CN108614421A - 一种基于中枢模式发生器的四足机器人运动控制方法 - Google Patents

一种基于中枢模式发生器的四足机器人运动控制方法 Download PDF

Info

Publication number
CN108614421A
CN108614421A CN201810474246.0A CN201810474246A CN108614421A CN 108614421 A CN108614421 A CN 108614421A CN 201810474246 A CN201810474246 A CN 201810474246A CN 108614421 A CN108614421 A CN 108614421A
Authority
CN
China
Prior art keywords
robot
gait
sufficient end
formula
cpg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810474246.0A
Other languages
English (en)
Other versions
CN108614421B (zh
Inventor
朱雅光
秦瑞
吴永胜
郭童
刘琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201810474246.0A priority Critical patent/CN108614421B/zh
Publication of CN108614421A publication Critical patent/CN108614421A/zh
Application granted granted Critical
Publication of CN108614421B publication Critical patent/CN108614421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;本发明可以单独控制步行机器人的占空比、运动周期和步态;并且,本发明通过改变机器人的相位对机器人步态进行控制,相位变化间隔可以无限小,这样可使机器人产生任何可能的步态,并且在任何时刻切换步态都能保证切换过程平稳的进行。本发明控制的机器人步态可以使机器人在自然环境下平稳运动。

Description

一种基于中枢模式发生器的四足机器人运动控制方法
技术领域
本发明属于仿生机器人技术领域,具体涉及一种基于中枢模式发生器的四足机器人运动控制方法。
背景技术
随着科学技术的发展,人类正在逐步地扩大对自然界的探索领域,有些人类不能进入或对人身会造成较大伤害的领域,可以依靠机器人对这些领域进行实地探索。足式机器人具有很强的环境适应能力,运动也比较灵活。然而决定多足式机器人对复杂环境适应性的两个关键的因素机器人的位姿和步态,可以通过改变机器人的占地系数和运动频率来调整机器人的位姿,因此机器人的占地系数,频率和步态关系到机器人性能是否能够充分发挥。最初的多足机器人控制方法还不能对机器人的占地系数、运动频率和步态进行单独控制,并且步态仅仅能够使机器人在平坦的硬质地面上行走的具有周期性的步态,后来为使足式机器人具有更广泛的适应性,对步态进一步的研究,步态研究工作逐渐发展到可以使步行机器人能够在非结构地形下行走的非周期步态。经过很多研究者对机器人步态进行了大量的研究工作,机器人的步态也有了很大的发展。
目前机器人运动控制研究工作还没有达到很成熟的地步,还有一些问题需要进一步的解决。现有技术中无法将机器人的占地系数、运动频率和步态进行单独控制,周期步态不适合步行机器人行走于自然环境中,特别是崎岖的地形下,而自由步态可以使机器人在自然环境中运动,但是自由步态计算量比较大、步态生成速度也相对较慢,这样就大大限制了自由步态在机器人上的应用。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种基于中枢模式发生器的四足机器人运动控制方法,解决现有技术中无法将机器人的占地系数、运动频率和步态进行单独控制,以致限制了自由步态在机器人上应用的问题。
为了解决上述技术问题,本发明采用如下技术方案予以实现:
一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
所述摆动状态的足端轨迹如式(1):
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度。
所述支撑状态的足端轨迹如式(2):
所述足端相对于根关节轨迹如式(3):
式(3)中,H为机器人足端相对于根关节的最大高度;为足端相对于根关节的x坐标;为足端相对于根关节的y坐标;为足端相对于根关节的z坐标;
其中,
进一步地,所述四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
式(4)中,x,y为中枢模式发生器的输出信号;分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;α为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
进一步地,所述四足机器人运动控制方法还包括对所述控制信号进行相位变化;
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
本发明与现有技术相比,具有如下技术效果:
本发明可以单独控制步行机器人的占空比、运动周期和步态;并且,本发明通过改变机器人的相位对机器人步态进行控制,相位变化间隔可以无限小,这样可使机器人产生任何可能的步态,并且在任何时刻切换步态都能保证切换过程平稳的进行。本发明控制的机器人步态可以使机器人在自然环境下平稳运动。
附图说明
图1是本发明方法的六足机器人单条腿的控制架构图;
图2是本发明方法的四足机器人的整体运动控制***架构图;
图3是本发明方法的四足机器人四种典型的步态图;
图4是本发明方法的运动参数切换图。
以下结合附图对本发明的具体内容作进一步详细解释说明。
具体实施方式
本发明通过将控制输出信号x和y的升降比κ、振荡周期T、相位延时系数γ的参数输入中枢模式发生器中,使得中枢模式发生器输出可以控制机器人步态的信号x和y,机器人通过信号x和y进行步态的变化。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
如图1所示,本实施例提供了一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
本实施例已知机器人足端相对于根关节的初始位置、初始速度,以及机器人期望目标位置、速度及中间的位置点,采用四次样条曲线对机器人进行轨迹规划,即摆动状态的足端轨迹公式为:
约束条件:
得出摆动状态的足端轨迹如式(1):
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度。
支撑状态的足端轨迹如式(3):
足端相对于根关节轨迹如式(4):
式(3)中,H为机器人足端相对于根关节的最大高度;为足端相对于根关节的x坐标;为足端相对于根关节的y坐标;为足端相对于根关节的z坐标;
其中,
本实施例中的四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
式(4)中,x,y为中枢模式发生器的输出信号;分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;α为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
本实施例可通过改变T改变输出信号的振荡频率,改变κ改变输出信号的升降比。
本实施例中四足机器人运动控制方法还包括对控制信号进行相位变化;
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
通过调节相移参数τL和τ值来控制振荡器的协调关系,并进一步实现对四足步态机器人各种步态的运动控制。因为τ=(1-γ)·nT,τL=k·τ可以通过调节k和γ对机器人步态进行控制。以四种典型步态为例,当k=3,γ=0.75时为步行步态如图3(a)所示,当k=3.5,γ=0.5时为溜步步态如图3(b)所示,当k=4,γ=0.5时为对角步态如图3(c)所示,当γ=1时为跳跃步态如图3(d)所示。
图4所示,为机器人运动状态切换时的步态图。图4(a)为占地系数的切换,以对角步态为例,占地系数有0.75切换的0.5,可以看出占地系数切换过程快速平稳,且机器人的步态和频率没有发生变化。图4(b)为频率的切换,以步行步态为例,频率由2s切换到1s,可以看出频率切换过程快速平稳,且机器人的步态和占地系数没有发生变化。图4(c)和图4(d)为步态切换图,图4(c)为由步行步态向奔跑步态切换,图4(d)为对角步态向步行步态,切换过程一个周期,并且切换完成后机器人步态很快又恢复到稳定状态。可以看出该控制方法能够使机器人的占空比、运动周期和步态单独控制,且运动状态切换过程快速平稳。

Claims (3)

1.一种基于中枢模式发生器的四足机器人运动控制方法,其特征在于,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
所述摆动状态的足端轨迹如式(1):
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度。
所述支撑状态的足端轨迹如式(2):
所述足端相对于根关节轨迹如式(3):
式(3)中,H为机器人足端相对于根关节的最大高度;为足端相对于根关节的x坐标;为足端相对于根关节的y坐标;为足端相对于根关节的z坐标;
其中,
2.根据权利要求1所述的基于中枢模式发生器的四足机器人运动控制方法,其特征在于,所述四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
式(4)中,x,y为中枢模式发生器的输出信号;分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;α为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
3.根据权利要求2所述的基于中枢模式发生器的四足机器人运动控制方法,其特征在于,所述四足机器人运动控制方法还包括对所述控制信号进行相位变化;
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
CN201810474246.0A 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法 Active CN108614421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810474246.0A CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810474246.0A CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Publications (2)

Publication Number Publication Date
CN108614421A true CN108614421A (zh) 2018-10-02
CN108614421B CN108614421B (zh) 2020-06-30

Family

ID=63663308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810474246.0A Active CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Country Status (1)

Country Link
CN (1) CN108614421B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108724184A (zh) * 2018-06-01 2018-11-02 长安大学 一种关键参数解耦振荡器的中枢模式发生器
CN110597267A (zh) * 2019-09-27 2019-12-20 长安大学 一种足式机器人的局部最优落足点选取方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156912A1 (en) * 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Motion synthesis method
CN102156484A (zh) * 2011-03-24 2011-08-17 西北工业大学 四足机器人对角步态的自适应控制方法
CN103092197A (zh) * 2011-10-28 2013-05-08 同济大学 基于cpg机理的四足机器人工作空间轨迹生成方法
CN104192221A (zh) * 2014-09-26 2014-12-10 哈尔滨工业大学 一种电驱动六足机器人运动控制***及方法
US20160089785A1 (en) * 2014-09-29 2016-03-31 Honda Motor Co., Ltd. Control device for mobile body
CN107065867A (zh) * 2017-03-28 2017-08-18 浙江大学 一种面向未知崎岖地形的四足机器人运动规划方法
CN107065908A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人静步态机身运动轨迹的方法
CN107065907A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人足端摆动轨迹的方法
US9821458B1 (en) * 2016-05-10 2017-11-21 X Development Llc Trajectory planning with droppable objects
CN107562055A (zh) * 2017-09-01 2018-01-09 北京理工大学 一种仿生四足机器人的转向策略
CN107807655A (zh) * 2017-10-27 2018-03-16 山东大学 基于三维空间中步态调整的四足机器人平衡稳定控制方法
US20180107175A1 (en) * 2016-10-13 2018-04-19 Disney Enterprises, Inc. Computational design of robots from high-level task specifications

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156912A1 (en) * 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Motion synthesis method
CN102156484A (zh) * 2011-03-24 2011-08-17 西北工业大学 四足机器人对角步态的自适应控制方法
CN103092197A (zh) * 2011-10-28 2013-05-08 同济大学 基于cpg机理的四足机器人工作空间轨迹生成方法
CN104192221A (zh) * 2014-09-26 2014-12-10 哈尔滨工业大学 一种电驱动六足机器人运动控制***及方法
US20160089785A1 (en) * 2014-09-29 2016-03-31 Honda Motor Co., Ltd. Control device for mobile body
US9821458B1 (en) * 2016-05-10 2017-11-21 X Development Llc Trajectory planning with droppable objects
US20180107175A1 (en) * 2016-10-13 2018-04-19 Disney Enterprises, Inc. Computational design of robots from high-level task specifications
CN107065867A (zh) * 2017-03-28 2017-08-18 浙江大学 一种面向未知崎岖地形的四足机器人运动规划方法
CN107065908A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人静步态机身运动轨迹的方法
CN107065907A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人足端摆动轨迹的方法
CN107562055A (zh) * 2017-09-01 2018-01-09 北京理工大学 一种仿生四足机器人的转向策略
CN107807655A (zh) * 2017-10-27 2018-03-16 山东大学 基于三维空间中步态调整的四足机器人平衡稳定控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YAGUANG ZHU等: "A backward control based on σ-hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot", 《ROBOTICS AND AUTONOMOUS SYSTEMS》 *
ZHU YA-GUANG等: "Leg compliance control of a hexapod robot based on improved adaptive control in different environments", 《J. CENT. SOUTH UNIV.》 *
朱雅光等: "基于自适应-模糊控制的六足机器人单腿柔顺控制", 《浙江大学学报(工学版)》 *
陈启军等: "基于中枢模式发生器的机器人行走控制", 《同济大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108724184A (zh) * 2018-06-01 2018-11-02 长安大学 一种关键参数解耦振荡器的中枢模式发生器
CN110597267A (zh) * 2019-09-27 2019-12-20 长安大学 一种足式机器人的局部最优落足点选取方法
CN110597267B (zh) * 2019-09-27 2023-01-10 长安大学 一种足式机器人的局部最优落足点选取方法

Also Published As

Publication number Publication date
CN108614421B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
Park et al. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of mit cheetah 2
US7366587B2 (en) Legged mobile robot
Endo et al. Experimental studies of a neural oscillator for biped locomotion with QRIO
JP2007210071A (ja) ロボット装置及びその制御方法
CN108931988B (zh) 一种基于中枢模式发生器的四足机器人的步态规划方法、中枢模式发生器及机器人
Grzelczyk et al. Prototype, control system architecture and controlling of the hexapod legs with nonlinear stick-slip vibrations
CN108594661B (zh) 一种基于cpg的轮腿复合式机器人的仿生运动控制方法
Ozkan-Aydin et al. A systematic approach to creating terrain-capable hybrid soft/hard myriapod robots
CN108614421A (zh) 一种基于中枢模式发生器的四足机器人运动控制方法
Gan et al. A passive dynamic quadruped that moves in a large variety of gaits
CN112147889B (zh) 一种四足机器人复合式越障轨迹规划方法
Zhu et al. A backward control based on σ-Hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot
Norby et al. Fast global motion planning for dynamic legged robots
CN106354137A (zh) 应用于四足仿生机器人的静步态和对角小跑步态切换算法
Xie et al. Compliant bipedal walking based on variable spring-loaded inverted pendulum model with finite-sized foot
Liu et al. Gait planning and control for a hexapod robot on uneven terrain based on markov decision process
JP2004181600A (ja) 脚式移動ロボット
Deng et al. Cpg-inspired gait generation and transition control for six wheel-legged robot
Wyffels et al. Realization of a passive compliant robot dog
Palmer et al. Blind hexapod walking over uneven terrain using only local feedback
CN108717267B (zh) 一种六足机器人中枢模式逆向控制方法
Palankar et al. Toward innate leg stability on unmodeled and natural terrain: Hexapod walking
Li et al. Trotting gait planning and implementation for a little quadruped robot
Son et al. Generation of adaptive gait patterns for quadruped robot with CPG network including motor dynamic model
Lu et al. A novel multi-configuration quadruped robot with redundant DOFs and its application scenario analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant