CN108486449B - 一种低热滞的MnNiGe基磁相变合金 - Google Patents

一种低热滞的MnNiGe基磁相变合金 Download PDF

Info

Publication number
CN108486449B
CN108486449B CN201810245317.XA CN201810245317A CN108486449B CN 108486449 B CN108486449 B CN 108486449B CN 201810245317 A CN201810245317 A CN 201810245317A CN 108486449 B CN108486449 B CN 108486449B
Authority
CN
China
Prior art keywords
alloy
phase change
hysteresis
thermal
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810245317.XA
Other languages
English (en)
Other versions
CN108486449A (zh
Inventor
龚元元
王经纬
徐锋
刘俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810245317.XA priority Critical patent/CN108486449B/zh
Publication of CN108486449A publication Critical patent/CN108486449A/zh
Application granted granted Critical
Publication of CN108486449B publication Critical patent/CN108486449B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

本发明公开了一种低热滞的MnNiGe基磁相变合金,所述的磁相变合金原子表达式为Mn0.9Ni0.9Fe0.2Ge,其合金六角‑正交结构相变的热滞为5.3 K;所述磁相变合金以高纯金属单质Ni、Mn、Fe和Ge为原料,按照合金表达式精确配比各合金单质,通过电弧熔炼法制备,熔炼在高纯氩气氛围保护下进行;熔炼后的合金在800℃退火120小时,随后于冷水中淬火。该合金六角‑正交结构相变的热滞是同类合金中最低的,即将该体系结构相变温度降低到了现有最低水平。

Description

一种低热滞的MnNiGe基磁相变合金
技术领域
本发明涉及一种低热滞的磁相变合金MnNiGe,属于相变合金制备领域。
背景技术
MnMX (M=Co,Ni;X=Ge,Si)合金普遍表现出温度诱导的结构相变,相变发生在六角母相和正交马氏体相之间。该相变伴随的热滞通常较大,一般高于20 K。较大的热滞不利于合金相变伴随效应的可逆发生。目前,该体系已报导的最低热滞为7 K。该值由中科院物理所在Mn1-xFexNiGe(x=0.11和0.18)合金中发现。在Mn1-xFexNiGe合金中,Fe替代Mn原子。
发明内容
本发明的目的是提供一种低热滞的磁相变合金MnNiGe。
实现本发明目的的技术解决方案是:
一种低热滞的磁相变合金MnNiGe,其合金表达式为Mn0.9Ni0.9Fe0.2Ge,所述合金六角-正交结构相变的热滞为5.3 K。
与现有技术相比,本发明的优点是:该合金六角-正交结构相变的热滞为5.3 K,是同类合金中最低的,即将该体系结构相变温度降低到了现有最低水平。
附图说明
图1是(MnNiGe)1-x (Fe2Ge) x 合金( 0.02≤ x ≤ 0.16 )的室温XRD衍射数据。
图2是5 T外磁场下(MnNiGe)1-x (Fe2Ge) x 合金( 0.02≤ x ≤ 0.16 )的磁化强度随温度的变化关系图。
图3是(MnNiGe)1-x (Fe2Ge) x 合金体系的磁性和结构相图。
图4是优选Mn0.9Ni0.9Fe0.2Ge合金在相变附近处的升场和降场的等温磁化曲线。
图5是优选Mn0.9Ni0.9Fe0.2Ge合金在不同外磁场下磁熵变随温度变化关系图。
具体实施方式
本发明在现有合金Mn1-xFexNiGe(x=0.11和0.18)基础上,利用Fe原子同时替代Mn和Ni原子,实现了热滞的进一步降低。
该合金的制备过程:以高纯(99.99%)金属单质Ni、Mn、Fe和Ge为原料,按照分子式Mn0.9Ni0.9Fe0.2Ge精确配比各合金单质。合金通过电弧熔炼制备,熔炼在高纯氩气氛围保护下进行。熔炼后的合金在800℃退火120小时,随后于冷水中淬火。
实施例:
利用X射线衍射仪(X-ray Diffraction:XRD)表征合金的物相结构。图1是(MnNiGe)1-x (Fe2Ge) x 合金( 0.02≤ x ≤ 0.16 )的室温XRD衍射数据,随着x的增加,体系室温结构逐渐由高温六角Ni2In型结构转变为低温正交TiNiSi型结构,这表明Fe2Ge的引入降低了合金的结构相变温度。
利用综合物性测量***(Physical Property Measurement System:PPMS)测量(MnNiGe)1-x (Fe2Ge) x 合金( 0.02≤ x ≤ 0.16 ) 等温磁化曲线和温度依赖的磁化强度。图2是5 T外场下(MnNiGe)1-x (Fe2Ge) x 合金( 0.02≤ x ≤ 0.16 )的磁化强度随温度变化的关系图。x = 0.02成分样品在380 K附近发生磁化强度的跳变,其对应的升温和降温曲线不重合,这表明体系经历结构相变,且该结构相变发生在顺磁态之间,当低于结构相变温度时,该成分样品又经历顺磁到反铁磁的转变,对应于MnNiGe合金的Néel转变。随着x的增加,合金的结构相变温度逐渐降低,且低温螺旋反铁磁结构将诱发形成铁磁态,二者的共同作用使得体系中实现了顺磁Ni2In型到铁磁TiNiSi型结构的磁结构转变,其中优选Mn0.9Ni0.9Fe0.2Ge合金的热滞仅为5.3 K,是所有这类相变合金中最低的。当x进一步增加,合金结构相变温度将低至高温Ni2In结构的居里温度以下,磁性转变和结构转变退耦合。对于x = 0.16样品,结构相变被抑制消失,图中仅能观察到顺磁到铁磁的居里转变。
图3是(MnNiGe)1-x (Fe2Ge) x 合金体系的磁性和结构相图。从该相图中可以看出,Fe2Ge引入能够在体系中构建从175 K到345 K宽约170 K的居里温度窗口,在该窗口的合金体系都实现了结构相变和磁性转变的耦合。其中Mn0.9Ni0.9Fe0.2Ge合金的热滞最低,仅为5.3K。
图4是优选Mn0.9Ni0.9Fe0.2Ge的等温磁化曲线。相变附近可以明显观察到磁场诱发的变磁性行为,且升场和降场伴随的磁滞表明该变磁性具有一级相变特征,对应于磁场诱发的结构相变。
图5是优选Mn0.9Ni0.9Fe0.2Ge的磁熵变随温度变化关系图。基于升场的等温磁化曲线,再利用Maxwell方程
Figure 239895DEST_PATH_IMAGE001
获得该关系变化。从图中可以看出合金展现出明显的磁热效应,其中最大磁熵变值高达-40 J/(kg∙K)。

Claims (2)

1.一种低热滞的MnNiGe基磁相变合金,其特征在于,利用Fe原子同时替代Mn 和Ni原子,所述的磁相变合金原子表达式为 Mn0.9Ni0.9Fe0.2Ge,其合金六角-正交结构相变的热滞为5 .3 K。
2.如权利要求1所述的磁相变合金,其特征在于,所述磁相变合金以高纯金属单质Ni、Mn、Fe和Ge为原料,按照合金表达式精确配比各合金单质,通过电弧熔炼法制备,熔炼在高纯氩气氛围保护下进行;熔炼后的合金在800℃退火120小时,随后于冷水中淬火。
CN201810245317.XA 2018-03-23 2018-03-23 一种低热滞的MnNiGe基磁相变合金 Expired - Fee Related CN108486449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810245317.XA CN108486449B (zh) 2018-03-23 2018-03-23 一种低热滞的MnNiGe基磁相变合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810245317.XA CN108486449B (zh) 2018-03-23 2018-03-23 一种低热滞的MnNiGe基磁相变合金

Publications (2)

Publication Number Publication Date
CN108486449A CN108486449A (zh) 2018-09-04
CN108486449B true CN108486449B (zh) 2020-06-26

Family

ID=63337385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810245317.XA Expired - Fee Related CN108486449B (zh) 2018-03-23 2018-03-23 一种低热滞的MnNiGe基磁相变合金

Country Status (1)

Country Link
CN (1) CN108486449B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844775A (en) * 1972-11-24 1974-10-29 Du Pont Polynary germanides and silicides
CN105154694A (zh) * 2015-09-29 2015-12-16 南昌航空大学 通过电弧熔炼和铜模喷铸制备磁热材料Mn-Ni-Ge:Fe基系列合金棒材的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844775A (en) * 1972-11-24 1974-10-29 Du Pont Polynary germanides and silicides
CN105154694A (zh) * 2015-09-29 2015-12-16 南昌航空大学 通过电弧熔炼和铜模喷铸制备磁热材料Mn-Ni-Ge:Fe基系列合金棒材的方法

Also Published As

Publication number Publication date
CN108486449A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
Dubenko et al. Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys
Li et al. Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0. 95CoGe compounds
Mishra et al. Enhanced soft magnetic properties and magnetocaloric effect in B substituted amorphous Fe–Zr alloy ribbons
CN109504888B (zh) 一种具有巨磁热的可逆压磁效应材料及其制备方法和应用
Tsuchiya et al. Phase Transformations and Magnetostriction in Ni–Mn–Ga Ferromagnetic Shape Memory Alloys
Xuan et al. Magnetic-field-induced reverse martensitic transformation and large magnetoresistance in Ni50− xCoxMn32Al18 Heusler alloys
Liu et al. Magnetocaloric effect in high Ni content Ni52Mn48− xInx alloys under low field change
Lu et al. Excellent magnetocaloric effect of a Gd55Al20Co25 bulk metallic glass
Zhang et al. Effect of Si doping on microstructure and martensite transformation in Ni-Mn-Sb ferromagnetic shape memory alloys
Imam et al. Magnetostructural transitions with a critical behavior in Y-doped MnCoGe compounds
Zhang et al. Tunable magnetostructural coupling and large magnetocaloric effect in Mn1− xNi1− xFe2xSi1− xGax
US8999233B2 (en) Nanostructured Mn-Al permanent magnets and methods of producing same
Yu et al. Enhance magnetocaloric effects in Mn1. 15Fe0. 85P0. 52Si0. 45B0. 03 alloy achieved by copper-mould casting and annealing treatments
Zhang et al. A systematic study of the antiferromagnetic-ferromagnetic conversion and competition in MnNiGe: Fe ribbon systems
Wang et al. Structure and magneto-history behavior of DyNi2Mn
Min et al. Magnetic properties and magnetocaloric effects of Gd–Mn–Si ribbons in amorphous and crystalline states
Xiang et al. Effects of the excess iron on phase and magnetocaloric property of LaFe11. 6* xSi1. 4 alloys
CN108486449B (zh) 一种低热滞的MnNiGe基磁相变合金
Bao et al. A novel preparation method and magnetic properties of NaZn13-type La (Fe, Si) 13 compounds
Xu et al. Magnetic properties and magnetocaloric effect of (Mn1− xFex) 5Sn3 (x= 0–0.5) compounds
Song et al. Magneto-structural coupling through bidirectionally controlling the valence electron concentration in MnCoGe alloy
Zhang et al. The magnetic phase transitions and magnetocaloric effect in MnNi1− xCoxGe alloys
Chen et al. The effect of high-temperature annealing on LaFe 11.5 Si 1.5 and the magnetocaloric properties of La 1− x Ce x Fe 11.5 Si 1.5 compounds
Pierunek et al. Magnetocaloric effect of amorphous Gd 65 Fe 10 Co 10 Al 10 X 5 (X= Al, Si, B) alloys
Pereira et al. Structural and magnetic properties of Ho 5 (Si x Ge 1− x) 4

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200626