CN108654676A/zh
Application granted granted Critical
Publication of CN108654676B publication Critical patent/CN108654676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种竹节/包覆非贵金属SO2电化学氧化催化剂及其制备方法和应用。通过恒温螯合反应,进行前驱体的结合;并将Fe、N、C前驱体填充在多孔分子筛模板中;经过碳化处理,形成活性位和活性组分;通过模板去除,获得碳基催化剂;经过二次碳化,调变催化剂的导电性和表面官能团等,获得竹状/包覆结构的非贵金属SO2电化学氧化催化剂。该催化剂原料价廉易得,制备装置简单,易于大批量生产。本发明催化剂是一种非贵金属催化剂,具有较高比表面积、大孔容和典型的介孔结构,可以提供更多催化活性位且有利于传质。该催化剂在高电位区具有与Pt/C相当的SO2电化学氧化能力,对SO2电化学氧化及脱硫领域的研究具有重要应用价值和使用前景。

Description

竹节/包覆非贵金属SO2电化学氧化催化剂及其制备和应用
技术领域
本发明涉及一种竹节/包覆非贵金属SO2电化学氧化催化剂及其制备方法和应用。
背景技术
SO2是一种常见的大气污染物,造成酸雨、雾霾等严重的环境问题。化石燃料燃烧是人为排放SO2的主要来源;二氧化硫和氮氧化物污染控制是目前大气污染控制领域最紧迫的任务(徐宝东,烟气脱硫工艺手册,2012)。烟气脱硫是控制SO2最行之有效的途径,具有重要意义。传统烟气脱硫技术规模庞大,设备复杂,处理成本高,易造成二次污染,尾气中含硫浓度仍然较高。电氧化脱硫技术是在外加电源的条件下,将SO2在阳极氧化成硫酸(Tezcan2007)或在辅助氧化性离子的作用下实现SO2的间接氧化(MikihiroNomura,2004);其处理过程外加电位低,能耗小;设备结构简单,不需要持续加入化学试剂;反应较彻底,可以处理宽浓度范围的SO2,且尾排中SO2含量低。SO2电氧化技术在烟气脱硫、SO2电化学传感等领域具有重要意义。
当前,SO2电氧化主要使用贵金属Pt基催化剂(Stephen E.Lyke,1991)(Tezcan2007)(Robert M.Spotnitz,1983)(R.M.SPOTNITZ,1981)(B.E.Conway,1981)(P.W.T.Lu,1980)(Junxiang Zhai,2012);由于Pt成本高,储量有限,电氧化脱硫催化剂是该技术走向应用的巨大障碍。非贵金属催化剂在催化2e-、4e-反应中有重要作用,这方面的研究近年来获得了广泛关注,在燃料电池和ORR催化领域有较大应用(Wenxiu Yang,2014)(Guangyuan Ren,2016)。SO2电氧化是SO2在外加电位作用下,在阳极发生氧化反应,转移2e-生成硫酸的过程。具有催化2e-反应能力的非贵金属催化剂可能用来替代贵金属Pt,用于SO2电化学氧化脱硫。当前非贵金属SO2电氧化催化剂的研究相对较少,本文介绍一种用硬模板法制备的竹节/包覆结构二氧化硫电氧化催化剂。
发明内容
为了克服贵金属SO2电氧化催化剂成本高等问题,本发明的目的在于提供一种具有高效SO2电化学氧化性能的竹节/包覆非贵金属SO2电化学氧化催化剂,同时提供其制备方法和应用。本发明提供的催化剂为气相、液相体系SO2电化学氧化及脱硫技术的应用提供技术支持。该方法具有制备装置简单、原料来源广泛、廉价易得等优点。该催化剂具有优异的SO2电氧化性能,且有利于大规模制备。
本发明所采用的技术方案为:
一种竹节/包覆非贵金属SO2电化学氧化催化剂的制备方法:
1)将三价铁盐水溶液缓慢加入富氮有机物水溶液中,60-110℃恒温搅拌螯合反应,之后加入多孔分子筛作为硬模板,继续充分搅拌,使螯合物填充于硬模板孔内;
2)第一次碳化:60-110℃恒温蒸干,获得催化剂前驱体;前驱体于管式炉内,在惰性气氛下,以1-10℃min-1的升温速度从室温升温至500-850℃,恒温2-4h,进行高温热处理,冷却得到碳化产物;
3)用强碱溶液于20-55℃温度下,静置处理碳化产物10-24h,除去硬模板,去离子水洗涤,然后在酸溶液中静置10-24h,进一步促进在碳材料表面吸附附着物质的洗涤、分离和溶解,之后洗涤干燥;
4)第二次碳化:再于管式炉内,在惰性气氛下,以1-10℃min-1的升温速度从室温升温至650-800℃,恒温2-4h,对步骤3)所得产物进行二次高温碳化,自然冷却,研磨,获得所述竹节/包覆非贵金属SO2电化学氧化催化剂。
步骤1)中所述三价铁盐水溶液的摩尔浓度为0.01-0.3mol L-1,三价铁盐选自柠檬酸铁铵、二茂铁,FeCl3、Fe(NO3)3、Fe2(SO4)3、Fe(CH3COO)3、FeNH4(SO4)2、聚合氯化铝铁等三价铁盐中的一种或二种以上中的一种或二种以上;三价铁盐水溶液优选摩尔浓度为0.01-0.2mol L-1
所述富氮有机物水溶液中富氮有机物的质量百分比为0.8-3.6wt.%,优选质量百分比为2-3wt.%;富氮有机物选自双腈氨、三聚氰胺、尿素、聚苯胺、咪唑、吡啶、甲基咪唑、联吡啶等中的一种或二种以上;
步骤1)中三价铁盐是富氮有机物质量的35-55wt%,螯合反应优选温度为75-95℃;
所述多孔分子筛选自比表面积在300-1200m2g-1,孔径为1-20nm的硅盐类分子筛,该多孔分子筛能够用强碱或氢氟酸除去,例如SBA-15、SBA-16、MCM-41、NKF-11、硅球、沸石分子筛、A型分子筛、X型分子筛、Y型分子筛、丝光沸石分子筛等中的一种或两种以上。
步骤2)中高温热处理温度优选为500-750℃,升温速度优选为1-5℃min-1
步骤3)中所述强碱溶液选自摩尔浓度为0.5-5mol L-1的NaOH(烧碱)、KOH、碱石灰、Ca(OH)2、CsOH、RbOH、FrOH、氢氧化钡中一种或两种以上的水溶液;强碱溶液优选摩尔浓度为0.5-2mol L-1
步骤3)中所述酸溶液为HF酸或NH4F、NaF、KF、Na3AlF6、KHF2、UF6、TBAF、CsF、H2SiF6、Na2SiF6、AlF3、CaF2等氟离子无机盐中的一种或两种以上与CH3COOH、柠檬酸、草酸、HCl、HNO3、HBr、HI等易挥发酸中的一种或两种以上混合成的水溶液,其中氟离子盐与易挥发酸的质量比为0.5:1~1:1,氟离子无机盐与易挥发酸之和占酸溶液的质量百分数为3-6wt.%;
步骤4)中升温速度优选为5-10℃min-1,优选升温至650-750℃。
步骤2)和4)所述的惰性气氛为N2、Ar或He。
富氮有机物提供催化剂的氮源和碳源,为催化剂提供基底碳骨架以及进行基底碳骨架上的N掺杂,为催化剂提供吡啶N、石墨N及吡咯N活性位;三价铁盐为铁源,处理过程中铁元素与N结合,形成Fe-N活性位,以及形成包覆于竹节状碳纳米管内的活性组分Fe3O4和碳化铁颗粒等。
本发明还提供上述制备方法制备得到的竹节/包覆非贵金属SO2电化学氧化催化剂。
所述竹节/包覆非贵金属SO2电化学氧化催化剂主要以竹节状碳纳米管为基底碳骨架,竹节状碳纳米管内包覆有Fe3O4、Fe5C2、Fe3C颗粒作为活性组分,竹节状碳纳米管壁上掺杂有吡啶N、石墨N、吡咯N及Fe-N作为活性位;所述竹节状碳纳米管的壁厚为5-20nm,催化剂的石墨化程度为0.5-0.8;催化剂的比表面积为300-1200m2g-1,催化剂的介孔占全部孔的90%以上,其中至少包括有4.5-5nm的孔径。
所述催化剂中碳元素的原子百分比为92-95%,氮元素的原子百分比为2-3.5%,Fe元素的原子百分比为0.1-1%,其余为氧原子;其中,铁元素的50-75%形成掺杂于碳壁上的Fe-N活性位,其余形成包覆于竹节状碳纳米管内的Fe3O4、Fe5C2、Fe3C颗粒,颗粒粒径在10-50nm;氮元素的93-98%形成掺杂于碳壁上的吡啶N、石墨N、吡咯N及Fe-N活性位,其余为无活性的氧化态N。
本发明提供一种竹节/包覆非贵金属SO2电化学氧化催化剂于SO2电化学氧化领域中作为催化剂应用。
所述SO2电化学氧化领域包括SO2电化学传感器、电氧化烟气脱硫、电解制硫酸、电解制氢、燃料电池电化学净化器、SO2抗中毒催化等领域具有重要应用价值。
SO2电氧化过程电位越低,能耗越小,过程越经济,本发明所述催化剂的氧化电位在0.6-1.5V都有SO2电氧化的效果,在0.9-1.4V效果更好。
本发明的特点及有益效果:
1.本发明通过恒温螯合反应,进行前驱体的结合并将Fe、N、C前驱体填充在多孔分子筛模板中;经过碳化处理,形成活性位和活性组分;通过模板去除,获得碳基催化剂;经过二次碳化,调变催化剂的导电性和表面官能团等,获得竹状/包覆结构的催化剂。
2.该催化剂原料价廉易得,制备装置简单,易于大批量生产。
3.本发明催化剂是一种非贵金属催化剂,具有较高比表面积、大孔容和典型的介孔结构,可以提供更多活性比表面积且有利于传质。催化剂在高电位区具有与Pt/C相当的SO2电化学氧化能力,对SO2电化学氧化及脱硫领域的研究具有重要应用价值和使用前景。
附图说明
图1为实施例1制备的催化剂按照实施例3操作步骤进行的线性电压扫描测试,为制备的催化剂与20%Pt/C的SO2电化学氧化性能对比图。
图2为实施例2制备的催化剂按照实施例3操作步骤的线性电压扫描测试,制备催化剂与20%Pt/C的SO2电化学氧化性能对比图。
图3是实施例4的循环伏安法测试制备催化剂SO2电化学氧化性能图。
图4是实施例5的循环伏安法测试制备催化剂与20%Pt/C的SO2电化学氧化性能对比图。
图5a、图5b、图5c是实施例1制备催化剂的TEM图;由TEM图可以看出为一种竹节状碳纳米管包覆非贵金属颗粒的催化剂。
图6是实施例1制备催化剂的XRD图;制备催化剂中主要组分为铁、N掺杂的碳化物。其中活性组分为包覆结构的Fe3O4,Fe3C,Fe5C2(Fe在酸性体系中不能稳定存在,在电极活化过程中就会被除去,对SO2的催化氧化并无贡献)
图7是实施例1制备催化剂的Raman图,用于表征催化剂的石墨化程度;制备催化剂的ID/IG值为0.613,证明有高石墨化程度碳和石墨烯等结构存在。现有SO2电化学催化剂石墨化程度的ID/IG值通常为1.05-2.92。可见硬模板法制备催化剂具有显著低的ID/IG值,有良好的导电性。
图8是实施例1制备催化剂的BET图;制备催化剂有丰富介孔结构,微孔极少。介孔面积为325.5m2g-1
图9a、图9b是实施例1制备模板催化剂的XPS图;催化剂中实现了有效的Fe、N掺杂;N活性组分吡啶N、石墨N、吡咯N及Fe-N结构明显;Fe谱图有明显的Fe-N结合结构。
图10是实施例6不加模板制备催化剂的TEM形貌图。可见催化剂团聚现象严重,说明模板法是一种有效限制金属粒子团聚的方法可以更好的形成活性组分的分散排布。
图11是实施例7比较的第一次碳化、模板去除和第二次碳化过程对催化剂SO2电氧化性能的影响。可见三个处理步骤对于催化剂的SO2电氧化性能提高都具有重要意义。
图12是实施例8比较第一次碳化温度对于催化剂性能的影响,可见低碳化温度对于催化剂的活性位形成具有重要意义。
图13是实施例9比较第一次碳化的升温速度对催化剂性能的影响,可见低升温速率对于催化剂的活性组分和活性位的形成有积极意义。
具体实施方式
下面结合附图对模板法制备的竹状/包覆结构二氧化硫电氧化催化剂性能和结构性质做进一步说明。
在三电极体系中,用电化学方法测试催化剂的SO2电化学氧化性能。体系电解质溶液为0.5mol L-1的H2SO4,对电极为Pt片电极,参比电极为饱和甘汞电极,电解质溶液被N2饱和,测试***为CHI730D。旋转圆盘电 极膜催化层的制备:5mg催化剂,1mL异丙醇,超声;加5%Nafion溶液50μL,继续超声,取10μL上述分散好的浆料,分四次涂覆在旋转圆盘电极表面,作为工作电极。按照相同制备方法制备Pt/C对照电极,电极担量为0.1mg cm-2(参照电化学体系中常用Pt/C担量值)。
实施例1
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g NKF-11分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,以2℃min-1升至600℃,恒温保持2h;冷却后取出。40℃条件下,将碳化物在1mol L-1的NaOH中静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液(NH4F与CH3COOH的质量比为1:1)中静置24h;洗涤干燥。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得如图5所示的催化剂,SO2电氧化性能如图1所示。
实施例2
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g NKF-11分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,以10℃min-1升至500℃,恒温保持2h;冷却后取出。40℃条件下,将碳化物在1mol L-1的NaOH中静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液中静置24h;洗涤干燥。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得催化剂,其SO2电氧化性能如图2所示。
实施例3
在1g L-1的Na2SO3(H2SO4)中,测试实施例1制备催化剂的SO2氧化性能并与Pt/C催化剂进行比较。线性电压扫描条件:5mV s-1,1600r min-1。催化剂在低氧化区间具有较好的SO2氧化性能,但是与Pt/C有一定的差距;氧化电位高于1.186V后,具有比Pt/C更优异的SO2氧化性能。本发明的催化剂更适用于0.9-1.4V范围的氧化电位,测试结果如图1所示。
实施例4
实施例1制备催化剂活化后,在0.5mol L-1H2SO4中测试其初始电化学性能(循环伏安:50mV s-1);然后在1g L-1的Na2SO3(H2SO4)中测试催化剂的SO2电化学氧化性能(循环伏安:50mV s-1);最后再在1g L-1的Na2SO3中测试催化剂动态扩散条件下的SO2氧化性能(循环伏安:50mV s-1,1600r min-1)。通过比较可知,制备催化剂无论是在动电极体系还是在定电极体系均具有较好的SO2电化学氧化性能。测试结果如图3所示。
实施例5
实施例1催化剂活化后,测试其初始电化学性能(循环伏安:50mV s-1);然后在1gL-1的Na2SO3(H2SO4)中测试催化剂的SO2电化学氧化性能(循环伏安:50mV s-1);Pt/C催化剂也按照上述方法进行测试。比较发现制备催化剂与Pt/C相比氧化峰电位仅差20mV,该制备催化剂具有良好的SO2电化学氧化性能。测试结果如图4所示。
实施例6
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,调节温度到80℃,恒温搅拌蒸干。在管式炉,Ar气氛碳化,温度700℃恒温保持2h,自然冷却,研磨获得如图10所示的催化剂。催化剂金属组分团聚现象严重,不加硬模板支撑,会严重影响催化剂前驱体中金属组分的分散以及碳化形成的活性位的分布,且严重的堆叠结构影响孔的形成(BET比表面积=100.2m2g-1),不利于传质过程的进行。
实施例7
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g MCM-41分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,以2℃min-1升至600℃,恒温保持2h;冷却后取出,此为第一次碳化后样品。将碳化物在1M的NaOH中40℃下,静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液(NH4F与CH3COOH的质量比为1:1)中静置24h;洗涤干燥,此为模板去除后的样品。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得第二次碳化后的模板催化剂。在1g L-1的Na2SO3(H2SO4)中,比较不同阶段样品的SO2氧化性能。线性电压扫描条件:5mV s-1,1600r min-1。去除模板后SO2氧化性能大大提高,进一步碳化后提高了催化性能。测试结果参见图11。
实施例8
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g MCM-41分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,以10℃ min-1升至500℃、600℃、700℃、800℃,恒温保持2h;冷却后取出。将碳化物在1M的NaOH中40℃下,静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液(NH4F与CH3COOH的质量比为1:1)中静置24h;洗涤干燥。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得催化剂。在1g L-1的Na2SO3(H2SO4)中,比较不同碳化温度制备催化剂的SO2氧化性能,如图12所示。
实施例9
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g MCM-41分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,分别以2℃min-1和10℃min-1升至600℃,恒温保持2h;冷却后取出。将碳化物在1M的NaOH中40℃下,静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液(NH4F与CH3COOH的质量比为1:1)中静置24h;洗涤干燥。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得催化剂。在1g L-1的Na2SO3(H2SO4)中,测试制备催化剂的SO2氧化性能,慢速升温更有利,如图13所示。
实施例10
取1g柠檬酸铁铵,加入到20mL去离子水中,摩尔浓度为0.1mol L-1,充分搅拌分散;取2.4g三聚氰胺加入到100mL 100℃的去离子水中,摩尔浓度为0.19mol L-1,充分溶解搅拌;将柠檬酸铁铵溶液加入到三聚氰胺溶液中,充分搅拌结合,加入0.5g MCM-41分子筛,调节温度到80℃,恒温搅拌蒸干。将前驱体混合物放入管式炉,Ar气氛,以10℃min-1升至800℃,恒温保持2h;冷却后取出。将碳化物在1M的NaOH中40℃下,静置24h;去离子水洗涤,然后在5%的NH4F与CH3COOH混合溶液(NH4F与CH3COOH的质量比为1:1)中静置24h;洗涤干燥。再以10℃min-1升至700℃二次碳化,恒温保持2h。自然冷却,研磨获得催化剂,其比表面积为581.9m2g-1

Claims (10)

1.一种竹节/包覆非贵金属SO2电化学氧化催化剂的制备方法,其特征在于:
1)将三价铁盐水溶液缓慢加入富氮有机物水溶液中,60-110℃恒温搅拌螯合反应,之后加入多孔分子筛作为硬模板,继续充分搅拌,使螯合物填充于硬模板孔内;
2)第一次碳化:60-110℃恒温蒸干获得催化剂前驱体,将催化剂前驱体于管式炉内,惰性气氛下,以1-10℃min-1的升温速度从室温升温至500-850℃,恒温2-4h,进行高温热处理,冷却得到碳化产物;
3)用强碱溶液于20-55℃温度下,静置处理碳化产物10-24h,除去硬模板,之后去离子水洗涤,然后在酸溶液中静置10-24h,之后洗涤干燥;
4)第二次碳化:对步骤3)所得产物进行二次高温碳化,惰性气氛下,以1-10℃min-1的升温速度于管式炉内碳化,从室温升温至650-800℃,恒温2-4h,自然冷却,研磨,获得所述竹节/包覆非贵金属SO2电化学氧化催化剂。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中所述三价铁盐水溶液的摩尔浓度为0.01-0.3mol L-1,铁盐选自柠檬酸铁铵、二茂铁,FeCl3、Fe(NO3)3、Fe2(SO4)3、Fe(CH3COO)3、FeNH4(SO4)2或聚合氯化铝铁中的一种或二种以上;三价铁盐水溶液优选摩尔浓度为0.01-0.2mol L-1
所述富氮有机物水溶液的质量百分比为0.8-3.6wt.%,优选质量百分比为2-3wt.%;富氮有机物选自双腈氨、三聚氰胺、尿素、聚苯胺、咪唑、吡啶、甲基咪唑或联吡啶中的一种或二种以上;
步骤1)中三价铁盐是富氮有机物质量的35-55wt%,螯合反应优选温度为75-95℃;
所述多孔分子筛选自比表面积在300-1200m2g-1,孔径为1-20nm的硅盐类分子筛,例如SBA-15、SBA-16、MCM-41、NKF-11、硅球、沸石分子筛、A型分子筛、X型分子筛、Y型分子筛或丝光沸石分子筛中的一种或两种以上。
3.根据权利要求1所述的制备方法,其特征在于:步骤2)中高温热处理温度优选为500-750℃,升温速度优选为1-5℃min-1
步骤3)中所述强碱溶液选自摩尔浓度为0.5-5mol L-1的NaOH、KOH、碱石灰、Ca(OH)2、CsOH、RbOH、FrOH或氢氧化钡中的一种或两种以上的水溶液;强碱溶液优选摩尔浓度为0.5-2mol L-1
步骤3)中所述酸溶液为氟离子无机盐HF、NH4F、NaF、KF、Na3AlF6、KHF2、UF6、TBAF、CsF、H2SiF6、Na2SiF6、AlF3或CaF2中的一种或两种以上与易挥发酸CH3COOH、柠檬酸、草酸、HCl、HNO3、HBr或HI中的一种或两种以上混合成的水溶液,其中氟离子无机盐与易挥发酸的质量比为0.5:1~1:1,氟离子无机盐与易挥发酸之和的质量百分数为3-6wt.%;
步骤4)中升温速度优选为5-10℃min-1,优选升温至650-750℃。
4.根据权利要求1所述的制备方法,其特征在于:步骤2)和4)所述的惰性气氛为N2、Ar或He。
5.根据权利要求1所述的制备方法,其特征在于:富氮有机物提供催化剂的碳源和氮源,为催化剂提供基底碳骨架以及进行基底碳骨架上的N掺杂,为催化剂提供Fe-N、吡啶N、石墨N及吡咯N活性位;三价铁盐为铁源,处理过程中铁元素与N结合,形成Fe-N活性位,以及形成包覆于竹节状碳纳米管内的活性组分Fe3O4、Fe5C2及Fe3C颗粒。
6.一种权利要求1-5任一所述制备方法制备得到的竹节/包覆非贵金属SO2电化学氧化催化剂。
7.根据权利要求6所述的竹节/包覆非贵金属SO2电化学氧化催化剂,其特征在于:所述竹节/包覆非贵金属SO2电化学氧化催化剂主要以竹节状碳纳米管为基底碳骨架,竹节状碳纳米管内包覆有Fe3O4、Fe5C2及Fe3C颗粒作为活性组分,竹节状碳纳米管管壁上掺杂有吡啶N、石墨N、吡咯N及Fe-N作为活性位;所述竹节状碳纳米管的壁厚为5-20nm,催化剂的石墨化程度为0.5-0.8;催化剂的比表面积为300-1200m2g-1,催化剂的介孔占全部孔的90%以上,其中至少包括有4.5-5nm的孔径。
8.根据权利要求7所述的竹节/包覆非贵金属SO2电化学氧化催化剂,其特征在于:所述催化剂中碳元素的原子百分比为92-95%,氮元素的原子百分比为2-3.5%,Fe元素的原子百分比为0.1-1%,其余为氧原子;其中,铁元素的50-75%形成掺杂于碳壁上的Fe-N活性位,其余形成包覆于竹节状碳纳米管内的Fe3O4、Fe5C2、Fe3C颗粒,颗粒尺寸在10-50nm;氮元素的93-98%形成掺杂于碳壁上的吡啶N、石墨N、吡咯N及Fe-N活性位,其余为无活性的氮氧化物。
9.一种权利要求6所述竹节/包覆非贵金属SO2电化学氧化催化剂于SO2电化学氧化领域中作为催化剂应用。
10.根据权利要求9所述的应用,其特征在于:所述SO2电化学氧化领域包括SO2电化学传感器、电氧化烟气脱硫、电解制硫酸、电解制氢、燃料电池电化学净化器、SO2抗中毒催化领域,所述竹节/包覆非贵金属SO2电化学氧化催化剂SO2电氧化的氧化电位为0.6-6V,优选为0.9-1.4V。
CN201710211581.7A 2017-04-01 2017-04-01 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用 Active CN108654676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710211581.7A CN108654676B (zh) 2017-04-01 2017-04-01 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710211581.7A CN108654676B (zh) 2017-04-01 2017-04-01 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN108654676A true CN108654676A (zh) 2018-10-16
CN108654676B CN108654676B (zh) 2020-09-15

Family

ID=63784115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710211581.7A Active CN108654676B (zh) 2017-04-01 2017-04-01 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN108654676B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323442A (zh) * 2019-07-17 2019-10-11 中国科学院福建物质结构研究所 一种碳包覆Fe3O4复合材料及其制备方法和应用
CN113181948A (zh) * 2021-04-28 2021-07-30 华北电力大学 一种铀原子催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020114751A1 (en) * 1992-08-07 2002-08-22 Lothar Puppe Use of a catalyst for reducing the quantity and/or size of particulates in diesel exhaust
CN104302388A (zh) * 2012-04-23 2015-01-21 雷普索尔有限公司 用于选择性氧化硫化合物的催化剂
CN104624154A (zh) * 2015-01-23 2015-05-20 南开大学 一种铁氮共掺杂多孔碳球材料的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020114751A1 (en) * 1992-08-07 2002-08-22 Lothar Puppe Use of a catalyst for reducing the quantity and/or size of particulates in diesel exhaust
CN104302388A (zh) * 2012-04-23 2015-01-21 雷普索尔有限公司 用于选择性氧化硫化合物的催化剂
CN104624154A (zh) * 2015-01-23 2015-05-20 南开大学 一种铁氮共掺杂多孔碳球材料的制备方法及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323442A (zh) * 2019-07-17 2019-10-11 中国科学院福建物质结构研究所 一种碳包覆Fe3O4复合材料及其制备方法和应用
CN113181948A (zh) * 2021-04-28 2021-07-30 华北电力大学 一种铀原子催化剂及其制备方法
CN113181948B (zh) * 2021-04-28 2021-11-05 华北电力大学 一种铀原子催化剂及其制备方法

Also Published As

Publication number Publication date
CN108654676B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
Liu et al. A two-dimensional Ru@ MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction
Wang et al. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction
Chen et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery
Wang et al. Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction
Wang et al. Hybrid implanted hybrid hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity
Chu et al. Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects
Chen et al. MOF derived porous carbon modified rGO for simultaneous determination of hydroquinone and catechol
CN105148991B (zh) 一种氮/硫/氯共掺杂多级孔碳催化剂及其制备方法
Park et al. Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment
CN106564868B (zh) 一种氮掺杂多孔碳材料的制备方法
Kong et al. Metal organic framework derived CoFe@ N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction
Sharma et al. Simple room temperature synthesis of porous nickel phosphate foams for electrocatalytic ethanol oxidation
CN112791739A (zh) 一种二氧化碳电化学还原催化剂的制备及其应用
CN107352527B (zh) 一种磷氮共掺杂的碳纳米管材料制备工艺
CN108808018A (zh) 一种八面体掺氮碳骨架材料的制备和应用
Huang et al. The synergistic effect of proton intercalation and electron transfer via electro-activated molybdenum disulfide/graphite felt toward hydrogen evolution reaction
CN103915633A (zh) 一种复合碳纤维载金属催化剂及其制备方法和应用
Zhang et al. Template-assisted polymerization-pyrolysis derived mesoporous carbon anchored with Fe/Fe3C and Fe− NX species as efficient oxygen reduction catalysts for Zn-air battery
Ma et al. Boron and phosphorus co-doped NiVFe LDHs@ NF as a highly efficient self-supporting electrocatalyst for the hydrogen evolution reaction
Li et al. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries
Li et al. Electrocatalytic oxidation of hydrogen peroxide and cysteine at a glassy carbon electrode modified with platinum nanoparticle-deposited carbon nanotubes
CN105036250A (zh) 一种活性炭纤维负载有序介孔碳-石墨烯复合材料的制备方法和应用
CN110273162A (zh) 一种铁/钴/镍氮耦合的碳基复合材料及其应用
CN108417845A (zh) 一种含钴和镍的多孔碳复合材料及其制备方法
CN108654676A (zh) 竹节/包覆非贵金属so2电化学氧化催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant