CN108558387B - 单相多铁微波吸收材料及其制备方法 - Google Patents

单相多铁微波吸收材料及其制备方法 Download PDF

Info

Publication number
CN108558387B
CN108558387B CN201810035771.2A CN201810035771A CN108558387B CN 108558387 B CN108558387 B CN 108558387B CN 201810035771 A CN201810035771 A CN 201810035771A CN 108558387 B CN108558387 B CN 108558387B
Authority
CN
China
Prior art keywords
containing compound
microwave
phase
neodymium
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810035771.2A
Other languages
English (en)
Other versions
CN108558387A (zh
Inventor
孙书杰
王文燕
张�林
田永尚
肖振宇
李彦磊
赵志强
程念
房良
訾威
孙柱柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Normal University
Original Assignee
Xinyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Normal University filed Critical Xinyang Normal University
Priority to CN201810035771.2A priority Critical patent/CN108558387B/zh
Publication of CN108558387A publication Critical patent/CN108558387A/zh
Application granted granted Critical
Publication of CN108558387B publication Critical patent/CN108558387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种单相多铁微波吸收材料NdBi6Ti3(Fe1‑xCox)3O21(x=0.25‑0.3)及其制备方法,该微波吸收材料因其层状钙钛矿共生结构特征且由钕化学修饰,结构内存在铁氧八面体与钴氧八面体结构单元相互作用,显示出优异的多铁性能。基于这些物理特性,该材料在2‑18GHz微波范围内表现出良好的微波吸收特性,吸收强度高且吸收频带宽,远优于部分碳/铁氧体复合材料的微波吸收性能;且其制备方法操作简单,实验周期短,利于大规模生产,具有广阔的应用前景。

Description

单相多铁微波吸收材料及其制备方法
技术领域
本发明涉及一种微波吸收材料及其制备方法,尤其涉及一种具有单相层状钙钛矿共生结构的多铁微波吸收材料及其制备方法,属于功能材料技术领域。
背景技术
随着电子工业的发展,关于电磁干扰、信息安全、人员安全等问题越来越凸显,其中电磁干扰屏蔽和微波吸收问题因其存在新奇物理特性和潜在商业价值,一直备受科学家们的关注。理想的微波吸收材料通常要求具有良好的热稳定性、抗氧化能力、低密度、宽吸收频带和高的吸收强度,该领域中研究最广泛的材料是磁性铁氧体体系材料,因为这类材料具有高阻值和优异的磁损耗,但同时这类材料也具有易氧化、易凝聚且密度高的缺点,因此一直阻碍其实用化。随后,科学家们关注通过碳纳米管与磁性铁氧体纳米材料复合形成的纳米复合材料,这些纳米复合材料具有热稳定性高、密度低、电导高等性能优点,能够展示出优异的微波吸收特性,具有很好的潜在应用,但不足的是,大面积制备碳材料比较昂贵,且制备过程复杂、不易控制,因此需要探索低成本、易制备、吸收强度高且吸收频带宽的新型微波吸收材料。
众所周知,电偶极子和磁偶极子是两类强的微波吸收体。多铁性材料通常指同一个相中包含两种或者两种以上基本铁性(铁电性、铁磁性/反铁磁性、铁弹性等)。磁电多铁性材料在单相中能同时具有铁电性(电偶极子)和铁磁性/反铁磁性(磁偶极子),也可以利用耦合机制实现电磁之间转换。这些暗示了磁电多铁材料可以在单相材料中同时实现两类微波吸收体对微波的吸收,很可能是一类具有良好微波吸收特性的微波器件材料。遗憾的是,关于磁电多铁性材料的微波吸收特性研究只集中在具有铁电性和反铁磁性的铁酸铋(BiFeO3)材料上。已有报道证明,铁酸铋纳米材料具有固有的微波吸收特性,最好的反射损耗值是-17dB,远高于碳纳米管与磁性铁氧体纳米复合材料的反射损耗值-30dB。因此,探索其它的磁电多铁性材料的微波吸收特性至关重要,也已成为研究者关注的科研焦点。
发明内容
为解决上述技术问题,本发明提供了一种单相多铁微波吸收材料及其制备方法,其单相特征使材料制备工艺简单,利于大规模化应用;其多铁性能够同时实现电偶极子和磁偶极子的微波吸收,使材料显示出优异的微波吸收特性。
本发明的技术方案是:
本发明提供了一种单相多铁微波吸收材料,该材料的化学式如式(Ⅰ)所示:
NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3) (Ⅰ)。
更进一步的,所述材料的结构为具有单相共生层状钙钛矿层的结构,该具有单相共生层状钙钛矿层结构为具有四层钙钛矿层和五层钙钛矿层无序共生状态的单相结构。
本发明所述的单相多铁微波吸收材料是一类Aurivillius相铋层状钙钛矿氧化物,X取值范围为0.25到0.3。在该范围内,材料处在均相五层与均相四层钙钛矿结构转变区间,具有四、五钙钛矿层无序共生结构特征。此结构属于单相层调制相结构,且结构内部存在铁氧八面体和钴氧八面体结构单元,使得材料具有优良的铁电性和铁磁性;此外采用钕进行化学修饰有助于材料降低漏电流,能够提升材料的物理性能。最终使得该调制结构材料能够表现出优异的铁电性、介电性和铁磁性,进一步显示出优异的微波吸收性能。
本发明还提供了一种上述单相多铁微波吸收材料的制备方法,该制备方法包括下述步骤:
(1)将钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物、含钴化合物和络合剂在硝酸稀液中按化学计量比混合,得到混合溶液;
(2)用氨水将步骤(1)中所得混合溶液的pH值调整至中性,搅拌,得到澄清溶液,然后将该澄清溶液蒸干、预烧,得到初级粉体;
(3)将步骤(2)中所得初级粉体压片成型、热压烧结,得到所述单相多铁微波吸收材料。
更进一步的,
步骤(1)中钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物和含钴化合物中钛、铋、钕、铁、钴的摩尔比为3:6:1:(3-3x):3x,x为0.25-0.3。
步骤(1)中所述含铋化合物为五水合硝酸铋,所述含钕化合物为六水合硝酸钕,所述含铁化合物为九水合硝酸铁,所述含钴化合物为六水合硝酸钴,所述络合剂为柠檬酸和乙二胺四乙酸。
步骤(2)中所述预烧温度为700-750℃,预烧时间为2~5h。
步骤(3)中所述烧结温度为850-900℃,烧结时间为3-6h,烧结气氛为氧气和氩气按照体积比为(3-5):1形成的混合气氛,且烧结过程中热压压力为12-13MPa;其中混合气氛中氧气和氩气的体积比最优为4:1,烧结过程中热压压力最优为12.56MPa。
本发明的单相多铁微波吸收材料NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3)可以作为优良微波吸收剂,其微波吸收性能参数可以采用矢量网络分析仪分析测量并通过同轴线理论计算得出。
本发明的有益技术效果是:本发明提供了一种具有层状钙钛矿共生结构的单相多铁微波吸收材料NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3),该材料因其层状钙钛矿共生结构特征且由钕化学修饰,结构内存在铁氧八面体与钴氧八面体结构单元相互作用,显示出优异的介电性、铁电性和铁磁性。基于这些物理特性,该材料在2-18GHz微波范围内表现出良好的微波吸收特性,吸收强度高(最佳反射损耗峰都低于-30dB),吸收频带宽(反射损耗低于-20dB的频带宽度高于10GHz),远优于部分碳/铁氧体复合材料的微波吸收性能;且其制备方法操作简单,实验周期短,利于大规模生产,具有广阔的应用前景。
附图说明
图1是本发明实施例中NdBi6Ti3(Fe1-xCox)3O21(x=0.2-0.4)材料的X射线图;
图2是本发明实施例中NdBi6Ti3(Fe1-xCox)3O21(x=0.0-1.0)材料的结构示意图与实物图;
图3是本发明实施例中NdBi6Ti3(Fe1-xCox)3O21(x=0.25)材料的铁电性和铁磁性结果;
图4是本发明实施例1中NdBi6Ti3(Fe1-xCox)3O21(x=0.25)材料厚度为3.3mm条件下的电磁参数结果;
图5是本发明实施例1中NdBi6Ti3(Fe1-xCox)3O21(x=0.25)材料厚度为3.3mm条件下的微波反射损耗结果;
图6是本发明实施例1中NdBi6Ti3(Fe1-xCox)3O21(x=0.25)材料涂层厚度d与微波反射损耗之间的关系;
图7是本发明实施例2中NdBi6Ti3(Fe1-xCox)3O21(x=0.3)材料厚度为3.3mm条件下的电磁参数结果;
图8是本发明实施例2中NdBi6Ti3(Fe1-xCox)3O21(x=0.3)材料厚度为3.3mm条件下的微波反射损耗结果。
具体实施方式
为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
本申请实施例公开一种如式(Ⅰ)所示的单相多铁微波吸收材料:
NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3) (Ⅰ)。
本申请实施例提供了一种如式(Ⅰ)所示的单相多铁微波吸收材料的制备方法,该制备方法包括下述步骤:
(1)将钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物、含钴化合物和络合剂在硝酸稀液中按化学计量比混合,得到混合溶液;其中钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物和含钴化合物中钛、铋、钕、铁、钴的摩尔比为3:6:1:(3-3x):3x,x为0.25-0.3;且所述含铋化合物为五水合硝酸铋,所述含钕化合物为六水合硝酸钕,所述含铁化合物为九水合硝酸铁,所述含钴化合物为六水合硝酸钴,所述络合剂为柠檬酸和乙二胺四乙酸。
(2)用氨水将步骤(1)中所得混合溶液的pH值调整至中性,搅拌,得到澄清溶液,然后将该澄清溶液放入坩埚并在加热台上蒸干;将蒸干后所得物料进行预烧,预烧温度为700-750℃,预烧时间为2~5h,预烧结束后经研磨得到初级粉体;
(3)将步骤(2)中所得初级粉体通过模具在压片机上压片成型;然后利用热压炉热压烧结,热压烧结温度为850-900℃,烧结时间为3-6h,烧结气氛为氧气和氩气按照体积比为(3-5):1形成的混合气氛,最优为氧气和氩气的体积比为4:1,且烧结过程中,热压压力条件一直保持在12-13MPa,最优保持在12.56MPa;热压烧结结束后得到所述单相多铁微波吸收材料。
该单相多铁微波吸收材料是一类Aurivillius相铋层状氧化物,如附图1所示。X取值范围为0.25到0.3,在该范围内,材料处在均相五层与均相四层钙钛矿结构转变区间,具有四、五钙钛矿层无序共生结构特征,如附图2所示。尽管材料具有钙钛矿层共生结构,但该材料仍是单相材料,其共生结构是由于制备过程中自组装形成。因此该材料制备过程相对简单,实验周期短,利于大规模生产。该单相层调制相结构微波材料,其结构内部存在铁氧八面体和钴氧八面体结构单元相互作用,且受到钕化学修饰有助于材料降低漏电流,表现出优异的铁电性和铁磁性,如附图3所示。
将该单相多铁微波吸收材料作为微波吸收剂,采用矢量网络分析仪分析测量并通过同轴线理论计算得出其微波吸收性能参数。具体如下所述:
将热压烧结的NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3)粉末与石蜡混合(按质量比1:1混合),80℃保温半小时使石蜡融化,搅拌均匀,放入模具中,在2-5MPa压力下制成内径3mm,外径为7mm,厚度为3.3mm的同轴圆环,放入同轴线夹具内测试,利用Agilent HPE8363B矢量网络分析仪测试,测试范围为2-18GHz,最终获得复介电常数实部、复介电常数虚部、复磁导率实部和复磁导率虚部,最后通过经典同轴线理论计算出本发明微波吸收材料的反射损耗特性,并通过拟合1-5mm范围内不同同轴圆环厚度d的反射损耗特性,可得到不同厚度d与相应反射损耗的关系。
结果显示,本发明所述NdBi6Ti3(Fe1-xCox)3O21(x=0.25-0.3)材料具有高效的微波吸收性能,试验涂层厚度为3mm左右时,在频率5-8GHz内可得到最佳反射损耗数值低于-30dB且反射损耗低于-20dB的频带宽度高于10GHz。并且随着涂层厚度的变化,最佳反射损耗峰位置会向低频率方向移动,但反射损耗峰值都低于-30dB。与通常报道的碳纳米管/铁氧体复合微波材料相比(最佳反射损耗值约为-10dB~-30dB,反射损耗低于-20dB的频带宽度约为0-6GHz),本发明所述材料吸收强度高(最佳反射损耗峰都低于-30dB),吸收频带宽(反射损耗低于-20dB的频带宽度高于10GHz),具有高微波强度以及宽微波吸收频带,有广阔的应用前景。
具体实施例1
按照下述步骤制备NdBi6Ti3(Fe1-xCox)3O21(x=0.25)单相多铁微波吸收材料。
步骤一:按Nd:Bi:Ti:Fe:Co化学计量比1:6:3:2.25:0.75称量(0.05/7)mol样品原料,即称取7.442g钛酸正丁酯(纯度为98%),2.163g六水合硝酸钕(纯度为99%),20.998g五水合硝酸铋(纯度为99%),6.592g九水合硝酸铁(纯度为98.5%),1.575g六水合硝酸钴(纯度为98.5%)溶于硝酸溶液中(从浓度65-68%的硝酸溶液中取20mL,加入到约500mL的蒸馏水烧杯中,再加入100ml蒸馏水),加入纯度为98%乙二胺四乙酸(EDTA)18.616g和纯度为98%柠檬酸19.123g作为络合剂,搅拌后得到混合溶液。
步骤二:将所述混合溶液通过氨水将pH值调整至中性,搅拌,得到澄清溶液;然后将所述混合溶液置于坩埚中在加热台上蒸干至燃烧得到前驱体,将所得粉体在马弗炉中750℃预烧2h,除去有机物,得到粉体,研磨得到材料的初级粉体;
步骤三:将初级粉体通过模具,在压片机上压片成型;利用热压炉热压烧结,整个过程都在氧气和氩气的混合气氛(Ar/O2=1/4,体积比)下进行,热压烧结温度为880℃,烧结保温时间为4h,烧结保温时直对磨具的压力一直保持在12.56MPa左右;冷却到室温后取出样品,最终得到单相多铁微波材料NdBi6Ti3(Fe0.75Co0.25)3O21
对上述制备所得的NdBi6Ti3(Fe0.75Co0.25)3O21单相多铁微波材料按照下述方法进行微波吸收性能测试。
将热压烧结的NdBi6Ti3(Fe0.75Co0.25)3O21粉末与石蜡混合(按质量比1:1混合),80℃保温半小时使石蜡融化,搅拌均匀,放入模具中,在2-5MPa压力下制成内径3mm,外径为7mm,厚度为3.3mm的同轴圆环,放入同轴线夹具内测试,利用Agilent HPE8363B矢量网络分析仪测试,测试范围为2-18GHz,最终获得复介电常数实部、复介电常数虚部、复磁导率实部和复磁导率虚部,如附图4所示,最后通过经典同轴线理论计算出本发明微波吸收材料的反射损耗特性,如附图5所示,并通过拟合1-5mm范围内不同同轴圆环厚度,可得到不同厚度与微波吸收材料的反射损耗的相互关系,如附图6所示。
结果显示,单相多铁微波吸收材料NdBi6Ti3(Fe0.75Co0.25)3O21具有高效的微波吸收性能。试验涂层厚度为3.3mm左右时,在频率6.5GHz内可得到最佳反射损耗,其数值为-37.5dB,且反射损耗低于-20dB的频带宽度约为13GHz。并且随着涂层厚度的变化,最佳反射损耗峰位置会向低频率方向移动,但反射损耗峰值都低于-30dB。与通常报道的碳纳米管/铁氧体复合微波材料相比,具有高微波强度以及宽微波吸收频带。
具体实施例2
按照下述步骤制备NdBi6Ti3(Fe1-xCox)3O21(x=0.3)单相多铁微波吸收材料。
步骤一:按Nd:Bi:Ti:Fe:Co化学计量比1:6:3:2.1:0.9称量(0.05/7)mol样品原料,即称取7.442g钛酸正丁酯(纯度为98%),2.163g六水合硝酸钕(纯度为99%),20.998g五水合硝酸铋(纯度为99%),6.153g九水合硝酸铁(纯度为98.5%),1.899g六水合硝酸钴(纯度为98.5%)溶于硝酸溶液中(从浓度65-68%的硝酸溶液中取20mL,加入到约500mL的蒸馏水烧杯中,再加入100ml蒸馏水),加入纯度为98%乙二胺四乙酸(EDTA)18.616g和纯度为98%柠檬酸19.123g作为络合剂,搅拌后得到混合溶液。
步骤二:将所述混合溶液通过氨水将pH值调整至中性,搅拌,得到澄清溶液;然后将所述混合溶液置于坩埚中在加热台上蒸干至燃烧得到前驱体,将所得粉体在马弗炉中750℃预烧2h,除去有机物,得到粉体,研磨得到材料的初级粉体;
步骤三:将初级粉体通过模具,在压片机上压片成型;利用热压炉热压烧结,整个过程都在氧气和氩气的混合气氛(Ar/O2=1/4)下进行,热压烧结温度为870℃,烧结保温时间为3h,烧结保温时直对模具的压力一直保持在12.56MPa左右;冷却到室温后取出样品,得到单相多铁微波材料NdBi6Ti3(Fe0.9Co0.3)3O21
对上述制备所得的NdBi6Ti3(Fe0.9Co0.3)3O21单相多铁微波材料按照下述方法进行微波吸收检测。
将热压烧结的NdBi6Ti3(Fe0.9Co0.3)3O21粉末与石蜡混合(按质量比1:1混合),80℃保温半小时使石蜡融化,搅拌均匀,放入模具中,在2-5MPa压力下制成内径3mm,外径为7mm,厚度为3.3mm的同轴圆环,放入同轴线夹具内测试,利用Agilent HPE8363B矢量网络分析仪测试,测试范围为2-18GHz,最终获得复介电常数实部、复介电常数虚部、复磁导率实部和复磁导率虚部,如附图7所示,最后通过经典同轴线理论计算出本发明微波吸收材料的反射损耗特性,如附图8所示。
结果显示,单相多铁微波吸收材料NdBi6Ti3(Fe0.9Co0.3)3O21具有高效的微波吸收性能。试验涂层厚度为3.3mm左右时,在频率6.8GHz内可得到最佳反射损耗,其数值为-42.3dB,且反射损耗低于-20dB的频带宽度约为14GHz。与通常报道的碳纳米管/铁氧体复合微波材料相比,具有高微波强度以及宽微波吸收频带。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种单相多铁微波吸收材料,其特征在于,所述材料的化学式如式(Ⅰ)所示:NdBi6Ti3(Fe1-xCox)3O21 (Ⅰ),其中x=0.25-0.3;
且所述材料结构为具有单相共生层状钙钛矿层结构,该具有单相共生层状钙钛矿层的结构为具有四层钙钛矿层和五层钙钛矿层无序共生状态的单相结构。
2.一种权利要求1所述单相多铁微波吸收材料的制备方法,其特征在于:包括下述步骤:
(1)将钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物、含钴化合物和络合剂在硝酸稀液中按化学计量比混合,得到混合溶液;
(2)用氨水将步骤(1)中所得混合溶液的pH值调整至中性,搅拌,得到澄清溶液,然后将该澄清溶液蒸干、预烧,得到初级粉体;
(3)将步骤(2)中所得初级粉体压片成型、热压烧结,得到所述单相多铁微波吸收材料。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)中钛酸正丁酯、含铋化合物、含钕化合物、含铁化合物和含钴化合物中钛、铋、钕、铁、钴的摩尔比为3:6:1:(3-3x):3x,x为0.25-0.3。
4.根据权利要求3所述的制备方法,其特征在于:步骤(1)中所述含铋化合物为五水合硝酸铋,所述含钕化合物为六水合硝酸钕,所述含铁化合物为九水合硝酸铁,所述含钴化合物为六水合硝酸钴,所述络合剂为柠檬酸和乙二胺四乙酸。
5.根据权利要求2所述的制备方法,其特征在于:步骤(2)中所述预烧温度为700-750℃,预烧时间为2~5h。
6.根据权利要求2所述的制备方法,其特征在于:步骤(3)中所述烧结温度为850-900℃,烧结时间为3-6h,烧结气氛为氧气和氩气按照体积比为(3-5):1形成的混合气氛,且烧结过程中热压压力为12-13MPa。
CN201810035771.2A 2018-01-15 2018-01-15 单相多铁微波吸收材料及其制备方法 Active CN108558387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810035771.2A CN108558387B (zh) 2018-01-15 2018-01-15 单相多铁微波吸收材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810035771.2A CN108558387B (zh) 2018-01-15 2018-01-15 单相多铁微波吸收材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108558387A CN108558387A (zh) 2018-09-21
CN108558387B true CN108558387B (zh) 2020-10-30

Family

ID=63529892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810035771.2A Active CN108558387B (zh) 2018-01-15 2018-01-15 单相多铁微波吸收材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108558387B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922180B (zh) * 2019-11-29 2021-11-09 湖南工程学院 一种多铁吸波材料及其制备方法
CN110922181B (zh) * 2019-11-29 2021-09-21 湖南工程学院 一种片状陶瓷吸波材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288437B (zh) * 2012-06-21 2015-01-07 中国科学技术大学 具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷材料及其制备方法
CN104098143B (zh) * 2014-07-30 2015-10-28 中国科学技术大学 多功能单相纳米材料

Also Published As

Publication number Publication date
CN108558387A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Shahbaz Tehrani et al. Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals
Kumar et al. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique
Amighian et al. Preparation of nano‐sized manganese ferrite (MnFe2O4) via coprecipitation method
Sujatha et al. Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite
Ahmad et al. Effect of sintering temperature on magnetic and electrical properties of nano-sized Co2W hexaferrites
Verma et al. Low temperature processing of NiZn ferrite by citrate precursor method and study of properties
Gabal et al. Cr-substituted Ni–Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties
Gadkari et al. Synthesis, characterization and magnetic properties of La3+ added Mg–Cd ferrites prepared by oxalate co-precipitation method
Hashim et al. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites
Ghasemi et al. The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method
Kaur et al. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0. 6-xMgxZn0. 4 Fe2O4 (x= 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles
Gabal et al. Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite
Manikandan et al. Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles
Zhang et al. Microstructure characterization and properties of chemically synthesized Co2Z hexaferrite
Mugutkar et al. Ammonia gas sensing and magnetic permeability of enhanced surface area and high porosity lanthanum substituted Co–Zn nano ferrites
CN108558387B (zh) 单相多铁微波吸收材料及其制备方法
Wang et al. Preparation and characterizations of ultrafine hexaganoal ferrite Co2Z powders
Mathur et al. Low temperature synthesis of Mn0. 4Zn0. 6In0. 5Fe1. 5O4 nanoferrite for high-frequency applications
Bachhav et al. Microstructure and magnetic studies of Mg–Ni–Zn–Cu ferrites
Su et al. Effects of ${\hbox {Nb}} _ {2}{\hbox {O}} _ {5} $ on DC-Bias-Superposition Characteristic of the Low-Temperature-Fired NiCuZn Ferrites
Patil et al. Tuning the structural, optical and magnetic properties of NiCuZn (Ni0. 4Cu0. 3Zn0. 3Fe2O4) spinel ferrites by Nb2O5 additive
Verma et al. Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine
Agami et al. Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles
Ahmad et al. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application
Bahiraei et al. The role of iron ions on microstructural and magnetic properties of MgCuZn ferrites prepared by sol-gel auto-combustion process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant