CN108533238B - 一种封堵聚驱后优势渗流通道的方法 - Google Patents

一种封堵聚驱后优势渗流通道的方法 Download PDF

Info

Publication number
CN108533238B
CN108533238B CN201810345789.2A CN201810345789A CN108533238B CN 108533238 B CN108533238 B CN 108533238B CN 201810345789 A CN201810345789 A CN 201810345789A CN 108533238 B CN108533238 B CN 108533238B
Authority
CN
China
Prior art keywords
profile control
well
plugging
injection
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810345789.2A
Other languages
English (en)
Other versions
CN108533238A (zh
Inventor
程杰成
周万富
周泉
吕杭
韩培慧
王鑫
刘向斌
曹瑞波
孙刚
王庆国
高淑玲
王力
李萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Daqing Oilfield Co Ltd
Original Assignee
Petrochina Co Ltd
Daqing Oilfield Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd, Daqing Oilfield Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201810345789.2A priority Critical patent/CN108533238B/zh
Publication of CN108533238A publication Critical patent/CN108533238A/zh
Application granted granted Critical
Publication of CN108533238B publication Critical patent/CN108533238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Medicinal Preparation (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

本发明涉及油田化学领域,属于针对油田的一种封堵聚驱后优势渗流通道的方法。本发明有效解决了现有封堵方法封堵优势渗流通道的同时对中低渗透层的伤害,而且解决了聚驱后难以深部定点封堵的问题。首先制备低初粘可控凝胶调堵剂,将制备好的调堵剂分为四个段塞注入地层,利用低初粘可控凝胶调堵剂本身的自然选择功能以达到调堵剂选择性地进入要求封堵的高渗透层段,使调堵剂不进入或少进入不需要封堵的中低渗透地层,实现定位定点调堵。本发明具有只封堵优势渗流通道,减少调剖段塞数,简化了调剖施工流程等优点。

Description

一种封堵聚驱后优势渗流通道的方法
技术领域:本发明涉及油田开发用领域,属于一种针对聚驱后优势渗流通道实现深部定位定点封堵的方法。
背景技术:目前常用的封堵方法是靠选择性注入工艺,在一定的注入压力条件下,向地层中注入常规凝胶调堵剂或者颗粒类调堵剂,对优势渗流通道进行封堵。该方法无法对聚驱后优势渗流通道进行封堵、调堵剂进入高渗透层的同时也污染中低渗透层;同时该方法无法实现油层深部的定点调堵,而且在油田现场进行封堵时,所采用的调剖段塞数较多,需要频繁调整段塞组合以达到封堵效果,操作复杂。
发明内容:本发明为解决生产实际问题,提出一种适用于聚驱后调堵的解决办法。本发明只封堵优势渗流通道、不伤害中低渗透层,而且可实现聚驱后深部定点封堵的目的,并且减少注入段塞轮次,简化现场调堵操作。
一种封堵聚驱后优势渗流通道的方法,其特征在于:所述的方法包括以下步骤:
a、筛选调剖井:分析油田区块的开发简况和油层动用情况,选择聚驱后注入能力高、动用状况不均衡、注入压力低、井下管柱状况良好,无套损、近3年内周围无新钻井的注入井;
b、制备低初粘可控凝胶调堵剂,该调堵剂按重量百分比由下列成分组成:0.05%的聚丙烯酰胺、0.2%的Cr3+交联剂、0.01%的水杨酸、0.05%的氯化镁、0.05%的尿素和0.02%的亚硫酸钠;
c、调整剖面半径为50~70m,计算低初粘可控凝胶调堵剂体系的单井注入量V=H×π×R2×Ф;
其中:V—低初粘可控凝胶调堵剂注入量,m3
H—砂岩厚度,m
R—调剖半径,m
Ф—单井层段的孔隙度,%
d、注入井进行调前示踪剂测试;
e、对调剖井进行第一段塞注入,采用浓度为1000-1500mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的22-25%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为20-30天,低初粘可控凝胶调堵剂可进入油层深部对高渗层封堵;
f、对调剖井进行第二段塞注入,采用浓度为500-1000mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的47-50%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为50-60天,进入地层深部进行调整剖面;
g、对调剖井进行第三段塞注入,采用浓度为1000-1500mg/L的低初粘可控凝胶调堵剂封堵近井地带的大孔道、高渗透层,调剖剂量占单井注入量的22-25%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为30-40天;
h、调剖井关井候凝15天后,对调剖井进行封口段塞注入,采用浓度为3500-4000mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的3-5%,施工周期为10天;
j、关井候凝5天后转正常注水。
本发明与现有封堵方法相比有如下优点:
1)、本发明只封堵优势渗流通道,注入调堵剂只进入高渗透层,不进入、伤害中低渗透层;
2)、本发明可实现聚驱后深部定点封堵;
3)、本发明注入单一调堵剂体系,减少了调剖段塞数,简化了调剖施工流程。
具体实施方式:下面结合具体实施方式对本发明作进一步详细描述:
实施例1
a、筛选调剖井1;
b、制备低初粘可控凝胶调堵剂,该调堵剂按重量百分比由下列成分组成:0.05%的聚丙烯酰胺、0.2%的Cr3+交联剂、0.01%的水杨酸、0.05%的氯化镁、0.05%的尿素和0.02%的亚硫酸钠;
c、调整剖面半径R为55m,砂岩厚度H为3.6m,单井层段的孔隙度Ф为27%,计算低初粘可控凝胶调堵剂体系的单井注入量V=H×π×R2×Ф=3.6×3.14×552×0.27=9232m3
d、注入井进行调前示踪剂测试;
e、对调剖井进行第一段塞注入,采用浓度为1000mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的22%,为2031m3,整个注入过程压力升高幅度为0.6MPa,施工周期为20天,低初粘可控凝胶调堵剂可进入油层深部对高渗层封堵;
f、对调剖井进行第二段塞注入,采用浓度为500mg/L的低初粘可控凝胶,调剖剂量占单井注入量的48%,为4431m3,整个注入过程压力升高幅度为0.5MPa,施工周期为50天,进入地层深部进行调整剖面;
g、对调剖井进行第三段塞注入,采用浓度为1000mg/L的低初粘可控凝胶封堵近井地带的大孔道、高渗透层,调剖剂量占单井注入量的25%,为2308m3,整个注入过程压力升高幅度为0.7MPa,施工周期为30天;
h、调剖井关井候凝15天后,对调剖井进行封口段塞注入,采用浓度为3500mg/L的低初粘可控凝胶,调剖剂量占单井注入量的5%,为462m3,施工周期为10天;
j、关井候凝5天后转正常注水。
现场试验注入压力由9.6MPa平稳上升至11.6MPa,升高了2MPa;
高渗层吸液比例由70.1%降到32.1%,现场试验效果较好。
实施例2
a、筛选调剖井2;
b、制备低初粘可控凝胶调堵剂,该调堵剂按重量百分比由下列成分组成:0.05%的聚丙烯酰胺、0.2%的Cr3+交联剂、0.01%的水杨酸、0.05%的氯化镁、0.05%的尿素和0.02%的亚硫酸钠;
c、调整剖面半径R为55m,砂岩厚度H为2.8m,单井层段的孔隙度Ф为27%,计算低初粘可控凝胶调堵剂体系的单井注入量V=H×π×R2×Ф=2.8×3.14×552×0.27=7180m3
d、注入井进行调前示踪剂测试;
e、对调剖井进行第一段塞注入,采用浓度为1500mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的25%,为1795m3,整个注入过程压力升高幅度为0.5MPa,施工周期为24天,低初粘可控凝胶调堵剂可进入油层深部对高渗层封堵;
f、对调剖井进行第二段塞注入,采用浓度为1000mg/L的低初粘可控凝胶,调剖剂量占单井注入量的50%,为3590m3,整个注入过程压力升高幅度为0.6MPa,施工周期为55天,进入地层深部进行调整剖面;
g、对调剖井进行第三段塞注入,采用浓度为1500mg/L的低初粘可控凝胶封堵近井地带的大孔道、高渗透层,调剖剂量占单井注入量的22%,为1579m3,整个注入过程压力升高幅度为0.7MPa,施工周期为33天;
h、调剖井关井候凝15天后,对调剖井进行封口段塞注入,采用浓度为4000mg/L的低初粘可控凝胶,调剖剂量占单井注入量的5%,为216m3,施工周期为10天;
j、关井候凝5天后转正常注水。
现场试验注入压力由7.2MPa上升至9.8MPa,升高了2.6MPa;高渗层吸液比例由69.5%降到30.7%,现场试验效果较好。
实施例3
a、筛选调剖井3;
b、制备低初粘可控凝胶调堵剂,该调堵剂按重量百分比由下列成分组成:0.05%的聚丙烯酰胺、0.2%的Cr3+交联剂、0.01%的水杨酸、0.05%的氯化镁、0.05%的尿素和0.02%的亚硫酸钠;
c、调整剖面半径R为60m,砂岩厚度H为2.6m,单井层段的孔隙度Ф为27%,计算低初粘可控凝胶调堵剂体系的单井注入量V=H×π×R2×Ф=2.6×3.14×602×0.27=7935m3
d、注入井进行调前示踪剂测试;
e、对调剖井进行第一段塞注入,采用浓度为1300mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的23%,为1825m3,整个注入过程压力升高幅度为0.7MPa,施工周期为28天,低初粘可控凝胶调堵剂可进入油层深部对高渗层封堵;
f、对调剖井进行第二段塞注入,采用浓度为800mg/L的低初粘可控凝胶,调剖剂量占单井注入量的49%,为3888m3,整个注入过程压力升高幅度为0.6MPa,施工周期为60天,进入地层深部进行调整剖面;
g、对调剖井进行第三段塞注入,采用浓度为1200mg/L的低初粘可控凝胶封堵近井地带的大孔道、高渗透层,调剖剂量占单井注入量的24%,为1904m3,整个注入过程压力升高幅度为0.7MPa,施工周期为40天;
h、调剖井关井候凝15天后,对调剖井进行封口段塞注入,采用浓度为3700mg/L的低初粘可控凝胶,调剖剂量占单井注入量的4%,为318m3,施工周期为10天;
现场试验注入压力由6.4MPa上升至10.2MPa,升高了3.8MPa;
高渗层吸液比例由71.5%降到33%,现场试验效果较好。

Claims (1)

1.一种封堵聚驱后优势渗流通道的方法,其特征在于:所述的方法包括以下步骤:
a、筛选调剖井:分析油田区块的开发简况和油层动用情况,选择聚驱后注入能力高、动用状况不均衡、注入压力低、井下管柱状况良好,无套损、近3年内周围无新钻井的注入井;
b、制备低初粘可控凝胶调堵剂,该调堵剂按重量百分比由下列成分组成:0.05%的聚丙烯酰胺、0.2%的Cr3+交联剂、0.01%的水杨酸、0.05%的氯化镁、0.05%的尿素和0.02%的亚硫酸钠;
c、调整剖面半径为50~70m,计算低初粘可控凝胶调堵剂体系的单井注入量V=H×π×R2×Ф;
其中:V—低初粘可控凝胶调堵剂注入量,m3
H—砂岩厚度,m
R—调剖半径,m
Ф—单井层段的孔隙度,%
d、注入井进行调前示踪剂测试;
e、对调剖井进行第一段塞注入,采用浓度为1000-1500mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的22-25%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为20-30天,低初粘可控凝胶调堵剂可进入油层深部对高渗层封堵;
f、对调剖井进行第二段塞注入,采用浓度为500-1000mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的47-50%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为50-60天,进入地层深部进行调整剖面;
g、对调剖井进行第三段塞注入,采用浓度为1000-1500mg/L的低初粘可控凝胶调堵剂封堵近井地带的大孔道、高渗透层,调剖剂量占单井注入量的22-25%,整个注入过程压力升高幅度控制在0.5-1MPa,施工周期为30-40天;
h、调剖井关井候凝15天后,对调剖井进行封口段塞注入,采用浓度为3500-4000mg/L的低初粘可控凝胶调堵剂,调剖剂量占单井注入量的3-5%,施工周期为10天;
j、关井候凝5天后转正常注水。
CN201810345789.2A 2018-04-18 2018-04-18 一种封堵聚驱后优势渗流通道的方法 Active CN108533238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810345789.2A CN108533238B (zh) 2018-04-18 2018-04-18 一种封堵聚驱后优势渗流通道的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810345789.2A CN108533238B (zh) 2018-04-18 2018-04-18 一种封堵聚驱后优势渗流通道的方法

Publications (2)

Publication Number Publication Date
CN108533238A CN108533238A (zh) 2018-09-14
CN108533238B true CN108533238B (zh) 2020-04-24

Family

ID=63481295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810345789.2A Active CN108533238B (zh) 2018-04-18 2018-04-18 一种封堵聚驱后优势渗流通道的方法

Country Status (1)

Country Link
CN (1) CN108533238B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611051B (zh) * 2018-10-31 2020-12-22 东北石油大学 一种优势渗流通道的压裂封堵方法
CN110259410A (zh) * 2019-06-28 2019-09-20 山东德仕石油装备有限公司 一种高含水油井不动管柱实现堵水的方法
CN112983369B (zh) * 2019-12-12 2022-10-04 中国石油天然气股份有限公司 一种蒸汽吞吐超稠油井三段塞高温调剖方法
CN111577231A (zh) * 2020-05-14 2020-08-25 中国石油天然气股份有限公司 一种通过反向调驱提高水淹油井堵水效果的方法
CN114075941B (zh) * 2020-08-17 2023-06-30 中国石油天然气股份有限公司 一种延长稀油注水井深部调剖有效期的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788228A (en) * 1986-12-24 1988-11-29 American Cyanamid Company High temperature profile modification agents and methods for using same
US9701887B2 (en) * 2006-11-28 2017-07-11 Spi Technologies, Llc Multi-component aqueous gel solution for control of delayed gelation timing and for resulting gel properties
CN102116143B (zh) * 2010-12-30 2014-04-02 长江大学 聚合物驱后油藏本源微生物采油方法
CN102358835B (zh) * 2011-09-02 2013-08-21 北京世通华奥油田化学技术有限公司 用于油田的交联剂制备方法
CN105670593B (zh) * 2016-01-27 2021-12-28 东北石油大学 一种新的Cr3+聚合物凝胶及其与水交替注入调驱方法
CN106285589B (zh) * 2016-08-16 2019-06-25 中国石油化工股份有限公司 一种提高三元复合驱采收率的方法
CN106761548B (zh) * 2016-12-30 2019-02-12 中国石油天然气股份有限公司 一种利用压裂将封堵剂注入厚油层封堵强水洗条的方法
CN107254301A (zh) * 2017-08-06 2017-10-17 大庆东油睿佳石油科技有限公司 一种高渗孔道型油藏铬铝离子复配调剖剂及其使用方法

Also Published As

Publication number Publication date
CN108533238A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108533238B (zh) 一种封堵聚驱后优势渗流通道的方法
US3741307A (en) Oil recovery method
CN107387053B (zh) 一种大通道主裂缝与复杂缝网协同压裂的方法
CN105298438B (zh) 多轮次聚合物凝胶深部精细调剖方法
US4031958A (en) Plugging of water-producing zones in a subterranean formation
WO2019223346A1 (zh) 一种封闭断块油藏氮气复合吞吐方法
US5314019A (en) Method for treating formations
US5067564A (en) Selective placement of a permeability-reducing material to inhibit fluid communication between a near well bore interval and an underlying aquifer
RU2456439C1 (ru) Способ выравнивания профиля приемистости нагнетательных скважин и ограничения водопритока в добывающие скважины
CN109577909A (zh) 一种特低渗透油田选择性泡沫凝胶堵水调剖方法
CN101086210A (zh) 一种煤层气调剖堵水技术
CN107269255B (zh) 一种通过簇间驱油开采致密油的方法及装置
CN110593806B (zh) 一种大剂量多段塞的堵水方法
CN108071378B (zh) 一种适用于致密油气藏的co2泡沫压裂方法
CN111577198A (zh) 一种利用地层预交联凝胶堵水剂控水增油的堵压一体化重复改造方法
CN113216923A (zh) 一种提高缝网支撑效果的页岩气压裂造缝和加砂交替工艺
US4129182A (en) Miscible drive in heterogeneous reservoirs
CN111058824B (zh) 一种强非均质砂岩储层过筛管暂堵分流酸化方法
CN104213885A (zh) 酸化调剖一体化方法
US4679625A (en) Oil recovery process using a viscosity adjusted gelation system
CN111706310A (zh) 页岩气前置复杂缝网构建压裂技术
CN105715245A (zh) 低渗低压煤层气储层氮气饱和水力压裂工艺
US3707191A (en) Gel fluid water flooding method
Wu et al. Research and Application of Retreatment Technology to Tap Remaining Oil in Chang Qing Low Permeability Oilfield
CN113309502A (zh) 一种增大深层页岩气储层改造体积的压裂方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant