CN108543109A - 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法 - Google Patents

低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法 Download PDF

Info

Publication number
CN108543109A
CN108543109A CN201810203105.5A CN201810203105A CN108543109A CN 108543109 A CN108543109 A CN 108543109A CN 201810203105 A CN201810203105 A CN 201810203105A CN 108543109 A CN108543109 A CN 108543109A
Authority
CN
China
Prior art keywords
titanium
bone implant
composite material
titanium alloy
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810203105.5A
Other languages
English (en)
Other versions
CN108543109B (zh
Inventor
夏木建
李年莲
林岳宾
刘爱辉
丁红燕
陈中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201810203105.5A priority Critical patent/CN108543109B/zh
Publication of CN108543109A publication Critical patent/CN108543109A/zh
Application granted granted Critical
Publication of CN108543109B publication Critical patent/CN108543109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明公开一种低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法,该钛基纳米复合材料骨植入体为原位生成的双相抗菌性纳米银及二氧化钛陶瓷增强钛合金骨植入体;该钛基纳米复合材料骨植入体拥有优异的持久抗菌功能以及耐磨性能。其成形方法为:(1)获取骨植入体三维模型;(2)对微米氧化银颗粒真空干燥处理,然后与医用球形钛合金粉末湿式球磨混合后干燥,得干燥微米氧化银‑钛合金复合材料粉末;(3)在高纯氩气保护下,通过激光增材制造工艺原位成形纳米银粒子与二氧化硅分散于钛合金骨植入体中,实现了高性能钛基纳米复合材料骨植入体的复杂结构、纳米复合材料及双重抗菌功能的一体化精密制造。

Description

低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法
技术领域
本发明涉及一种复合材料骨植入体及成形方法,特别涉及一种低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法。
背景技术
钛及钛合金因其良好的生物相容性及生物力学性能,被广泛应用于外科植入物领域,尤其是近年来研发的新型低模量β型钛合金,如Smith&Nephew Riehards公司研制的Ti-13Nb-13Zr合金,添加了无毒性元素Nb和Zr,弹性模量与人骨相接近。尽管钛合金在人工骨植入体领域具有显著的优势,但仍存在活性低、安全性不足等问题。特别是钛合金属于惰性材料,本身无抗菌性,尽管在植入过程中采用无菌操作,并配合抗生素使用,但因钛合金对细菌粘附较敏感,易受到细菌感染而影响其与骨组织的结合。
目前,一是通过表面改性方法在钛合金植入体表面沉积抗菌涂层以提高植入体的抗菌能力;二是通过采用热压烧结或激光3D打印方法成形钛-铜抗菌型植入体。这些措施一定程度上提升了钛合金骨植入体的抗菌效果,但也存在以下不足:(1)抗菌涂层与钛合金基体结合强度有限,骨植入体在人体复杂生理条件下服役过程中,常与周围软/硬组织发生相互作用,尤其是高承载的髋关节与膝关节常与人骨产生交互应力作用,易导致抗菌涂层易失效,进而恶化患者病情;(2)被美国环保署认证的“抑菌铜Cu+”偏向于抑菌性能,在抗菌方面效果不理想。
另一方面,钛合金骨植入体因其耐磨性不足,在人体内服役过程中的腐蚀磨损因素导致金属材料中有害金属元素在体内的溶出,进而引起金属植入体周围组织的过敏及炎症反应、局部坏死甚至癌变。当前,主流用以提高钛合金骨植入体耐磨性的途径主要有:基于材料表面改性技术在钛合金表面获得高耐磨性陶瓷薄膜;其次是通过真空铸造、粉末烧结等工艺制备的陶瓷增强钛基复合材料以提高其耐磨性。经系列临床实验,其措施存在一定的不足,具体表现在:(1)因陶瓷膜本身硬度高、脆性大,能显著提升钛合金的耐磨性,但因陶瓷与钛合金基体的物性失配,常导致陶瓷膜与基体结合强度弱,同时在服役过程中在冲击载荷或点接触应力作用下,陶瓷膜极易产生裂纹,甚至开裂,最终导致失效;(2)对于陶瓷增强钛基复合材料,因陶瓷与钛合金基体物性差异,导致其界面润湿性能较差,在与人骨摩擦过程中,陶瓷颗粒在摩擦力作用下脱离钛合金基体,易感染植入体周围组织,在腐蚀磨损环境中,感染现象尤其明显。
发明内容
发明目的:本发明针对现有的钛基骨植入体存在的问题,提供一种低磨双重抗菌钛基纳米复合材料骨植入体,并提供了一种该钛基复合材料骨植入体的成形方法。
技术方案:本发明所述的低磨双重抗菌钛基纳米复合材料骨植入体,为原位生成的双相抗菌性纳米银及二氧化钛陶瓷增强钛合金骨植入体。
优选的,纳米银粒子及纳米二氧化钛陶瓷由钛合金粉末与微米氧化银颗粒在高能激光束作用下原位反应获得,原位反应过程为:2Ag2O+Ti→TiO2+4Ag;其中,微米氧化银颗粒的质量占其与钛合金粉末总质量的1~10%。
本发明所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,包括下述步骤:
(1)获取骨植入体三维模型,并对该三维模型进行分层切片处理;
(2)对微米氧化银颗粒真空干燥处理,将干燥后的微米氧化银颗粒与钛合金粉末湿式球磨混合后干燥,得到均匀混合的干燥微米氧化银-钛合金复合材料粉末;
(3)在高纯氩气保护气氛下,通过激光增材制造工艺将干燥微米氧化银-钛合金复合材料粉末原位成形纳米银粒子与纳米二氧化硅陶瓷分散于钛合金骨植入体中,得到低磨双重抗菌钛基纳米复合材料骨植入体。
上述步骤(2)中,真空干燥处理工艺条件优选为:真空干燥温度为60~80℃,干燥时间为5~10h。
成形原料中,优选干燥微米氧化银颗粒的质量占其与钛合金粉末总质量的1~10%。其中,钛合金粉末为医用球形钛合金粉末,其可为医用纯钛、Ti-Nb-Zr合金或Ti-Ta合金。进一步的,钛合金粉末的粒径为10~60μm,纯度为99.5%;微米氧化银颗粒平均粒径为15~40μm,纯度为99.9%。
较优的,步骤(2)中,将干燥的微米氧化银颗粒与钛合金粉末放入球磨罐中,利用高能球磨工艺进行湿式球磨混合,高能球磨工艺条件为:公转转速为100~250rpm,球磨罐自转转速为200~500rpm。
上述步骤(3)中,可将干燥微米氧化银-钛合金复合材料粉末放置于激光增材制造装备的粉料仓中,开启机械泵对成形腔体进行抽真空,当腔体内压强低于0.05Pa时,向腔体内通入高纯氩气,设定激光增材制造工艺条件,精密成形低磨双重抗菌钛基纳米复合材料骨植入体。
优选的,激光增材制造工艺条件为:高能激光束体能量密度为30~150J/m3,采用层错正交扫描策略。
发明原理:本发明基于钛与氧化银原位反应的热力学特性及纳米银粒子优异的抗菌功能,采用激光增材制造技术,通过原位反应2Ag2O+Ti→TiO2+4Ag,生成双相抗菌性的纳米尺度银与纳米二氧化钛粒子,大大增强了钛合金骨植入体的抗菌性能;而且,基于纳米银与二氧化钛粒子的抗菌能力与其尺度的依赖关系,可通过改变激光增材制造工艺参数,实现原位纳米粒子的可控生长,进而实现对抗菌功能的调控;另外,基于氧化银低熔点的物性特点,微米尺度的氧化银在高能激光束作用下完全熔化,与钛原位反应生成的纳米二氧化钛陶瓷与钛合金基体具有良好的界面结合强度,其分散于钛合金基体中,增强了钛合金植入体在人体生理条件的耐磨性能。
有益效果:与现有技术相比,本发明的有益效果在于:(1)本发明的钛基纳米复合材料骨植入体内分散有原位合成的双相抗菌的纳米级银与二氧化钛粒子,相对于单一抗菌型钛合金骨植入体而言,其拥有优异的持久抗菌功能,延长了植入体的服役寿命;(2)本发明原位生成的纳米二氧化钛陶瓷分散于钛合金骨植入体中,可进一步提升钛合金骨植入体的强度、降低腐蚀磨损率,钛合金骨植入体服役性能优异,具有良好的市场前景;(3)本发明采用先进的激光增材制造工艺,实现了高性能钛基纳米复合材料骨植入体的复杂结构、纳米复合材料及双重抗菌功能的一体化精密制造,该成形方法工艺简单,无需后续复杂工艺,大幅提升制造效率,避免多工艺带来的经济成本与外界细菌侵入;另外,通过改变激光增材制造工艺参数可实现原位纳米粒子的可控生长,进而实现对抗菌功能的调控。
附图说明
图1为实施例1成形的低磨双重抗菌钛基纳米复合材料骨植入体的显微组织图;
图2为实施例2成形的低磨双重抗菌钛基纳米复合材料骨植入体在模拟体液中的摩擦系数;
图3为实施例1~6成形的低磨双重抗菌钛基纳米复合材料骨植入体在模拟体液中的磨损率图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的低磨双重抗菌钛基纳米复合材料骨植入体为钛合金骨植入体,其内部含有具有抗菌性能的纳米银与二氧化钛双相粒子;其中,纳米银粒子及纳米二氧化钛陶瓷通过原位合成的方式形成并分散于钛合金骨植入体中。
纳米银粒子及纳米二氧化钛陶瓷可由钛合金粉末与微米氧化银颗粒在高能激光束作用下原位反应获得,原位反应过程为:2Ag2O+Ti→TiO2+4Ag;原料中,微米氧化银颗粒的质量占其与钛合金粉末总质量的1~10%。
基于纳米尺度银及二氧化钛双相抗菌粒子原位生成的热力学与动力学条件(2Ag2O+Ti→TiO2+4Ag),依据钛合金人工骨植入体在人体内低磨损、高抗菌性等服役功能需求及骨植入体精密成形的制造要求,本发明借助于激光增材制造技术,实现了高性能钛基纳米复合材料骨植入体的复杂结构、纳米复合材料及双重抗菌功能的一体化精密制造。
实施例1
(1)通过电子计算机断层扫描机扫描患者病变处的骨骼模型,获得空间三维模型,利用拓扑优化软件进行缺损处进行修补,生成完整的骨植入体模型,并对模型进行分层切片处理;
(2)将微米氧化银颗粒植入真空干燥炉中,设定干燥温度为70℃,干燥时间为5h,去除颗粒表面吸附的水分;
(3)将干燥的微米氧化银颗粒与医用球形钛合金粉末按微米氧化银颗粒的质量分数占比为1%称量后放置于球磨罐中,其中,氧化银平均粒径为15μm,纯度为99.9%,球形钛合金为医用纯钛,粒径为10~60μm,纯度为99.5%,并向球磨罐中加入不少于200ml无水乙醇,利用高能球磨工艺对所称量的粉末进行湿式球磨混合后干燥,公转转速为200rpm,球磨罐自转转速为400rpm,得到均匀混合的干燥微米氧化银-钛合金复合材料粉末;
(4)将干燥微米氧化银-钛合金复合材料粉末放置于激光增材制造装备的粉料仓中,开启机械泵对成形腔体进行抽真空,当腔体内压强低于0.05Pa,向腔体内通入高纯氩气,设定高能激光束体能量密度为30J/m3,采用层错正交扫描策略,精密成形低磨、纳米银与二氧化钛双重抗菌钛基纳米复合材料骨植入体。
本实施成形的低磨双重抗菌钛基纳米复合材料骨植入体的显微组织如图1,可以看到,成形的具有抗菌功能的纳米银粒子及纳米二氧化碳陶瓷原位分散于钛合金骨植入体中,且纳米二氧化钛粒子与钛合金基体界面无明显缺陷,界面结合良好。
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.8%,试验96h后抑菌率仍达到99.6%,具有良好的持久抗菌性能。
实施例2
参照实施例1的成形方法制备低磨双重抗菌钛基纳米复合材料骨植入体,区别在于:本实施例步骤(3)中采用的钛合金为Ti-Ta合金,氧化银平均粒径为40μm;步骤(4)中高能激光束体能量密度为150J/m3
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.5%,试验96h后抑菌率仍达到99.4%,具有良好的持久抗菌性能。
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行耐磨性能试验,如图2,可以看到,低磨双重抗菌钛基纳米复合材料骨植入体在模拟体液中的摩擦系数仅为0.05,且摩擦系数无起伏,表明摩擦过程较平稳。
实施例3
参照实施例2的成形方法制备低磨双重抗菌钛基纳米复合材料骨植入体,区别在于:本实施例步骤(3)中微米氧化银的质量分数占比为5%,氧化银平均粒径为15μm,采用的钛合金为Ti-Nb-Zr合金。
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.9%,试验96h后抑菌率仍达到99.8%,具有良好的持久抗菌性能。
实施例4
参照实施例3的成形方法制备低磨双重抗菌钛基纳米复合材料骨植入体,区别在于:本实施例步骤(3)中采用的钛合金为医用纯钛,氧化银平均粒径为40μm;步骤(4)中高能激光束体能量密度为90J/m3
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.9%,试验96h后抑菌率仍达到99.7%,具有良好的持久抗菌性能。
实施例5
参照实施例4的成形方法制备低磨双重抗菌钛基纳米复合材料骨植入体,区别在于:本实施例步骤(3)中采用的钛合金为Ti-Ta合金,氧化银平均粒径为15μm,微米氧化银的质量分数占比为10%。
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.9%,试验96h后抑菌率仍达到99.8%,具有良好的持久抗菌性能。
实施例6
参照实施例5的成形方法制备低磨双重抗菌钛基纳米复合材料骨植入体,区别在于:本实施例步骤(3)中采用的钛合金为Ti-Nb-Zr合金,氧化银平均粒径为40μm;步骤(4)中高能激光束体能量密度为120J/m3
对本实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体进行抗菌性能试验,选择金黄色葡萄球菌为试验对象,按照QB/T2591-2003《抗菌塑料-抗菌性能试验方法和抗菌效果》检测人工髋关节的抗菌性能,结果显示,试验24h后,钛合金髋关节对金黄色葡萄球菌的抑菌率均达到99.7%,试验96h后抑菌率仍达到99.4%,具有良好的持久抗菌性能。
实施例1~6成形的低磨双重抗菌钛基纳米复合材料骨植入体以金黄色葡萄球菌为试验对象进行24h及96h抗菌实验,结果表明,24h后钛合金髋关节对金黄色葡萄球菌的抑菌率均高于99.5%,同时96h后钛合金髋关节对金黄色葡萄球菌的抑菌率均高于99.4%,可见,本发明制得的低磨双重抗菌钛基纳米复合材料骨植入体具有优异的抗菌率及抗菌持久性。
实施例1~6成形的低磨双重抗菌钛基纳米复合材料骨植入体在模拟体液中的耐磨性能如图3,可以看到,上述实施例成形的低磨双重抗菌钛基纳米复合材料骨植入体磨损率均低于4.5×10-5mm3/N·m;可见,本发明不同成形工艺下成形的低磨双重抗菌钛基纳米复合材料骨植入体不仅拥有良好的抗菌持久性,且拥有良好的耐腐蚀磨损性能,上述性能测试结果说明本发明提供的低磨双重抗菌钛基纳米复合材料骨植入体具有优异的综合服役性能。

Claims (10)

1.一种低磨双重抗菌钛基纳米复合材料骨植入体,其特征在于,该钛基纳米复合材料骨植入体为原位生成的双相抗菌性纳米银及二氧化钛陶瓷增强钛合金骨植入体。
2.根据权利要求1所述的低磨双重抗菌钛基纳米复合材料骨植入体,其特征在于,所述纳米银粒子及纳米二氧化钛陶瓷由钛合金粉末与微米氧化银颗粒在高能激光束作用下原位反应获得,其中,微米氧化银颗粒的质量占其与钛合金粉末总质量的1~10%。
3.一种权利要求1所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,包括下述步骤:
(1)获取骨植入体三维模型,并对该三维模型进行修复及分层切片处理;
(2)对微米氧化银颗粒真空干燥处理,将干燥后的微米氧化银颗粒与钛合金粉末湿式球磨混合后干燥,得到均匀混合的干燥微米氧化银-钛合金复合材料粉末;
(3)在高纯氩气保护气氛下,通过激光增材制造工艺将干燥微米氧化银-钛合金复合材料粉末原位成形纳米银粒子与纳米二氧化硅陶瓷分散于钛合金骨植入体中,得到低磨双重抗菌钛基纳米复合材料骨植入体。
4.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(2)中,所述真空干燥处理工艺条件为:真空干燥温度为60~80℃,干燥时间为5~10h。
5.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(2)中,所述干燥微米氧化银颗粒的质量占其与钛合金粉末总质量的1~10%。
6.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(2)中,将干燥的微米氧化银颗粒与钛合金粉末放入球磨罐中,利用高能球磨工艺进行湿式球磨混合,所述高能球磨工艺条件为:公转转速为100~250rpm,球磨罐自转转速为200~500rpm。
7.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(2)中,所述钛合金粉末为医用球形钛合金粉末,该医用球形钛合金为医用纯钛、Ti-Nb-Zr合金或Ti-Ta合金。
8.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(2)中,所述钛合金粉末的粒径为10~60μm,纯度为99.5%;所述微米氧化银颗粒平均粒径为15~40μm,纯度为99.9%。
9.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(3)中,将所述干燥微米氧化银-钛合金复合材料粉末放置于激光增材制造装备的粉料仓中,开启机械泵对成形腔体进行抽真空,当腔体内压强低于0.05Pa时,向腔体内通入高纯氩气,设定激光增材制造工艺条件,精密成形低磨双重抗菌钛基纳米复合材料骨植入体。
10.根据权利要求3所述的低磨双重抗菌钛基纳米复合材料骨植入体的成形方法,其特征在于,步骤(3)中,所述激光增材制造工艺条件为:高能激光束体能量密度为30~150J/m3,采用层错正交扫描策略。
CN201810203105.5A 2018-03-13 2018-03-13 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法 Active CN108543109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810203105.5A CN108543109B (zh) 2018-03-13 2018-03-13 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810203105.5A CN108543109B (zh) 2018-03-13 2018-03-13 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法

Publications (2)

Publication Number Publication Date
CN108543109A true CN108543109A (zh) 2018-09-18
CN108543109B CN108543109B (zh) 2020-09-18

Family

ID=63516066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810203105.5A Active CN108543109B (zh) 2018-03-13 2018-03-13 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法

Country Status (1)

Country Link
CN (1) CN108543109B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039041A (zh) * 2019-04-22 2019-07-23 依波精品(深圳)有限公司 抗菌不锈钢复合粉体、抗菌不锈钢及其制备方法
CN111922340A (zh) * 2020-06-30 2020-11-13 吉林大学 一种激光烧结制备医用钛合金材料的方法
EP3757257A1 (en) 2019-06-25 2020-12-30 Politechnika Slaska The formation method of porous antibacterial coatings on titanium and titanium alloys surface
EP3816327A1 (en) 2019-06-25 2021-05-05 Politechnika Slaska The formation method of porous antibacterial coatings on titanium and titanium alloys surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152775A1 (en) * 1999-02-26 2001-11-14 Advanced Cardiovascular Systems, Inc. Composite super elastic/shape memory alloy and malleable alloy stent
CN102758202A (zh) * 2012-08-11 2012-10-31 西北有色金属研究院 一种医用钛及钛合金表面抗菌涂层的制备方法
CN105435305A (zh) * 2015-12-17 2016-03-30 西南交通大学 一种多孔钛复合材料及其制备方法
CN106745237A (zh) * 2016-12-30 2017-05-31 尹宗杰 一种层铸成型石墨烯‑非金属‑金属复合材料及制备方法
CN107130138A (zh) * 2017-05-19 2017-09-05 淮阴工学院 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152775A1 (en) * 1999-02-26 2001-11-14 Advanced Cardiovascular Systems, Inc. Composite super elastic/shape memory alloy and malleable alloy stent
CN102758202A (zh) * 2012-08-11 2012-10-31 西北有色金属研究院 一种医用钛及钛合金表面抗菌涂层的制备方法
CN105435305A (zh) * 2015-12-17 2016-03-30 西南交通大学 一种多孔钛复合材料及其制备方法
CN106745237A (zh) * 2016-12-30 2017-05-31 尹宗杰 一种层铸成型石墨烯‑非金属‑金属复合材料及制备方法
CN107130138A (zh) * 2017-05-19 2017-09-05 淮阴工学院 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039041A (zh) * 2019-04-22 2019-07-23 依波精品(深圳)有限公司 抗菌不锈钢复合粉体、抗菌不锈钢及其制备方法
EP3757257A1 (en) 2019-06-25 2020-12-30 Politechnika Slaska The formation method of porous antibacterial coatings on titanium and titanium alloys surface
EP3816327A1 (en) 2019-06-25 2021-05-05 Politechnika Slaska The formation method of porous antibacterial coatings on titanium and titanium alloys surface
CN111922340A (zh) * 2020-06-30 2020-11-13 吉林大学 一种激光烧结制备医用钛合金材料的方法

Also Published As

Publication number Publication date
CN108543109B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN108543109A (zh) 低磨双重抗菌钛基纳米复合材料骨植入体及其成形方法
CN106420119B (zh) 一种高抗菌性钛合金人工髋关节的成形方法
CN107952962B (zh) 一种功能梯度仿生结构钛合金人工植入体及其成形方法
CN108705092B (zh) 一种3d打印原位稀土掺杂钛基复合材料活性骨植入体及成形方法
CN104195367B (zh) 一种低弹性模量生物医用TiNbSn-HA复合材料的制备方法
CN105648270B (zh) 一种3d打印制备的稀土钛合金材料
CN108588520B (zh) 激光原位强韧化镁基纳米复合材料骨植入体及其成形方法
US20110195378A1 (en) Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof
CN106902390A (zh) 一种钛合金植入体复合材料及其制备与应用
CN110938816B (zh) 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
CN108971500A (zh) 高耐蚀性原位纳米碳化物增强不锈钢植入体及其成形方法
CN108578763A (zh) 石墨烯改性的牙科种植体及其制备方法
CN107475564B (zh) 一种高强致密钛合金-陶瓷生物复合材料的制备方法
Raj et al. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement
CN108380890A (zh) 一种低弹模钛锆牙科种植体材料及其制备方法
CN105400990A (zh) 一种低模量高强度生物医用钛合金及其制备方法
CN101988182A (zh) 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝
CN110524000A (zh) 一种3d打印医用钛合金粉末材料的制备方法
CN106630997A (zh) 骨骼修复用复合生物陶瓷的制备方法
CN104152840A (zh) 一种制备具有特殊微纳结构TiO2/Ta2O5复合涂层的方法
CN109332700A (zh) 一种TiB增强医用多孔钛的制备方法
CN102168242B (zh) 一种多孔NiTi合金表面低温制备彩色二氧化钛薄膜的方法
Sun et al. Graded nano glass-zirconia material for dental applications-part II biocompatibility evaluation
CN104651829B (zh) 一种生物医用Ti-Sn涂覆层合金和医用牙科合金的制备方法
CN112063878B (zh) 一种表面具有微纳结构的减磨医用钛合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant