CN108553124A - 心室容积监测设备和方法 - Google Patents

心室容积监测设备和方法 Download PDF

Info

Publication number
CN108553124A
CN108553124A CN201810306555.7A CN201810306555A CN108553124A CN 108553124 A CN108553124 A CN 108553124A CN 201810306555 A CN201810306555 A CN 201810306555A CN 108553124 A CN108553124 A CN 108553124A
Authority
CN
China
Prior art keywords
monitored
change information
shadow region
processor
ultrasonic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810306555.7A
Other languages
English (en)
Other versions
CN108553124B (zh
Inventor
曹阳
曹悦
文小琴
窦建洪
王爱群
张艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Red Cross Hospital (jinan University Faculty Of Medical Science Affiliated Guangzhou Red Cross Hospital)
Original Assignee
Guangzhou Red Cross Hospital (jinan University Faculty Of Medical Science Affiliated Guangzhou Red Cross Hospital)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Red Cross Hospital (jinan University Faculty Of Medical Science Affiliated Guangzhou Red Cross Hospital) filed Critical Guangzhou Red Cross Hospital (jinan University Faculty Of Medical Science Affiliated Guangzhou Red Cross Hospital)
Priority to CN201810306555.7A priority Critical patent/CN108553124B/zh
Publication of CN108553124A publication Critical patent/CN108553124A/zh
Application granted granted Critical
Publication of CN108553124B publication Critical patent/CN108553124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本申请涉及一种心室容积监测设备和方法,包括图像采集模块和处理器,图像采集模块与处理器连接,图像采集模块获取待监测对象的超声成像视频,处理器识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,并基于腔体面积变化信息得到待监测对象的心室容积变化信息。这样无需借助于心导管技术,不仅可以实现无创获取心室容积变化数据,还可以实现在不中断监测的情况下获得即时的心室容积变化数据,从而实现通过超声图像分析获得连续、无创的实时心室容积。

Description

心室容积监测设备和方法
技术领域
本申请涉及生物医学工程技术领域,特别是涉及一种心室容积监测设备和方法。
背景技术
心脑血管血管疾病已成为危害人类健康的重要原因,心脏功能的测定不仅可以用于心血管疾病早期诊断、辅助诊断,还可以用于麻醉、患者监护等,对选拔运动员、海军、空军等体质要求较高的人员具有重要指导意义;同时,在评定心血管手术及药物效果和运动锻炼效果等方面也可提供客观指标。此外,心脏功能的测定对于发现一些疾病患者的亚临床性心肌损害和一些药物的负性肌力副作用方面也有重要意义。
传统的心脏功能的测定方法主要是借助于心导管技术,如冠状动脉造影术。但冠状动脉造影术有一定的死亡率和并发症,比如心肌梗死、血管或心脏穿破或恶性心律失常等。因此,传统的心脏功能测定方法其操作过程中会对心脏造成创伤,存在创伤高风险的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够降低创伤风险的心室容积监测设备和方法。
一种心室容积监测设备,所述设备包括图像采集模块和处理器,所述图像采集模块与所述处理器连接;
所述图像采集模块获取待监测对象的超声成像视频;所述处理器识别单个心动周期内所述超声成像视频的阴影区域,获取所述阴影区域的像素数,根据各所述阴影区域的像素数,得到所述待监测对象的腔体面积变化信息,基于所述腔体面积变化信息得到所述待监测对象的心室容积变化信息。
在一个实施例中,所述处理器还用于获取所述阴影区域的基准灰度值,根据所述基准灰度值得到目标区域,计算所述目标区域的像素数,根据目标区域的像素数,得到所述待监测对象的腔体面积变化信息。
在一个实施例中,所述处理器还用于根据所述基准灰度值得到目标区域,对所述目标区域的预设位置进行羽化处理,计算羽化处理后的目标区域的像素数,根据各所述羽化处理后的目标区域的像素数,得到所述待监测对象的腔体面积变化信息。
在一个实施例中,所述处理器还用于对所述单个心动周期内超声成像视频进行锐化处理,识别锐化处理后的超声成像视频的阴影区域。
在一个实施例中,所述处理器还用于对所述腔体面积变化信息进行滤波平滑处理,基于滤波平滑处理后的腔体面积变化信息得到所述待监测对象的心室容积变化信息。
在一个实施例中,所述处理器还用于基于预设补偿函数,对所述心室容积变化信息进行校准。
在一个实施例中,所述处理器还用于当所述待监测对象的超声成像视频为彩色图像视频时,对所述彩色图像视频进行灰度处理,识别单个心动周期内灰度处理后的超声成像视频的阴影区域。
在一个实施例中,所述设备还包括超声成像采集装置,所述超声成像采集装置与所述处理器连接。
在一个实施例中,所述设备还包括显示器,所述显示器与所述处理器连接。
一种心室容积监测方法,所述方法包括:
获取待监测对象的超声成像视频;
识别单个心动周期内的所述超声成像视频的阴影区域;
获取所述阴影区域的像素数,根据所述阴影区域的像素数,得到所述待监测对象的腔体面积变化信息;
基于所述待监测对象的腔体面积变化信息得到所述待监测对象的心室容积变化信息。
上述心室容积监测设备和方法,包括图像采集模块和处理器,图像采集模块与处理器连接;图像采集模块获取待监测对象的超声成像视频,处理器识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,基于腔体面积变化信息得到待监测对象的心室容积变化信息。通过对获取到的待监测对象的超声成像视频进行处理,识别待监测对象的超声成像视频的阴影区域,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,再基于腔体面积变化信息获得心室容积变化信息,这样无需借助于心导管技术,不仅可以实现无创获取心室容积变化数据,还可以实现在不中断监测的情况下获得即时的心室容积变化数据,从而实现通过超声图像分析获得连续、无创的实时心室容积。
附图说明
图1为一个实施例中心室容积监测设备的结构框图;
图2为一个实施例中阴影区域的示意图;
图3为一个实施例中目标区域的示意图;
图4为一个实施例中目标区域的腔体面积变化的示意图;
图5为一个实施例中羽化处理后的目标区域的示意图;
图6为一个实施例中锐化处理的流程示意图;
图7为一个实施例中心室容积监测方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种心室容积监测设备,包括图像采集模块100和处理器200,图像采集模块100与处理器200连接;图像采集模块100获取待监测对象的超声成像视频;处理器200识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,基于腔体面积变化信息得到待监测对象的心室容积变化信息。
图像采集模块100获取待监测对象的超声成像视频,比如可以通过专用的图像采集芯片,完成对超声成像设备的超声成像视频的采集。待监测对象的超声成像视频具体可以是单个心动周期内待监测对象的超声成像视频。心动周期是指从一次心跳的起始到下一次心跳的起始,心血管***所经历的过程。心脏舒张时内压降低,腔静脉血液回流入心;心脏收缩时内压升高,将血液泵到动脉;心脏每收缩和舒张一次构成一个心动周期。一个心动周期中首先是两心房收缩,其中右心房的收缩略先于左心房;心房开始舒张后两心室收缩,而左心室的收缩略先于右心室,在心室舒张的后期心房又开始收缩。如以成年人平均心率每分钟75次计,每一心动周期平均为0.8秒,其中心房收缩期平均为0.11秒,舒张期平均为0.69秒;心室收缩期平均为0.27秒,舒张期平均为0.53秒。
超声成像设备在医疗诊断中起着举足轻重的地位,其以快速、安全和实时等优点在医疗的诊断中发挥着巨大的作用,广泛应用于医疗诊断、术前计划、治疗、术后监测等各个环节中。超声成像设备的工作原理可以是阵列声场延时叠加成像,在这种方式中,通过对阵列的各个单元引入不同的延时,而后合成为一聚焦波束,以实现对声场各点的成像。
处理器200识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,基于腔体面积变化信息得到待监测对象的心室容积变化信息。对待监测对象的超声成像视频进行处理,区分阴影区域和非阴影区域,比如可以根据采集到的超声成像视频的视频序列,分析各单个超声成像视频帧中各像素灰度值相对于时间的变化率。具体地,某像素灰度值在一个心动周期内灰度值的变化范围大于或等于预设值,则视为有效像素;若其变化范围小于预设值,则可视为其它组织区域或信号噪声波动。这样可以区分阴影区域和非阴影区域,缩小检测范围,排除周边区域的干扰,其中,不同设备在不同环境下图像质量存在区别,预设值一般在30-60之间。以非阴影区域像素的平均灰度值变化来评估整个检测区域的灰度指数,按熵的大小将视频区域分为阴影区域和非阴影区域,以区分阴影区域像素和非阴影区域像素,以排除肌肉组织血管等对腔体面积识别的干扰。如图2所示,图中所示扇形区域即为阴影区域。获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,由于心脏跳动过程中,各腔室形状并无明显变化,所以心室体积与腔体面积存在比例关系,假定比例系数为k,就可以根据腔体面积变化信息,得到心室容积变化信息。
上述心室容积监测设备,包括图像采集模块和处理器,图像采集模块与处理器连接;图像采集模块获取待监测对象的超声成像视频,处理器识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,基于腔体面积变化信息得到待监测对象的心室容积变化信息。通过对获取到的待监测对象的超声成像视频进行处理,识别待监测对象的超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,再基于腔体面积变化信息获得心室容积变化信息,这样无需借助于心导管技术,不仅可以实现无创获取心室容积变化数据,还可以实现在不中断监测的情况下获得即时的心室容积变化数据,从而实现通过超声图像分析获得连续、无创的实时心室容积。
在一个实施例中,处理器获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息,包括:获取阴影区域的基准灰度值,根据基准灰度值得到目标区域,计算目标区域的像素数,根据目标区域的像素数,得到待监测对象的腔体面积变化信息。通过阴影检测把阴影区域与周边图像分离出来,即正确分割出阴影区域的轮廓。阴影是由于光源点照射到背景的光线受到了目标物的阻挡而形成的,但是场景中的光照强度并不会改变背景的表面纹理特征结构;由于阴影区域所获得的入射光线强度减弱,所以阴影区域的像素值会比该区域无阴影时的像素值要小。
具体地,区域面积超过总面积预设值的阴影区域,比如预设值为20%,被认为是待监测腔体区域。在阴影区域选取N*N个像素的采样面积计算灰度平均值,以避免噪点干扰,其中,N为整数,N值可调。对于矩阵形式的图像采样区域,把原始图像N*N窗口内的图像变成一个运算像素,这个运算像素的值就是窗口内所有像素的均值。以上述方式计算出的灰度值作为基准灰度值,向上下各取10个单位(单位个数可调)的灰度容差范围,生成目标区域。通过CIELCH容差公式△Ecmc=[(△L*/1SL)2+(△Cab*/cSc)2+(△Hab*/SH)2]1/2计算容差范围,CIELCH以标准为中心,然后给予个别LCH值,正负误差(+/-)范围,△L*=L*样品-L标准(明度差异),△C*=△C*样品-△C*标准(饱和度差异),△H*=[(△Eab)2-(△L*)2-(△C)2]1/2(色调差异),并可以得到如图3所示的A和B两个目标区域。计算各目标区域内的像素数,图中虚线所示范围为目标区域,计算虚线内像素数。对每帧图像内各目标区域范围内像素数的数据波动变化值进行滤波平滑处理,剔除较大噪声波动后,生成一个心动周期内A腔室横截面面积变化和B腔室横截面面积变化的拟合曲线,如图4所示。
在一个实施例中,处理器根据基准灰度值得到目标区域,计算目标区域的像素数,根据目标区域的像素数,得到待监测对象的腔体面积变化信息,包括:根据基准灰度值得到目标区域,对目标区域的预设位置进行羽化处理,计算羽化处理后的目标区域的像素数,根据各羽化处理后的目标区域的像素数,得到待监测对象的腔体面积变化信息。具体地,目标区域的预设位置可以是目标区域的边缘,比如对目标区域边缘半径为30个(可调)像素进行羽化处理。对目标区域的预设边缘位置进行高斯运算,用均值替代目标区域的预设边缘位置中的各个坐标值,即对待处理的当前像素点(x,y),选择一个由其近邻的若干像素组成的模板S,计算模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后该坐标在图像上的位置g(x,y),即其中,S为模板,M为该模板中包含当前像素在内的像素总个数。通过上述运算,实现对目标区域边缘半径为30个像素的羽化处理,并以平滑曲线显示于界面,以便于医护人员观察,如图5所示,图中虚线为羽化处理后的目标区域,即UI(User Interface,用户界面)界面所显示的画面。
在一个实施例中,处理器识别单个心动周期内超声成像视频的阴影区域,包括:对单个心动周期内的超声成像视频进行锐化处理,识别锐化处理后的超声成像视频帧的波动区域。通过专用图像采集芯片,实时自动完成对超声成像视频帧的图像采集和视频解码,并以变换编码方式,通过数据无光的方式解除输入信号之间的相关性。通过使用USM(UnsharpMask,锐化算法)技术,增强图像高频部分内容,减弱低频内容,使图像视觉效果进一步锐化,识别准确度得到极大提升。锐化处理的流程如图6所示,具体的表达式为:y(n,m)=x(n,m)+λz(n,m),其中,x(n,m)为输入图像,y(n,m)为输出图像,而z(n,m)为校正信号,通过对x进行高通滤波获取。λ是用于控制增强效果的缩放因子。在USM算法中,z(n,m)可通过z(n,m)=4x(n,m)-x(n-1,m)-x(n+1,m)-x(n,m-1)-x(n,m+1)获取。
在一个实施例中,处理器基于腔体面积变化信息得到待监测对象的心室容积变化信息,包括:对腔体面积变化信息进行滤波平滑处理,基于滤波平滑处理后的腔体面积变化信息得到待监测对象的心室容积变化信息。经过滤波平滑处理,可以剔除较大的噪声波动。平滑滤波是低频增强的空间域滤波技术,它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波可以采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。
在一个实施例中,处理器还用于基于预设补偿函数,对心室容积变化信息进行校准。心室容积V与心室横截面积S存在比例关系,假设比例系数为k,心室容积变化值△V的公式为:△V=k*S。考虑到不同病例心脏跳动特征不同,如婴幼儿、中老年、脂肪含量、心脏病变等影像因素,为优化校准检测结果,特殊病例可设置比例补偿函数f(e),那么△V=k*f(e)*S,其中k为正常心室面积体积比例系数,f(e)为特殊补偿比例函数,△V为最终心室体积变化值。
在一个实施例中,处理器识别单个心动周期内超声成像视频的阴影区域之前还包括:当待监测对象的超声成像视频为彩色图像视频时,对彩色图像视频进行灰度处理;处理器识别单个心动周期内超声成像视频的阴影区域,包括:处理器识别单个心动周期内灰度处理后的超声成像视频的阴影区域。当待监测对象的超声成像视频为彩色图像视频时,将饱和度高的像素的亮度的饱和度值降为最低,以灰度模式进行后续分析处理,以排除干扰,而最终以彩色模式显示与用户界面。比如,可以将RGB值差异超过5的像素的RGB值降为R-0,G-0,B-0后实施上述运算,以排除干扰。RGB色彩模式是工业界的一种颜色标准,通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色,RGB即代表红、绿、蓝三个通道的颜色。非必要的,当检测区域与背景连通时,最终目标区域的选择要限制在扇形区域内,不能选到黑色背景。
在一个实施例中,设备还包括超声成像采集装置,超声成像采集装置与处理器连接。超声成像采集装置可以包括超声探头,通过超声探头获取待监测对象的心脏超声图像。
在一个实施例中,设备还包括显示器,显示器与处理器连接。显示器可以是液晶显示屏,可以显示待监测对象的腔体面积变化信息、心室容积变化信息等。
在一个实施例中,设备还包括记录仪,记录仪与处理器连接,记录仪可以记录处理器生成的各种拟合曲线。记录仪是将一个或多个变量随时间或另一变量变化的过程转换为可识别和读取的信号的仪器。记录仪是以CPU(Central Processing Unit,中央处理器)为核心,并辅以大规模集成电路、大容量FLASH(闪存)存储、信号智能调理、总线以及高分辨率图形液晶显示器的新型智能化无纸记录仪表。采用长寿命背光160×128单色液晶显示屏,支持4/8/16通道模拟量通用输入或2/4/8通道模拟输出与12通道报警输出,设定数据与记录数据具掉电保护功能,具有体积小、通道数多、功耗低、精度高、通用性强、运行稳定、可靠性高等特点。它能保存所记录的信号变化以便分析处理,记录仪能自动记录周期性或非周期性多路信号的慢变化过程和瞬态电平变化过程。
在一个实施例中,如图7所示,一种心室容积监测方法,包括:步骤702,获取待监测对象的超声成像视频;步骤704,识别单个心动周期内超声成像视频的阴影区域;步骤706,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息;步骤708,基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;识别单个心动周期内超声成像视频的阴影区域;获取阴影区域的基准灰度值,根据基准灰度值得到目标区域,计算目标区域的像素数,根据目标区域的像素数,得到待监测对象的腔体面积变化信息;基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的基准灰度值,根据基准灰度值得到目标区域,对目标区域的预设位置进行羽化处理,计算羽化处理后的目标区域的像素数,根据各羽化处理后的目标区域的像素数,得到待监测对象的腔体面积变化信息;基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;对单个心动周期内的超声成像视频进行锐化处理,识别锐化处理后的超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息;基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;识别单个心动周期内的超声成像视频的阴影区域;获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息;对腔体面积变化信息进行滤波平滑处理,基于滤波平滑处理后的腔体面积变化信息得到待监测对象的心室容积变化信息。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;识别单个心动周期内超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息;基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息;基于预设补偿函数,对心室容积变化信息进行校准。
在一个实施例中,心室容积监测方法包括:获取待监测对象的超声成像视频;当待监测对象的超声成像视频为彩色图像视频时,对彩色图像视频进行灰度处理;识别单个心动周期内灰度处理后的超声成像视频的阴影区域,获取阴影区域的像素数,根据阴影区域的像素数,得到待监测对象的腔体面积变化信息;基于待监测对象的腔体面积变化信息得到待监测对象的心室容积变化信息。
关于心室容积监测方法的具体限定可以参见上文中对于心室容积监测设备的限定,在此不再赘述。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种心室容积监测设备,包括图像采集模块和处理器,所述图像采集模块与所述处理器连接;
所述图像采集模块获取待监测对象的超声成像视频;所述处理器识别单个心动周期内所述超声成像视频的阴影区域,获取所述阴影区域的像素数,根据所述阴影区域的像素数,得到所述待监测对象的腔体面积变化信息,基于所述腔体面积变化信息得到所述待监测对象的心室容积变化信息。
2.根据权利要求1所述的设备,其特征在于,所述处理器还用于获取所述阴影区域的基准灰度值,根据所述基准灰度值得到目标区域,计算所述目标区域的像素数,根据目标区域的像素数,得到所述待监测对象的腔体面积变化信息。
3.根据权利要求2所述的设备,其特征在于,所述处理器还用于根据所述基准灰度值得到目标区域,对所述目标区域的预设位置进行羽化处理,计算羽化处理后的目标区域的像素数,根据各所述羽化处理后的目标区域的像素数,得到所述待监测对象的腔体面积变化信息。
4.根据权利要求1所述的设备,其特征在于,所述处理器还用于对所述单个心动周期内的超声成像视频进行锐化处理,识别锐化处理后的超声成像视频的阴影区域。
5.根据权利要求1所述的设备,其特征在于,所述处理器还用于对所述腔体面积变化信息进行滤波平滑处理,基于滤波平滑处理后的腔体面积变化信息得到所述待监测对象的心室容积变化信息。
6.根据权利要求1所述的设备,其特征在于,所述处理器还用于基于预设补偿函数,对所述心室容积变化信息进行校准。
7.根据权利要求1所述的设备,其特征在于,所述处理器还用于当所述待监测对象的超声成像视频为彩色图像视频时,对所述彩色图像视频进行灰度处理,识别单个心动周期内灰度处理后的超声成像视频的阴影区域。
8.根据权利要求1至7任意一项所述的设备,其特征在于,还包括超声成像采集装置,所述超声成像采集装置与所述处理器连接。
9.根据权利要求1至7任意一项所述的设备,其特征在于,还包括显示器,所述显示器与所述处理器连接。
10.一种心室容积监测方法,其特征在于,所述方法包括:
获取待监测对象的超声成像视频;
识别单个心动周期内所述超声成像视频的阴影区域;
获取所述阴影区域的像素数,根据所述阴影区域的像素数,得到所述待监测对象的腔体面积变化信息;
基于所述待监测对象的腔体面积变化信息得到所述待监测对象的心室容积变化信息。
CN201810306555.7A 2018-04-08 2018-04-08 心室容积监测设备和方法 Active CN108553124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810306555.7A CN108553124B (zh) 2018-04-08 2018-04-08 心室容积监测设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810306555.7A CN108553124B (zh) 2018-04-08 2018-04-08 心室容积监测设备和方法

Publications (2)

Publication Number Publication Date
CN108553124A true CN108553124A (zh) 2018-09-21
CN108553124B CN108553124B (zh) 2021-02-02

Family

ID=63534163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810306555.7A Active CN108553124B (zh) 2018-04-08 2018-04-08 心室容积监测设备和方法

Country Status (1)

Country Link
CN (1) CN108553124B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065908A1 (en) * 2001-02-23 2002-08-29 Heart Assist Technologies Pty Ltd Determining the volume of a normal heart and its pathological and treated variants by using dimension sensors
CN101127117A (zh) * 2007-09-11 2008-02-20 华中科技大学 一种利用序列数字减影血管造影图像分割血管数据的方法
CN102871686A (zh) * 2012-03-05 2013-01-16 杭州弘恩医疗科技有限公司 基于3d医学影像测定生理参数的装置和方法
CN103300884A (zh) * 2012-03-13 2013-09-18 美国西门子医疗解决公司 具有医疗超声诊断图像的压力容积
CN104546000A (zh) * 2015-01-05 2015-04-29 深圳市大深生物医学工程转化研究院 一种基于形状特征的超声图像膀胱容积测量方法及装置
CN106725598A (zh) * 2016-12-28 2017-05-31 苏州科技城医院 基于多个经皮超声换能器的心脏超声***及成像方法
CN107397557A (zh) * 2017-07-13 2017-11-28 深圳市前海博志信息技术有限公司 乳腺超声波检查报告生成***及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065908A1 (en) * 2001-02-23 2002-08-29 Heart Assist Technologies Pty Ltd Determining the volume of a normal heart and its pathological and treated variants by using dimension sensors
CN101127117A (zh) * 2007-09-11 2008-02-20 华中科技大学 一种利用序列数字减影血管造影图像分割血管数据的方法
CN102871686A (zh) * 2012-03-05 2013-01-16 杭州弘恩医疗科技有限公司 基于3d医学影像测定生理参数的装置和方法
CN103300884A (zh) * 2012-03-13 2013-09-18 美国西门子医疗解决公司 具有医疗超声诊断图像的压力容积
CN104546000A (zh) * 2015-01-05 2015-04-29 深圳市大深生物医学工程转化研究院 一种基于形状特征的超声图像膀胱容积测量方法及装置
CN106725598A (zh) * 2016-12-28 2017-05-31 苏州科技城医院 基于多个经皮超声换能器的心脏超声***及成像方法
CN107397557A (zh) * 2017-07-13 2017-11-28 深圳市前海博志信息技术有限公司 乳腺超声波检查报告生成***及方法

Also Published As

Publication number Publication date
CN108553124B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
EP3449800B1 (en) Medical image processing apparatus, endoscope apparatus, diagnostic support apparatus, and medical service support apparatus
JP4216496B2 (ja) 脳組織内毛細血管の血流動態に関するインデックス演算方法、装置及びプログラムコード
JP4363833B2 (ja) 局所血流動態に関するインデックスを演算する方法及び装置
Yu et al. Noncontact monitoring of heart rate and heart rate variability in geriatric patients using photoplethysmography imaging
CN112218576A (zh) 用于采集和分析皮肤的图像的装置和方法
CN106236049A (zh) 基于视频图像的血压测量方法
CN110706826A (zh) 一种基于视频图像的非接触式的实时多人心率和血压测量方法
GB2490477A (en) Processing ultrasound images to determine diameter of vascular tissue lumen and method of segmenting an image of a tubular structure comprising a hollow core
CN111938622B (zh) 心率检测方法、装置及***、可读存储介质
CN117012344B (zh) 一种4cmos相机采集的图像分析方法
CN112294282A (zh) 基于rppg的情绪检测装置的自标定方法
Nugroho et al. Determination of skin repigmentation progression
Trumpp et al. Skin detection and tracking for camera-based photoplethysmography using a Bayesian classifier and level set segmentation
WO2019234428A1 (en) Optical coherence imager
JP4714228B2 (ja) 脳組織内毛細血管の血流動態に関するインデックス演算方法、装置及び記憶媒体
CN108703770A (zh) 心室容积监测设备和方法
CN110517229B (zh) 一种脉搏检测方法、***、电子装置及存储介质
Hu et al. Study on Real-Time Heart Rate Detection Based on Multi-People.
CN108553124A (zh) 心室容积监测设备和方法
JP4268695B2 (ja) 画像診断装置及び超音波診断装置
Kollorz et al. Using power watersheds to segment benign thyroid nodules in ultrasound image data
Wang et al. Non-contact measurement of heart rate based on facial video
CN107898476A (zh) 一种通过壁滤波器检测低速血流多普勒信号的方法和装置
CN100464704C (zh) 医学热诊断数字图像扫描***
Karpagam et al. Brain tumor growth and volume detection by ellipsoid-diameter technique using MRI data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant