CN108559760A - 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法 - Google Patents

基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法 Download PDF

Info

Publication number
CN108559760A
CN108559760A CN201810020095.1A CN201810020095A CN108559760A CN 108559760 A CN108559760 A CN 108559760A CN 201810020095 A CN201810020095 A CN 201810020095A CN 108559760 A CN108559760 A CN 108559760A
Authority
CN
China
Prior art keywords
srebp1
luciferase
cell lines
hek293
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810020095.1A
Other languages
English (en)
Inventor
夏海滨
李子航
赵俊丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810020095.1A priority Critical patent/CN108559760A/zh
Publication of CN108559760A publication Critical patent/CN108559760A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种基于CRISPR靶向基因组修饰技术建立荧光素酶knock‑in细胞系的方法,采用CRISPR/Cas9技术在基因组上SREBP1基因的3’端原位整合入T2A‑Luciferase报告基因,建立了SREBP1‑T2A‑Luciferase的knock‑in细胞系,并验证了此细胞系中外源基因在基因组上的定点整合。同时利用已报道的对SREBP1有激活作用的转录因子LXRα对SREBP1‑T2A‑Luciferase细胞系进行转录激活,结果表明SREBP1‑T2A‑Luciferase细胞系内的Luciferase表达水平可以准确灵敏地反映细胞系内SREBP1分子表达水平。该细胞系的建立将有助于SREBP1基因功能研究及筛选影响SREBP1表达的小分子化学药物,为脂代谢及其相关研究提供一种新的实验思路及解决方案。

Description

基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞 系的方法
技术领域
本发明属于分子生物学领域,涉及利用CRISPR/Cas9介导的靶向基因组***技术建立细胞系,具体涉及一种基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的新方法。
背景技术
CRISPR/Cas9是细菌和古细菌长期演化形成的免疫防御***,该***是利用CRISPR-derivedRNA(crRNA)通过碱基配对与trans-activating RNA结合形成复合物,Cas9内切酶在此复合物引导下对与crRNA配对的序列进行定点切割。所以,通过人工设计具有引导作用的sgRNA(short guide RNA),可以引导Cas9对宿主细胞DNA进行定点切割,然后通过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homologousrecombination,HR)两种修复途径的机制进行修复,实现基因编辑。
目前检测基因的表达调控主要是通过RT-PCR、Western Blot和将目标基因启动子克隆到携带报告基因的表达检测载体中等手段来实现。RT-PCR过程繁琐且不稳定,WesternBlot抗体标记费时昂贵,这些都不利于高通量筛选;由于基因组本身存在表观遗传学修饰,将启动子克隆到携带报告基因的表达检测载体中的方法无法模拟基因组的真实状态,因此难以准确反映基因组上基因表达情况。
随着今年来报告基因技术的不断发展,荧光蛋白报告基因、荧光素酶报告基因等已成为基础研究中常用的细胞标记与示踪的方法,由于其具有方便快捷、安全直观的优点,不仅普遍应用于探索构建分子通路的分子生物学实验,而且越来越广泛用于筛选药物所构建的细胞系。
发明内容
本发明的目的在于,利用CRISPR/Cas9技术,提供一种基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的新方法。
为了实现上述任务,本发明采取如下的技术解决方案:
一种基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的方法,其特征在于,按下列步骤实施:
1)在目的基因SREBP1的终止密码子下游设计并合成相应的sgRNA,室温退火后连入pU6-sgRNA1.0,筛选后获得sgRNA表达组件,并检测其打靶效率;
2)将检测过的打靶效率高的sgRNA表达组件与Cas9基因克隆至一个表达载体,获得pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA;
3)构建靶向SREBP1基因的打靶载体pUC19/SREBP1-donor,该打靶载体pUC19/SREBP1-donor的结构为两部分,第一部分是与断裂位点上下游分别具有相同序列的上下游同源臂;第二部分是位于上下游同源臂之间的待重组入基因组靶位点的T2A-Luciferase-CMV-eGFP-T2A-Neomycin-SV40pA DNA片段;
4)将pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA与pUC19/SREBP1-donor共转HEK293细胞系,待细胞系稳定后,加1.0mg/mL的G418筛选10天,待细胞系稳定后,再加10μg/mL的GCV筛选3周,待细胞系稳定过后,对细胞经有限稀释法进行克隆化,再对克隆化后的细胞进行PCR鉴定并测序,证实携带荧光素酶报告基因的打靶载体在目标位点处的正确重组,最终获得单一稳定的HEK293-SREBP1-T2A-luciferase-KI细胞系;
5)克隆并构建SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα,该表达载体pUC19/CMV-LXRα被用于SREBP1基因的转录激活实验研究;
6)验证HEK293-SREBP1-T2A-luciferase-KI细胞系中Luciferase表达变化是否可以真实反映内源性SREBP1基因的相对表达量及表达变化;使用所构建的SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα分别转染HEK293-SREBP1-T2A-luciferase-KI细胞系和野生型HEK293细胞系,并对HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性及HEK293细胞系中SREBP1分子的mRNA表达水平分别进行检测;通过对knock-in细胞系中Luciferase表达活性与HEK293细胞中的SREBP1mRNA表达水平及变化的比较,进一步验证HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性是否可以准确反映SREBP1分子的相对表达变化。
根据本发明,步骤1)中所述的合成相应的sgRNA为针对SREBP1的终止密码子下游设计的sgRNA,其中:
sgRNA1序列为:GTCGAAGCTTTGAAGGCCGA;
sgRNA2序列为:GATCTTGACCCTAAGACCGG;
sgRNA3序列为:G TGGCCGATCGGGGCACTGC;
sgRNA4序列为:GCTTTCCCGGACTGCAAGCA。
进一步地,步骤4)中所述的HEK293细胞系为人胚肾细胞系HEK293。
本发明的基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的新方法,具有如下优点:
采用CRISPR/Cas9技术在基因组上SREBP1基因的3’端原位整合入T2A-Luciferase报告基因,建立了SREBP1-T2A-Luciferase的knock-in细胞系,并验证了此细胞系中外源基因在基因组上的定点整合。同时利用已报道的对SREBP1有激活作用的转录因子LXRα对SREBP1-T2A-Luciferase细胞系进行转录激活,结果表明SREBP1-T2A-Luciferase细胞系内的Luciferase表达水平可以准确灵敏地反映细胞系内SREBP1分子表达水平。该细胞系的建立将有助于SREBP1基因功能研究及筛选影响SREBP1表达的小分子化学药物,为脂代谢及其相关研究提供一种新的实验思路及解决方案。同时,通过在靶基因下游整合入报告基因来检测靶基因表达的方法也可广泛应用于其它各种基因的相关研究。
附图说明
图1是携带sgRNA及Cas9的表达载体结构示意图。
图2是打靶Donor载体结构示意图。
图3是所建立的KI-T2A-Luciferase细胞系的结构示意图。
图4是细胞正负筛选稳定后倒置荧光显微镜下观察结果图,其中左图为白光图,右图为荧光图。
图5是对细胞经有限稀释法进行克隆化后每个克隆的Luciferase活性检测图。
图6是对有Luciferase活性的单克隆细胞PCR检测电泳图。
图7是对SREBP1-T2A-Luciferase细胞克隆化后所得27号克隆的PCR产物中野生型大小条带和整合型大小条带分别进行胶回收测序结果。
图8是转录激活因子LXRα表达载体pUC19/CMV-LXRα转染HEK293-SREBP1-T2A-luciferase-KI细胞系后Luciferase的检测结果。
图9是转录激活因子LXRα表达载体pUC19/CMV-LXRα转染野生型HEK293细胞系后,SREBP1分子的mRNA表达水平的检测结果。
下面结合附图和实施例对本发明作进一步的详细说明。
具体实施方式
本实施例给出一种基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的方法,利用CRISPR/Cas9***在特定位置产生双链切口(DSBs),在Cas9-sgRNA组分中加入一个供体载体(Donor DNA),Donor DNA上带有靶向位点侧翼的同源序列,DSBs的修复会以供体DNA为模板进行,进而将特定片段***到目的基因的基因组特定位置上。
具体按以下步骤实施:
1)在目的基因SREBP1的终止密码子下游设计并合成相应的sgRNA,室温退火后连入pU6-sgRNA1.0,筛选后获得sgRNA表达组件,并检测其打靶效率;
2)将检测过的打靶效率高的sgRNA表达组件与Cas9基因克隆至一个表达载体,获得pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA;
3)构建靶向SREBP1基因的打靶载体pUC19/SREBP1-donor,该打靶载体pUC19/SREBP1-donor结构为两部分,第一部分是与断裂位点上下游分别具有相同序列的上下游同源臂;第二部分是位于上下游同源臂之间的待重组入基因组靶位点的T2A-Luciferase-CMV-eGFP-T2A-Neomycin-SV40pADNA片段;
4)将pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA与pUC19/SREBP1-donor共转HEK293细胞系,待细胞系稳定后,加1.0mg/mL的G418筛选10天,待细胞系稳定后,再加10μg/mL的GCV筛选3周左右,待细胞系稳定过后,对细胞经有限稀释法进行克隆化,再对克隆化后的细胞进行PCR鉴定并测序,证实携带荧光素酶报告基因的打靶载体在目标位点处的正确重组,最终获得单一稳定的HEK293-SREBP1-T2A-luciferase-KI细胞系;
5)克隆并构建SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα,该表达载体pUC19/CMV-LXRα将被用于SREBP1基因的转录激活实验研究;
6)验证HEK293-SREBP1-T2A-luciferase-KI细胞系中Luciferase表达变化是否可以真实反映内源性SREBP1基因的相对表达量及表达变化;使用所构建的SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα分别转染HEK293-SREBP1-T2A-luciferase-KI细胞系和野生型HEK293细胞系,并对HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性及HEK293细胞系中SREBP1分子的mRNA表达水平分别进行检测;通过对knock-in细胞系中Luciferase表达活性与HEK293细胞中的SREBP1mRNA表达水平及变化的比较,进一步验证HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性是否可以准确反映SREBP1分子的相对表达变化。
本实施例中,步骤1)中所述的合成相应的sgRNA为针对SREBP1的终止密码子下游设计的sgRNA,其中:
sgRNA1序列为:GTCGAAGCTTTGAAGGCCGA;
sgRNA2序列为:GATCTTGACCCTAAGACCGG;
sgRNA3序列为:GTGGCCGATCGGGGCACTGC;
sgRNA4序列为:GCTTTCCCGGACTGCAAGCA。
所述的打靶Donor和Cas9-sgRNA表达载体共转染的细胞系为人胚肾细胞系HEK293。
本实施例给出的基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-Luciferase细胞系的方法,涉及两个关键载体构建,一个是表达sgRNA及Cas9的表达载体,另一种是包含上下游同源臂的打靶Donor载体。
其中:
所提供的表达sgRNA及Cas9的表达载体是将sgRNA表达组件和Cas9基因克隆至同一个表达载体所构建。
所提供的打靶Donor载体,是将打靶断裂位点上游909bp和其下游887bp的两段序列分别作为打靶载体的上下游同源臂,再将其与申请人实验室保存的T2A-Luciferase报告基因、正筛元件CMV-eGFP-T2A-Neomycin-SV40pA及负筛元件PGK-TK-T2A-mCherry-SV40pA分别连接到pU19表达载体中所构建。
以下是发明人给出的具体实施例。
实施例1:靶向目的基因SREBP1的终止密码子下游sgRNA的设计、合成及载体构建
(1)选取SREBP1基因的终止密码子下游作为打靶区(TSF),长度大约为1000bp;
(2)在TSF区找出所有NGG及其前12位碱基在NCBI进行Blast,筛选出与目标序列完全匹配并且唯一匹配的序列(若无符合要求的NGG,反向查找CCN),减少潜在脱靶位点;
本实施例设计了4个sgRNA,其中:
sgRNA1序列为:GTCGAAGCTTTGAAGGCCGA;
sgRNA2序列为:GATCTTGACCCTAAGACCGG;
sgRNA3序列为:GTGGCCGATCGGGGCACTGC;
sgRNA4序列为:GCTTTCCCGGACTGCAAGCA。
分别在其5’加上ACCG得到正向寡核苷酸,获得其互补链,并且在其5’加上AAAC得到反向寡核苷酸。将合成的正向和反向寡核苷酸室温退火后连入pU6-sgRNA1.0,获得sgRNA表达组件。
实施例2:表达sgRNA组件与Cas9基因的载体构建
(1)通过T7E1检测后,筛选出打靶效率高的sgRNA表达载体;
(2)将打靶效率高的sgRNA表达载体和Cas9的表达载体分别用KpnⅠ和SpeⅠ酶切后,经质量浓度为1%的琼脂糖凝胶电泳回收后,将得到的片段与载体连接,经过酶切及测序鉴定获得阳性克隆。将获得的克隆命名为pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA(如图1所示)。
实施例3:构建靶向SREBP1基因的打靶载体pUC19/SREBP1-donor的构建
所构建的打靶载体包含打靶断裂位点上游909bp和其下游887bp的两段序列作为打靶载体的上下游同源臂,其中:
上游同源臂使用引物SREBP1up arm ClaⅠfor序列TATCGATGTCAGGCAGTGGTGGAGATG、SREBP1up arm SpeⅠreverse序列GACTAGTGCTGGAAGTGACAGTGGTCC得到。
下游同源臂使用引物SREBP1down arm SalⅠfor序列CGTCGACGGCCACAAGGTACACAACTTT、SREBP1down arm BglⅡreverse reverse序列AAGATCTCTGTCCGTCCGTGTCCTCA得到。
再将其与本实验室保存的T2A-Luciferase报告基因、正筛元件CMV-eGFP-T2A-Neomycin-SV40pA及负筛元件PGK-TK-T2A-mCherry-SV40pA分别连接到pU19表达载体,将获得的载体命名为pUC19/SREBP1-donor(如图2所示)。
实施例4:对克隆化后的细胞系进行PCR测序
将实施例2和实例3得到的载体以质量比4μg:8μg配置,使用磷酸钙法共同转染HEK293细胞,待细胞系稳定后,加1.0mg/mL的G418筛选10天,待细胞系稳定后,再加10μg/mL的GCV筛选3周,待细胞系稳定过后,用倒置荧光显微镜观察细胞eGFP的表达情况(图4),之后对细胞经有限稀释法进行克隆化后每个克隆的Luciferase活性检测(图5),再对克隆化后的细胞进行PCR鉴定。PCR引物SREBP1integration detection for序列TGTGACCTGCTTCTTGTGGT、SREBP1integration detection reverse序列GGAGCGCAAAACCCAAGAAG(引物在基因组上位置如图3箭头所示)。PCR结果显示克隆化后所得高Luciferase活性的阳性克隆分别有野生型大小条带和整合型大小条带两条带(如图6所示)。
实施例5:TA克隆对克隆化后的细胞系进行测序
(1)分别将实例4获得的克隆27号的野生型大小条带和整合型大小条带两条带的纯化产物3μL与0.5μLpGEM-T连接并转化大肠杆菌DH 5α感受态细胞;
(2)挑取单克隆用引物T7序列TAATACGACTCACTATAGGG、引物SP6序列ATTTAGGTGACACTATAG测序,测序结果表明携带荧光素酶报告基因的打靶载体在目标位点处的正确重组,最终获得单一稳定的HEK293-SREBP1-T2A-luciferase-KI细胞系(如图7所示)。
实施例5:克隆并构建SREBP1基因的转录激活因子LXRα表达载体
使用引物LXRαCDS XhoⅠfor序列CCTCGAGATGTCCTTGTGGCTGGGG、引物LXRαCDS XbaⅠreverse序列CTCTAGATTCGTGCACATCCCAGAT得到SREBP1基因的转录激活因子LXRα,并构建转录激活因子LXRα的表达载体,经过酶切及测序鉴定获得阳性克隆。将获得的克隆命名为pUC19/CMV-LXRα。
实施例6:验证所构建的细胞系中Luciferase表达变化是否可以真实反映内源性SREBP1基因的相对表达量及表达变化
使用所构建的SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα分别转染所构建的knock-in细胞系和野生型HEK293细胞系,所构建的knock-in细胞系中的Luciferase活性检测(如图8所示)和HEK293细胞系中SREBP1分子的mRNA表达水平检测(如图9所示)显示,与对照组相比,实验组均有显著性增强,证实了所构建的knock-in细胞系中的Luciferase活性可以准确反映SREBP1分子的相对表达变化,所建立的细胞系命名为HEK293-SREBP1-T2A-luciferase-KI细胞系。

Claims (4)

1.一种基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法,其特征在于,按下列步骤实施:
1)在目的基因SREBP1的终止密码子下游设计并合成相应的sgRNA,室温退火后连入pU6-sgRNA1.0,筛选后获得sgRNA表达组件,并检测其打靶效率;
2)将检测过的打靶效率高的sgRNA表达组件与Cas9基因克隆至一个表达载体,获得pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA;
3)构建靶向SREBP1基因的打靶载体pUC19/SREBP1-donor,该打靶载体pUC19/SREBP1-donor的结构为两部分,第一部分是与断裂位点上下游分别具有相同序列的上下游同源臂;第二部分是位于上下游同源臂之间的待重组入基因组靶位点的T2A-Luciferase-CMV-eGFP-T2A-Neomycin-SV40pA DNA片段;
4)将pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA与pUC19/SREBP1-donor共转HEK293细胞系,待细胞系稳定后,加1.0mg/mL的G418筛选10天,待细胞系稳定后,再加10μg/mL的GCV筛选3周,待细胞系稳定过后,对细胞经有限稀释法进行克隆化,再对克隆化后的细胞进行PCR鉴定并测序,证实携带荧光素酶报告基因的打靶载体在目标位点处的正确重组,最终获得单一稳定的HEK293-SREBP1-T2A-luciferase-KI细胞系;
5)克隆并构建SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα,该表达载体pUC19/CMV-LXRα被用于SREBP1基因的转录激活实验研究;
6)验证HEK293-SREBP1-T2A-luciferase-KI细胞系中Luciferase表达变化是否可以真实反映内源性SREBP1基因的相对表达量及表达变化;使用所构建的SREBP1基因的转录激活因子LXRα表达载体pUC19/CMV-LXRα分别转染HEK293-SREBP1-T2A-luciferase-KI细胞系和野生型HEK293细胞系,并对HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性及HEK293细胞系中SREBP1分子的mRNA表达水平分别进行检测;通过对knock-in细胞系中Luciferase表达活性与HEK293细胞中的SREBP1 mRNA表达水平及变化的比较,进一步验证HEK293-SREBP1-T2A-luciferase-KI细胞系中的Luciferase活性是否可以准确反映SREBP1分子的相对表达变化。
2.如权利要求1所述的方法,其特征在于,步骤1)中所述的合成相应的sgRNA为针对SREBP1的终止密码子下游设计的sgRNA,其中:
sgRNA1序列为:GTCGAAGCTTTGAAGGCCGA;
sgRNA2序列为:GATCTTGACCCTAAGACCGG;
sgRNA3序列为:GTGGCCGATCGGGGCACTGC;
sgRNA4序列为:GCTTTCCCGGACTGCAAGCA。
3.如权利要求1所述的方法,其特征在于,步骤4)中所述的HEK293细胞系为人胚肾细胞系HEK293。
4.如权利要求1所述的方法,其特征在于,所述的pCMV-Cas9-SV40pA-U6-sgRNAs-SV40pA与pUC19/SREBP1-donor以质量比4μg:8μg配置。
CN201810020095.1A 2018-01-09 2018-01-09 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法 Pending CN108559760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810020095.1A CN108559760A (zh) 2018-01-09 2018-01-09 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810020095.1A CN108559760A (zh) 2018-01-09 2018-01-09 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法

Publications (1)

Publication Number Publication Date
CN108559760A true CN108559760A (zh) 2018-09-21

Family

ID=63530773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810020095.1A Pending CN108559760A (zh) 2018-01-09 2018-01-09 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法

Country Status (1)

Country Link
CN (1) CN108559760A (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797166A (zh) * 2018-11-20 2019-05-24 陕西师范大学 基于CRISPR-Cas9靶向基因组修饰技术构建Egr2-Luciferase-KI-HEK293细胞系方法
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN112746074A (zh) * 2020-12-16 2021-05-04 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) Keratin 5-IRES-eGFP敲入的hESCs细胞系的构建及诱导分化方法
CN112921002A (zh) * 2021-01-15 2021-06-08 中山大学 一种以人内源性tert蛋白为靶点筛选端粒酶调控剂的细胞模型及其制备方法和应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN114075549A (zh) * 2020-08-19 2022-02-22 中国科学院分子细胞科学卓越创新中心 一种检测干扰素IFNβ诱导表达的荧光报告细胞及其构建方法
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146752A (zh) * 2013-02-01 2013-06-12 西北农林科技大学 应用腺病毒载体介导rna干扰技术沉默固醇调控元件结合蛋白基因1的方法
CN104293833A (zh) * 2014-10-09 2015-01-21 西北农林科技大学 一种基于TALEN 介导的Sp110 巨噬细胞特异打靶载体及重组细胞
CA2964953A1 (en) * 2014-10-31 2016-05-06 The Trustees Of The University Of Pennsylvania Altering gene expression in cart cells and uses thereof
CN105907758A (zh) * 2016-05-18 2016-08-31 世翱(上海)生物医药科技有限公司 CRISPR-Cas9引导序列及其引物、转基因表达载体及其构建方法
CN106191116A (zh) * 2016-08-22 2016-12-07 西北农林科技大学 基于CRISPR/Cas9的外源基因敲入整合***及其建立方法和应用
CA3005968A1 (en) * 2015-11-23 2017-06-01 The Regents Of The University Of California Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9
CN107151677A (zh) * 2017-03-15 2017-09-12 陕西师范大学 基于CRISPR/Cas9多基因敲除低转染效率细胞系的新方法
WO2017184334A1 (en) * 2016-04-18 2017-10-26 The Board Of Regents Of The University Of Texas System Generation of genetically engineered animals by crispr/cas9 genome editing in spermatogonial stem cells
CN107541525A (zh) * 2017-08-26 2018-01-05 内蒙古大学 一种基于CRISPR/Cas9技术介导山羊Tβ4基因定点敲入的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146752A (zh) * 2013-02-01 2013-06-12 西北农林科技大学 应用腺病毒载体介导rna干扰技术沉默固醇调控元件结合蛋白基因1的方法
CN104293833A (zh) * 2014-10-09 2015-01-21 西北农林科技大学 一种基于TALEN 介导的Sp110 巨噬细胞特异打靶载体及重组细胞
CA2964953A1 (en) * 2014-10-31 2016-05-06 The Trustees Of The University Of Pennsylvania Altering gene expression in cart cells and uses thereof
CA3005968A1 (en) * 2015-11-23 2017-06-01 The Regents Of The University Of California Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9
WO2017184334A1 (en) * 2016-04-18 2017-10-26 The Board Of Regents Of The University Of Texas System Generation of genetically engineered animals by crispr/cas9 genome editing in spermatogonial stem cells
CN105907758A (zh) * 2016-05-18 2016-08-31 世翱(上海)生物医药科技有限公司 CRISPR-Cas9引导序列及其引物、转基因表达载体及其构建方法
CN106191116A (zh) * 2016-08-22 2016-12-07 西北农林科技大学 基于CRISPR/Cas9的外源基因敲入整合***及其建立方法和应用
CN107151677A (zh) * 2017-03-15 2017-09-12 陕西师范大学 基于CRISPR/Cas9多基因敲除低转染效率细胞系的新方法
CN107541525A (zh) * 2017-08-26 2018-01-05 内蒙古大学 一种基于CRISPR/Cas9技术介导山羊Tβ4基因定点敲入的方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHEN F等: "Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system", 《XI BAO YU FEN ZI MIAN YI XUE ZA ZHI》 *
JINGJING ZHANG等: "Establishment of a novel hepatic steatosis cell model by Cas9/sgRNA mediated DGKθ gene knockout", 《MOLECULAR MEDICINE REPORTS》 *
LI Z等: "Establishment of a HEK293 cell line by CRISPR/Cas9-mediated luciferase knock-in to study transcriptional regulation of the human SREBP1 gene", 《BIOTECHNOL LETT》 *
REPA JJ等: "Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta", 《GENES DEV》 *
SAMBUDDHA BASU等: "A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3"end using CRISPR-Cas9 genome editing technique", 《SCIENTIFIC REPORTS》 *
XIAO D等: "A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene", 《J BIOTECHNOL》 *
代鑫等: "利用CRISPR/Cas9技术构建GLRX3基因敲除的HEK293细胞系", 《陕西师范大学学报(自然科学版)》 *
李子航: "基于CRISPR/Cas9靶向基因组修饰技术的SREBPs-T2A-luciferase Knock-in细胞系建立及实验研究", 《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》 *
王维鹏编著: "《医学分子生物学技术与检验》", 31 July 2007, 武汉出版社 *
肖丹: "基于TALEN靶向基因组修饰技术的SOX2-Luciferase细胞系的建立及其体外转录激活实验研究", 《中国优秀硕博士学位论文全文数据库(硕士)基础科学辑》 *
陈芳等: "应用CRISPR/Cas9***构建Rev-erbβ基因敲除的HEK293细胞系", 《细胞与分子免疫学杂志》 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN109797166A (zh) * 2018-11-20 2019-05-24 陕西师范大学 基于CRISPR-Cas9靶向基因组修饰技术构建Egr2-Luciferase-KI-HEK293细胞系方法
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN114075549A (zh) * 2020-08-19 2022-02-22 中国科学院分子细胞科学卓越创新中心 一种检测干扰素IFNβ诱导表达的荧光报告细胞及其构建方法
CN112746074B (zh) * 2020-12-16 2022-12-02 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) Keratin 5-IRES-eGFP敲入的hESCs细胞系的构建及诱导分化方法
CN112746074A (zh) * 2020-12-16 2021-05-04 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) Keratin 5-IRES-eGFP敲入的hESCs细胞系的构建及诱导分化方法
CN112921002A (zh) * 2021-01-15 2021-06-08 中山大学 一种以人内源性tert蛋白为靶点筛选端粒酶调控剂的细胞模型及其制备方法和应用
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN108559760A (zh) 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法
CN108559732A (zh) 基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-luciferase细胞系的方法
Burger et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes
WO2022253185A1 (zh) Cas12蛋白、含有Cas12蛋白的基因编辑***及应用
Sarov et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans
CA2971248C (en) Fungal genome modification systems and methods of use
Chen et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
US11713471B2 (en) Class II, type V CRISPR systems
Tasan et al. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci
JP2018522544A (ja) 熱安定性cas9ヌクレアーゼ
Fueller et al. CRISPR-Cas12a–assisted PCR tagging of mammalian genes
Heitzer et al. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system
Shin et al. Optimized CRISPR/Cas9 strategy for homology‐directed multiple targeted integration of transgenes in CHO cells
Serebrenik et al. Efficient and flexible tagging of endogenous genes by homology-independent intron targeting
Liu et al. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells
US20230340481A1 (en) Systems and methods for transposing cargo nucleotide sequences
WO2021178934A1 (en) Class ii, type v crispr systems
Khosravi et al. Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells
Hamaker et al. A site‐specific integration reporter system that enables rapid evaluation of CRISPR/Cas9‐mediated genome editing strategies in CHO cells
CN109321597A (zh) 一种构建靶向ARID5A的KI-T2A-Luciferase细胞系的方法
Clappier et al. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing
Huang et al. Novel transgenic Chlamydomonas reinhardtii strain with retargetable genomic transgene integration using Cre-loxP system
JP2009183279A (ja) 染色体特定部位除去用の組替えベクター及びそれを利用した微生物内染色体特定部位の除去方法
Shin et al. Targeted genome editing using DNA-free RNA-guided Cas9 ribonucleoprotein for CHO cell engineering
CN116751762A (zh) Cas12b蛋白、单链向导RNA、包含它们的基因编辑***及相关应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921

RJ01 Rejection of invention patent application after publication