CN108531904A - 一种耐磨涂层及其制备方法 - Google Patents

一种耐磨涂层及其制备方法 Download PDF

Info

Publication number
CN108531904A
CN108531904A CN201810274830.1A CN201810274830A CN108531904A CN 108531904 A CN108531904 A CN 108531904A CN 201810274830 A CN201810274830 A CN 201810274830A CN 108531904 A CN108531904 A CN 108531904A
Authority
CN
China
Prior art keywords
powder
coating
laser
wear
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810274830.1A
Other languages
English (en)
Inventor
陈亮维
全琪
李平安
易健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810274830.1A priority Critical patent/CN108531904A/zh
Publication of CN108531904A publication Critical patent/CN108531904A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开一种耐磨涂层及其制备方法,所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉20~25%,硅铁粉12~20%,锰铁粉3~7%,钼铁粉2~4%,钛铁粉2~3%,纯Co粉10~14%,稀土粉末0.1~2%,纯铁粉30~45%,WC颗粒0.2~0.5%。制备方法包括三个步骤:激光熔覆、热处理、急冷处理。本发明制得的涂层的耐磨性大大提高。

Description

一种耐磨涂层及其制备方法
技术领域
本发明涉及一种耐磨涂层及其制备方法,属于激光熔覆制备耐磨涂层的制造领域。
发明背景
激光熔凝过程是快速冷却的过程,金属材料组织不仅继承了原始奥氏体中的缺陷还会形成较多的缺陷,熔凝层组织内存在大量的晶界、位错等微观亚结构,从而减缓了再结晶过程、细化了亚结构,提高了位错密度和晶格中的应力,加强了硬化效果。由于激光熔凝处理时的能量密度较大,在激光的快速加热和快速冷却过程中,基体中的一次碳化物及网状的脆性碳化物充分溶解,冷却时碳和合金元素来不及析出,固溶于奥氏体中,其固溶度明显高于常规热处理组织。同时基体中的强碳化物形成元素Cr、Mo、Co等可以提高α相的形核功和转变激活能,增加了γ相中的原子间结合力,从而使γ-Fe的自扩散激活能提高,增加了奥氏体的稳定性。其次,奥氏体中固溶的碳及合金元素是强碳化物形成元素,与碳原子的结合力较强,阻碍了碳的扩散、碳化物的析出及长大,可以提高奥氏体的分解温度,与传统的硬化技术相比,激光熔凝过程不需要使用外部冷却液,而且激光熔凝的温度循环时间一般为几百微秒到几秒,利用激光熔凝技术可以在钢件或零部件的表面形成较硬的耐磨层,这种技术特别适合尺寸较小、几何形状复杂的零部件的表面硬化。例如:CN103302287A公开了一种用于耐磨耐蚀涂层的铁基粉末及制备方法,各元素重量比组成:FeaCrbNicSidBeMnfCgMohNbiCujCokRel,该粉末按不同比例球磨混合,之后利用激光熔覆或热喷涂工艺在基材表面形成铁基涂层;CN104313531A采用等离子体喷涂工艺制备了铁基涂层,能提高锅炉管束的耐蚀耐磨及高温性能;CN103668177A利用Cr、Al、Cu、Ni粉末辅以激光熔覆方法,在碳钢表面得到涂层,大幅度提高了碳钢表面硬度、耐磨耐蚀性等。热处理的作用主要是针对非平衡加工工艺制备的涂层进行残余应力的消除和晶粒的改善。淬火是针对耐磨材料的表面进行的工艺。但现有技术制备的涂层存在涂层与基体结合不紧密,涂层耐磨性能不好的缺陷。
发明内容
本发明目的在于提供一种由铁基合金粉末采用激光加工制备出的非晶涂层(耐磨涂层),涂层性能优异且结合紧密。
本发明所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉20~25%,硅铁粉12~20%,锰铁粉3~7%,钼铁粉2~4%,钛铁粉2~3%,纯Co粉10~14%,稀土粉末0.1~2%,纯铁粉30~45%,WC颗粒0.2~0.5%。
所述耐磨涂层制备方法包括以下步骤:
(1)激光熔覆:打磨基体表面,喷砂处理至粗糙度Ra 2.5-5.0μm,再用无水乙醇清洁晾干;用球磨机研磨熔覆材料,过200目筛,于50~100℃干燥2h;在基体上利用激光加工仪器对熔覆材料进行激光熔覆,得到涂层。激光加工参数:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3~5kW,扫描速度200~400mm·min-1,光斑直径:2.5~4mm,正离焦量:20~ 60mm;
(2)热处理:将步骤(1)制得的涂层在400~650℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到“内韧外硬”的淬火涂层,即所述耐磨涂层。激光淬火的工艺是:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3~5kW,扫描速度600~800mm·min-1,光斑直径:2.5~4mm,正离焦量:20~ 60mm。
本发明的优点在于:
1)熔覆粉末采用混杂铁粉等物质,拟得出多种硬质相共存的涂层,使涂层的耐磨性能大大提高;
2)碳钢表面和混铁物质能产生结合良好的涂层;
3)激光熔覆拥有冷却速度快的特点,有利于非晶-纳米涂层。
附图说明
图1是各实施例摩擦磨损失重量的比较图。
具体实施方式
为了加深对本发明的理解,下面结合实施例对本发明作进一步详述,实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
实施例1
所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉20%,硅铁粉20%,锰铁粉7%,钼铁粉3%,钛铁粉2%,纯Co粉10%,稀土粉末1%,纯铁粉36.5%,WC颗粒0.5%。
制备方法:(1)激光熔覆:采用Q235碳钢板为基体,尺寸为20mm×20mm×10mm,打磨钢板表面,并用喷砂机处理表面,粗糙度Ra 5.0μm;再用无水乙醇洗拭Q235钢板工作表面并晾干,待用;用球磨机研磨熔覆材料,并用200目筛网筛出细粉;将研磨后的混合粉放于烘箱,于50℃干燥2h;将Q235钢板置于被加工区域,预置熔覆粉末,调整激光器坐标;将激光头和保护气嘴对准被加工的粉末,打开保护气Ar气,控制流速;打开激光器,控制加工速度和激光功率,得到涂层;激光加工参数:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3kW,扫描速度340mm·min-1,光斑直径:3mm,正离焦量:40mm;
(2)热处理:将步骤(1)制得的涂层在400℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到“内韧外硬”的淬火涂层,即所述耐磨涂层。激光淬火工艺:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3kW,扫描速度600mm·min-1,光斑直径:2.5mm,正离焦量:20mm。
将得到的耐磨涂层进行摩擦磨损实验,求得摩损量。实验结果如图1所示,失重量约为10mg。
实施例2
所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉25%,硅铁粉12%,锰铁粉3%,钼铁粉4%,钛铁粉3%,纯Co粉14%,稀土粉末2%,纯铁粉36.5%,WC颗粒0.5%。
制备方法:(1)激光熔覆:采用Q235碳钢板为基体,尺寸为20mm×20mm×10mm,打磨钢板表面,并用喷砂机处理表面,粗糙度Ra 3μm;用无水乙醇洗拭Q235钢板工作表面并晾干,待用;用球磨机研磨熔覆材料,并用200目筛网筛出细粉;将研磨后的混合粉放于烘箱,于70℃干燥2h;将Q235钢板置于被加工区域,预置熔覆粉末,调整激光器坐标;将激光头和保护气嘴对准被加工的粉末,打开保护气Ar气,控制流速;打开激光器,控制加工速度和激光功率,得到涂层;激光加工参数:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3.2kW,扫描速度300mm·min-1,光斑直径:2.5mm,正离焦量:40mm;
(2)热处理:将步骤(1)制得的涂层在450℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到“内韧外硬”的淬火涂层,即所述耐磨涂层。激光淬火工艺:CO2气体激光器,激光波长:10.6μm,激光束输出功率:4kW,扫描速度800mm·min-1,光斑直径:4mm,正离焦量:40mm。
将得到的耐磨涂层进行摩擦磨损实验,求得摩损量。实验结果如图1所示,失重量约为8mg。
实施例3
所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉22%,硅铁粉18%,锰铁粉7%,钼铁粉3%,钛铁粉3%,纯Co粉12%,稀土粉末0.5%,纯铁粉34.2%,WC颗粒0.3%。
制备方法:(1)激光熔覆:采用Q235碳钢板为基体,尺寸为20mm×20mm×10mm,打磨钢板表面,并用喷砂机处理表面,粗糙度Ra 4μm;用无水乙醇洗拭Q235钢板工作表面并晾干,待用;用球磨机研磨熔覆材料,并用200目筛网筛出细粉;将研磨后的混合粉放于烘箱,于80℃干燥2h;将Q235钢板置于被加工区域,预置熔覆粉末,调整激光器坐标;将激光头和保护气嘴对准被加工的粉末,打开保护气Ar气,控制流速;打开激光器,控制加工速度和激光功率,得到涂层;激光加工参数:CO2气体激光器,激光波长:10.6μm,激光束输出功率:5kW,扫描速度400mm·min-1,光斑直径:3mm,正离焦量:60mm;
(2)热处理:将步骤(1)制得的涂层在500℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到“内韧外硬”的淬火涂层,即所述耐磨涂层。激光淬火工艺:CO2气体激光器,激光波长:10.6μm,激光束输出功率:5kW,扫描速度800mm·min-1,光斑直径:3mm,正离焦量:30mm。
将得到的耐磨涂层进行摩擦磨损实验,求得摩损量。实验结果如图1所示,失重量约为7mg。
实施例4
所述耐磨涂层采用的熔覆材料包括如下组分(质量百分比):硼铁粉20%,硅铁粉12%,锰铁粉7%,钼铁粉3%,钛铁粉2%,纯Co粉10%,稀土粉末0.5%,纯铁粉45%,WC颗粒0.5%。
制备方法:(1)激光熔覆:采用Q235碳钢板为基体,尺寸为20mm×20mm×10mm,打磨钢板表面,并用喷砂机处理表面,粗糙度Ra 2.5μm;用无水乙醇洗拭Q235钢板工作表面并晾干,待用;用球磨机研磨熔覆材料,并用200目筛网筛出细粉;将研磨后的混合粉放于烘箱,于100℃干燥2h;将Q235钢板置于被加工区域,预置熔覆粉末,调整激光器坐标;将激光头和保护气嘴对准被加工的粉末,打开保护气Ar气,控制流速;打开激光器,控制加工速度和激光功率,得到涂层;激光加工参数:CO2气体激光器,激光波长:10.6μm,激光束输出功率:4kW,扫描速度200mm·min-1,光斑直径:4mm,正离焦量:20mm;
(2)热处理:将步骤(1)制得的涂层在650℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到“内韧外硬”的淬火涂层,即所述耐磨涂层。激光淬火工艺:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3kW,扫描速度700mm·min-1,光斑直径:3mm,正离焦量:60mm。
将得到的耐磨涂层进行摩擦磨损实验,求得摩损量。实验结果如图1所示,失重量约为11mg。
通过上述实验分析:基体Q235钢的耐磨性较差,其磨损最大,如图1所示,而经过本发明设计的工艺,涂层的耐磨性提高,特别是实施例3的试样,涂层耐磨性最好。

Claims (4)

1.一种用于制备耐磨涂层的熔覆材料,其组分以质量百分比计如下:硼铁粉20~25%,硅铁粉12~20%,锰铁粉3~7%,钼铁粉2~4%,钛铁粉2~3%,纯Co粉10~14%,稀土粉末0.1~2%,纯铁粉30~45%和WC颗粒0.2~0.5%。
2.一种耐磨涂层的制备方法,包括以下步骤:
(1)激光熔覆:打磨基体表面,喷砂处理至粗糙度Ra 2.5-5.0μm,再用无水乙醇清洁晾干;用球磨机研磨熔覆材料,过200目筛,于50~100℃干燥2h;在基体上对熔覆材料进行激光熔覆,得到涂层;
(2)热处理:将步骤(1)制得的涂层在400~650℃进行真空热处理;
(3)急冷处理:将步骤(2)热处理后的涂层进行激光淬火,得到淬火涂层,即所述耐磨涂层。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中激光熔覆工艺参数为:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3~5kW,扫描速度200~400mm·min-1,光斑直径:2.5~4mm,正离焦量:20~ 60mm。
4.根据权利要求2所述的制备方法,其特征在于,步骤(3)中激光淬火工艺参数为:CO2气体激光器,激光波长:10.6μm,激光束输出功率:3~5kW,扫描速度600~800mm·min-1,光斑直径:2.5~4mm,正离焦量:20~ 60mm。
CN201810274830.1A 2018-03-30 2018-03-30 一种耐磨涂层及其制备方法 Pending CN108531904A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810274830.1A CN108531904A (zh) 2018-03-30 2018-03-30 一种耐磨涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810274830.1A CN108531904A (zh) 2018-03-30 2018-03-30 一种耐磨涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN108531904A true CN108531904A (zh) 2018-09-14

Family

ID=63482564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810274830.1A Pending CN108531904A (zh) 2018-03-30 2018-03-30 一种耐磨涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108531904A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621779A (zh) * 2020-05-19 2020-09-04 北京工业大学 用于修复飞机起落架内壁的梯度材料的激光复合处理方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899663A (zh) * 2010-08-06 2010-12-01 上海交通大学 铁基非晶纳米晶涂层的激光制备方法
CN101994113A (zh) * 2009-08-24 2011-03-30 沈阳大陆激光成套设备有限公司 水轮机组顶盖耐磨抗蚀涂层的激光熔覆工艺
CN102453899A (zh) * 2010-10-26 2012-05-16 沈阳大陆激光成套设备有限公司 热轧板材助卷辊表面抗热耐磨合金涂层的制备方法
CN103302287A (zh) * 2013-06-18 2013-09-18 华北电力大学 一种用于耐磨耐蚀涂层的铁基非晶粉末及制备方法
CN104250801A (zh) * 2013-06-28 2014-12-31 沈阳大陆激光成套设备有限公司 一种热轧无缝钢管输送辊道激光熔覆耐磨、抗热合金涂层工艺方法
CN104357748A (zh) * 2014-10-31 2015-02-18 广东电网有限责任公司电力科学研究院 锅炉尾部受热面防护用铁基纳米晶复合涂层及其激光熔覆成型工艺
CN104480462A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种铁基非晶涂层及其激光制备方法
CN106148951A (zh) * 2016-09-29 2016-11-23 哈尔滨工业大学(威海) 一种高温耐磨激光熔覆用合金粉末
CN106222655A (zh) * 2016-09-29 2016-12-14 哈尔滨工业大学(威海) 一种非晶合金覆层的制备方法
CN106283039A (zh) * 2016-08-27 2017-01-04 南昌航空大学 一种铁基非晶‑纳米晶复合涂层及其制备方法
CN106283042A (zh) * 2016-09-30 2017-01-04 中国石油大学(华东) 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法
CN106835132A (zh) * 2016-12-25 2017-06-13 仇颖莹 一种双层高强耐腐蚀铁基非晶复合涂层的制备方法
CN106868496A (zh) * 2015-12-11 2017-06-20 天津工业大学 一种激光熔覆技术制备防腐耐磨铁基非晶涂层的方法
CN106929845A (zh) * 2017-03-30 2017-07-07 黑龙江科技大学 一种制备铁基非晶和纳米晶涂层的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994113A (zh) * 2009-08-24 2011-03-30 沈阳大陆激光成套设备有限公司 水轮机组顶盖耐磨抗蚀涂层的激光熔覆工艺
CN101899663A (zh) * 2010-08-06 2010-12-01 上海交通大学 铁基非晶纳米晶涂层的激光制备方法
CN102453899A (zh) * 2010-10-26 2012-05-16 沈阳大陆激光成套设备有限公司 热轧板材助卷辊表面抗热耐磨合金涂层的制备方法
CN103302287A (zh) * 2013-06-18 2013-09-18 华北电力大学 一种用于耐磨耐蚀涂层的铁基非晶粉末及制备方法
CN104250801A (zh) * 2013-06-28 2014-12-31 沈阳大陆激光成套设备有限公司 一种热轧无缝钢管输送辊道激光熔覆耐磨、抗热合金涂层工艺方法
CN104357748A (zh) * 2014-10-31 2015-02-18 广东电网有限责任公司电力科学研究院 锅炉尾部受热面防护用铁基纳米晶复合涂层及其激光熔覆成型工艺
CN104480462A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种铁基非晶涂层及其激光制备方法
CN106868496A (zh) * 2015-12-11 2017-06-20 天津工业大学 一种激光熔覆技术制备防腐耐磨铁基非晶涂层的方法
CN106283039A (zh) * 2016-08-27 2017-01-04 南昌航空大学 一种铁基非晶‑纳米晶复合涂层及其制备方法
CN106148951A (zh) * 2016-09-29 2016-11-23 哈尔滨工业大学(威海) 一种高温耐磨激光熔覆用合金粉末
CN106222655A (zh) * 2016-09-29 2016-12-14 哈尔滨工业大学(威海) 一种非晶合金覆层的制备方法
CN106283042A (zh) * 2016-09-30 2017-01-04 中国石油大学(华东) 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法
CN106835132A (zh) * 2016-12-25 2017-06-13 仇颖莹 一种双层高强耐腐蚀铁基非晶复合涂层的制备方法
CN106929845A (zh) * 2017-03-30 2017-07-07 黑龙江科技大学 一种制备铁基非晶和纳米晶涂层的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621779A (zh) * 2020-05-19 2020-09-04 北京工业大学 用于修复飞机起落架内壁的梯度材料的激光复合处理方法

Similar Documents

Publication Publication Date Title
CN105112909B (zh) 一种添加CeO2的铁基Cr3C2激光熔覆涂层及其制备方法
Romo et al. Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy
WO2016070658A1 (zh) Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备
KR100935816B1 (ko) 내마모성이 우수한 무크롬 철계 경면처리 합금
CN106894016B (zh) 氩弧熔覆碳化钛增强的高熵合金基复合涂层及其制备方法
CN107815682A (zh) 一种在高锰钢表面制备耐磨增韧涂层的方法
CN110157977A (zh) 一种激光再制造修复用铁基合金粉末及其制备方法与应用
CN105506616B (zh) 修复受损鼓风机叶片的激光熔覆镍基合金粉末及修复方法
CN106956094B (zh) 一种硬面堆焊合金材料
Ding et al. Effect of aging treatment on microstructure and properties of VN alloy reinforced Co-based composite coatings by laser cladding
CN108130532A (zh) 一种铸铁表面激光熔覆耐磨耐冲击涂层方法
CN107937911A (zh) 一种铸钢表面激光熔覆耐磨耐冲击涂层方法
CN105734557A (zh) 一种碳化钛增强涂层及其制备方法
Qunshuang et al. The alloying effects of Cr on in-situ phase evolution and wear resistance of nickel composite coatings fabricated by wide-band laser deposition
Laurila et al. Microstructure and wear behaviour of a vanadium carbide reinforced weld coating
CN110359040A (zh) 考虑稀释率的CoCrFexNiMnMo高熵合金涂层及其制备方法
CN105132914B (zh) 一种添加纳米Ti的激光熔覆Fe基Cr3C2复合涂层及其制备方法
CN108677184A (zh) 一种列车车轴的耐磨涂层及其制备方法
Zhang et al. The effect of heat treatment on microstructure and properties of laser-deposited TiC reinforced H13 steel matrix composites
Zhao et al. Experimental and temperature field simulation study of Inconel 718 surface cladding based on vacuum electron beam heat source
CN108531904A (zh) 一种耐磨涂层及其制备方法
CN106048606A (zh) 球墨铸铁表面TiC/钴基合金复合涂层及其激光熔覆制备工艺和应用
Yu et al. Abrasive wear behavior of Nb-containing hypoeutectic Fe–Cr–C hardfacing alloy under the dry-sand/rubber-wheel system
Bonek Effect of high power diode laser surface alloying of tool steels
He et al. [Retracted] Improvement of Microstructure and Properties of Q235 Steel by Iron‐Based Laser Cladding Coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180914