CN108467938B - A kind of annealing furnace bringing-up section radiant tube temperature setting method - Google Patents

A kind of annealing furnace bringing-up section radiant tube temperature setting method Download PDF

Info

Publication number
CN108467938B
CN108467938B CN201810628811.4A CN201810628811A CN108467938B CN 108467938 B CN108467938 B CN 108467938B CN 201810628811 A CN201810628811 A CN 201810628811A CN 108467938 B CN108467938 B CN 108467938B
Authority
CN
China
Prior art keywords
radiant tube
width
array
strip
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810628811.4A
Other languages
Chinese (zh)
Other versions
CN108467938A (en
Inventor
郭英
董斌
朱伟素
罗建枫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Ccid Thermal Technology Environment-Friendly Engineering Technology Co Ltd
CISDI Technology Research Center Co Ltd
Original Assignee
Chongqing Ccid Thermal Technology Environment-Friendly Engineering Technology Co Ltd
CISDI Technology Research Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Ccid Thermal Technology Environment-Friendly Engineering Technology Co Ltd, CISDI Technology Research Center Co Ltd filed Critical Chongqing Ccid Thermal Technology Environment-Friendly Engineering Technology Co Ltd
Priority to CN201810628811.4A priority Critical patent/CN108467938B/en
Publication of CN108467938A publication Critical patent/CN108467938A/en
Application granted granted Critical
Publication of CN108467938B publication Critical patent/CN108467938B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

The invention discloses a kind of annealing furnace bringing-up section radiant tube temperature setting method, this method is comprised the following steps: S1: establishing the setting rule of bringing-up section radiant tube temperature under the different steel grade limit;S2: the period acquires the steel grade thickness of practical strip, width and velocity group, and the reference array of corresponding steel grade is chosen from database;S3: the corresponding each column radiant tube temperature in thickness extreme value of the strip in reference array is chosen, width, velocity limits array are calculated by difference;S4: the strip width, the width extreme value in velocity limits array are chosen, velocity limits array is calculated by difference;S5: the velocity limits in the strip speed extreme value array are chosen, calculate the array of corresponding speed, and using the array as the temperature initial value of radiant tube;S6: initial value is assigned to level-one as setting value, bringing-up section is controlled.The present invention is calculated by difference, determines that initial temperature is distributed, and the online production suitable for annealing furnace calculates and control.

Description

A kind of annealing furnace bringing-up section radiant tube temperature setting method
Technical field
The invention belongs to annealing furnace control technology fields, are related to a kind of annealing furnace bringing-up section radiant tube temperature setting method.
Background technique
Currently, to possess annealing furnace more for the country, but China's annealing furnace controlled level is compared with foreign countries, and there are certain differences Away from the controlled level of total system and single devices all needs to be further improved.Wherein how to be set about bringing-up section radiant tube Fixed obscure always is introduced, and generallys use Thermodynamic calculation strip caloric receptivity to calculate radiant tube temperature, but about radiant tube point The result of cloth can have ten million kind of form, not sought unity of standard using which kind of method.
The radiant tube heating with regard to annealing furnace domestic at present proposes some patent applications, but a portion is for one Grade control is to illustrate, such as patents such as CN201020204449.7, CN201020528237.4, they mainly realize equipment with Furnace temperature, the direct feedback control of band temperature.It is whole annealing furnace control there are also a few patents, includes mathematical model, such as 201110333416.1 waiting.In addition, some patent is the control method of radiant tube temperature, spoke is adjusted by belt steel temperature It penetrates tube temperature degree or calculates radiant tube temperature etc., such as 201510455927.9 according to heat treatment cycle curve, 201510846168.9 waiting.The above patent does not account for strip width, the influence to radiant tube temperature such as thickness.
Summary of the invention
In view of this, passing through the purpose of the present invention is to provide a kind of annealing furnace bringing-up section radiant tube temperature setting method The maximum and minimum setting value under Limit specifications is established,
In order to achieve the above objectives, the invention provides the following technical scheme:
A kind of annealing furnace bringing-up section radiant tube temperature setting method, this method comprise the following steps:
S1: according to the dimension limit of different steel grades, it is each to establish annealing furnace bringing-up section under different each dimensions limit of steel grade The setting rule of column radiant tube temperature;
S2: the period acquires the steel grade thickness of practical strip, width and velocity group, and is chosen from database according to steel grade pair Answer the reference array of steel grade;
S3: the corresponding each column in maximum thickness and thickness minimum value of the strip in reference array are chosen and radiate tube temperature Degree, the most value calculated as difference calculate corresponding width, speed under the thickness by difference according to the actual (real) thickness of strip Spend extreme value array;
S4: on the basis of S3, it is minimum that the strip width, the width maximum value in velocity limits array and width are chosen Value, the most value calculated as difference calculate corresponding velocity limits under the width by difference according to the developed width of strip Array;
S5: on the basis of S4, choosing the speed maximum value and speed minimum value in the strip speed extreme value array, as The most value that difference calculates, the array of corresponding speed is calculated according to the actual speed of steel grade, and using the array as radiant tube Temperature initial value;
S6: being assigned to level-one as setting value for temperature initial value, and the online proportion adjustment of first order feed-back value, realizes to adding Hot arc is controlled.
Further, step S1 specifically:
S11: the setting rule of the radiant tube temperature under thickness limit is established:
When thickness is most thin, radiant tube is according at the uniform velocity heating mode, and when steel strip thickness is most thick, radiant tube is arranged according to preceding a1 It is rapidly heated, the mode of rear b1 column heat preservation, wherein a1, b1 are integer, and a1+b1=n, n are the total columns of radiant tube;
S12: the setting rule of the radiant tube temperature under limit velocity is established:
In speed minimum, radiant tube does not heat up according to preceding a2 column, the mode of rear b2 column heating, in speed maximum, spoke It penetrates pipe to be rapidly heated according to preceding a2 column, the mode of rear a2 column heat preservation, wherein a2, b2 are integer, and a2+b2=n, n are radiant tube Total columns;
S13: the setting rule of the radiant tube temperature under Limit Width is established:
When width is most narrow, radiant tube is according to mode is gradually warmed up, and when width is most wide, radiant tube is gradually passed according to temperature Size reduction mode.
Further, the formula that the difference calculates are as follows:
Wherein, Y indicates the radiant tube temperature calculations under corresponding strip actual parameter, Amax、AminIndicate selected number Maximum, the minimum value of dimension, b are corresponded to according to strip in groupmax、bminIndicate that strip corresponds to maximum, minimum value in dimension, X is indicated The strip dimensional parameter actually calculated.
Further, in step S12, speed minimum value is set as 30m/min.
Further, in step S2, the reference array according to thickness maximin, width maximin, speed most Big minimum value intersects setting, and thickness, width, the calculated specific gravity of speed three are identical.
Further, in step S2, the quantity of reference array is 8, and every group of reference array corresponds to the temperature of n column radiant tube Value.
The beneficial effects of the present invention are:
The present invention is based on heat-transfer mechanism analyses, it is first determined then the radiant tube setting value rule under Limit specifications passes through To thickness, width, speed etc. than difference calculate, initial value distribution situation is determined, then according to the detected value of practical strip Carry out online proportion adjustment radiant tube temperature with target value, for producing control, the online production suitable for annealing furnace calculate and Control.
Detailed description of the invention
In order to keep the purpose of the present invention, technical scheme and beneficial effects clearer, the present invention provides following attached drawing and carries out Illustrate:
Fig. 1 is initial value setting process figure of the present invention;
Fig. 2 is annealing furnace bringing-up section master control flow chart;
Fig. 3 is that radiant tube temperature sets regular schematic diagram under thickness limit of the present invention;
Fig. 4 is that radiant tube temperature sets regular schematic diagram under limit velocity of the present invention;
Fig. 5 is that radiant tube temperature sets regular schematic diagram under Limit Width of the present invention.
Specific embodiment
Below in conjunction with attached drawing, a preferred embodiment of the present invention will be described in detail.
Continuous annealing furnace is generally made of preheating section, bringing-up section, soaking zone, cooling section, (overaging), equalizer section.Preheating Section and rapid cooling section are all to carry out heating and cooling treatment to strip by circulating fan, and bringing-up section and soaking zone are then to pass through radiation The power of pipe carries out computer heating control, and using bringing-up section as research object, other sections are adjusted and are easy, therefore the present invention because feeding back in time It does not describe.As shown in Figure 1, the method for the present invention includes the following steps:
Step 1: establishing the adding under two kinds of limiting cases of minimax in thickness, width, speed under different steel grades Each column radiant tube of hot arc sets Distribution Value.Such as: CQ [2,2,2, m], DQ [2,2,2, m], DDQ [2,2,2, m], EDDQ [2,2,2, M] etc., wherein array is 4 dimension groups, respectively represents thickness, width, speed, radiant tube columns.
1) the setting rule under thickness limit:
Thickness minimax value is actual product design specification, and when thickness is most thin, strip is according to the mould at the uniform velocity to heat up Formula, when strip is most thick, the mode of strip several column heat preservations after being rapidly heated according to former column, radiant tube Temperature Distribution such as Fig. 3 institute Show.
2) the setting rule under limit velocity:
Speed minimum value is set as 30m/min, and maximum value is actual production maximum value, and under speed minimum value, strip is pressed The mode of several column heatings after not heating up according to former column, under speed maximum value, several column are protected after strip is rapidly heated according to former column The mode of temperature, radiant tube Temperature Distribution are as shown in Figure 4.
3) the setting rule under Limit Width:
Width minimax value is actual product design specification, and when width is most narrow, radiant tube is according to gradually incremental mould Formula, when strip is most wide, for radiant tube temperature according to the mode successively decreased is set up, radiant tube Temperature Distribution is as shown in Figure 5.
Array intersects setting according to thickness maximin, width maximin, speed maximin, and it is total to be divided into 8 Situation, i.e., are as follows: thickness maximum width maximum speed is maximum, and thickness maximum width maximum speed is minimum, and thickness maximum width is minimum Speed is maximum, and thickness maximum width minimum speed is minimum, and thickness minimum widith maximum speed is maximum, the maximum speed of thickness minimum widith Degree is minimum, and thickness minimum widith minimum speed is maximum, and thickness minimum widith minimum speed is minimum;Each case, consideration thickness, Width, three kinds of the speed modes being overlapped and three's calculating ratio column are identical.
Step 2: according to the thickness of acquisition, width, speed actual value, each column spoke is calculated using the calculation method of difference Penetrate the setting value of pipe.
Wherein, difference is calculated is calculated using following formula:
In formula:
Amax, Amin--- the maximin of dimension is corresponded in array;
bmax, bmin--- the most value of certain corresponding dimension, such as: thickness, width, speed are known;
Strip actual parameter involved in X --- calculating, such as: thickness, width, speed;
Y --- the radiant tube temperature calculations under corresponding strip actual parameter;
According to calculating difference in first calculated thickness, difference calculating then is carried out according to width on same thickness, same According to speed calculating difference, the initial value of as final radiant tube temperature on thickness, width.
Step 3: being assigned according to initial set value, and online proportion adjustment is carried out by first order feed-back value, realize control in real time System.
As shown in Fig. 2, in practical applications, the thickness of steel grade, width, speed, heat treatment grade etc. can be acquired with the period Parameter, and determine whether the specification of steel grade changes, and then determine a need for recalculating initial set value, to realize The continuous operation of whole system.
Specific calculation process example:
1) according to heat transfer principle, the corresponding thickness minimax of every kind of steel grade, speed minimax, width maximum are calculated Radiant tube in the case of minimum corresponding 8 kinds sets rule, and rule curve as previously shown will be according to thickness, width, speed Corresponding feature and requirement determine.
2) according to practical steel grade, the data of corresponding steel grade are chosen from database, here with CQ [x, y, z, m] for, In, x representative thickness, y represents width, z representation speed, and m represents the columns of radiant tube, 1≤m≤n.
3) according to the actual (real) thickness for calculating strip, choose corresponding array the corresponding 4 situation CQ of maximum thickness [1, Y, z, m], the corresponding 4 situation CQ [0, y, z, m] of thickness minimum value are respectively as Amax, Amin, wherein 1 represents maximum value, 0 generation Table minimum value.
4) it further, according to difference calculation formula, brings relevant parameter into, calculates 4 kinds under corresponding thickness in width, speed Limit array on degree is stored in CQ1 [y, z, m].
5) according to the developed width for calculating strip, the corresponding 2 situation CQ1 of width maximum value of corresponding array are chosen [1, z, m], the corresponding 2 situation CQ1 [0, z, m] of width minimum are respectively as Amax, Amin, wherein 1 represents maximum value, 0 generation Table minimum value.
6) it further, according to difference calculation formula, brings relevant parameter into, calculates 2 kinds under corresponding width in speed Limit array be stored in CQ2 [z, m].
7) according to the actual speed for calculating strip, choose situation CQ2 corresponding to the speed maximum value of corresponding array [1, M], situation CQ2 [0, m] corresponding to speed minimum value is respectively as Amax, Amin, wherein 1 represents maximum value, 0 represents minimum value.
8) further, according to difference calculation formula, relevant parameter is brought into, the array calculated under corresponding speed is stored in In CQ3 [m], then the array is the initial value of radiant tube.
Finally, it is stated that preferred embodiment above is only used to illustrate the technical scheme of the present invention and not to limit it, although logical It crosses above preferred embodiment the present invention is described in detail, however, those skilled in the art should understand that, can be Various changes are made to it in form and in details, without departing from claims of the present invention limited range.

Claims (5)

1. a kind of annealing furnace bringing-up section radiant tube temperature setting method, it is characterised in that: this method comprises the following steps:
S1: according to the dimension limit of different steel grades, each column spoke of annealing furnace bringing-up section under different each dimensions limit of steel grade is established Penetrate the setting rule of tube temperature degree;
S2: the period acquires the steel grade thickness of practical strip, width and velocity group, and chooses corresponding steel from database according to steel grade The reference array of kind;
S3: the corresponding each column radiant tube temperature in maximum thickness and thickness minimum value of the strip in reference array is chosen, is made The most value calculated for difference calculates corresponding width, velocity limits under the thickness by difference according to the actual (real) thickness of strip Array;The formula that the difference calculates are as follows:
Wherein, Y indicates the radiant tube temperature calculations under corresponding strip actual parameter, Amax、AminIndicate selected data group Middle strip corresponds to the maximum of dimension, minimum value, bmax、bminIndicate that strip corresponds to maximum, minimum value in dimension, X indicates practical The strip dimensional parameter of calculating;
S4: on the basis of S3, choosing the strip width, the width maximum value in velocity limits array and width minimum, makees The most value calculated for difference calculates corresponding velocity limits array under the width by difference according to the developed width of strip;
S5: on the basis of S4, the speed maximum value and speed minimum value in the strip speed extreme value array are chosen, as difference The most value calculated, the array of corresponding speed is calculated according to the actual speed of steel grade, and using the array as the temperature of radiant tube Initial value;
S6: being assigned to level-one as setting value for temperature initial value, and by the online proportion adjustment of first order feed-back value, realizes to adding Hot arc is controlled.
2. a kind of annealing furnace bringing-up section radiant tube temperature setting method according to claim 1, it is characterised in that: step S1 Specifically:
S11: the setting rule of the radiant tube temperature under thickness limit is established:
When thickness is most thin, radiant tube is according at the uniform velocity heating mode, and when steel strip thickness is most thick, radiant tube arranges quick according to preceding a1 Heating, the mode of rear b1 column heat preservation, wherein a1, b1 are integer, and a1+b1=n, n are the total columns of radiant tube;
S12: the setting rule of the radiant tube temperature under limit velocity is established:
In speed minimum, radiant tube does not heat up according to preceding a2 column, the mode of rear b2 column heating, in speed maximum, radiant tube It is rapidly heated according to preceding a2 column, the mode of rear a2 column heat preservation, wherein a2, b2 are integer, and a2+b2=n, n are that radiant tube always arranges Number;
S13: the setting rule of the radiant tube temperature under Limit Width is established:
When width is most narrow, radiant tube is according to being gradually warmed up mode, and when width is most wide, radiant tube gradually successively decreases mould according to temperature Formula.
3. a kind of annealing furnace bringing-up section radiant tube temperature setting method according to claim 2, it is characterised in that: step In S12, speed minimum value is set as 30m/min.
4. a kind of annealing furnace bringing-up section radiant tube temperature setting method according to claim 2, it is characterised in that: step S2 In, the reference array intersects setting according to thickness maximin, width maximin, speed maximin, and thick Degree, width, the calculated specific gravity of speed three are identical.
5. a kind of annealing furnace bringing-up section radiant tube temperature setting method according to claim 4, it is characterised in that: step S2 In, the quantity of reference array is 8, and every group of reference array corresponds to the temperature value of n column radiant tube.
CN201810628811.4A 2018-06-19 2018-06-19 A kind of annealing furnace bringing-up section radiant tube temperature setting method Active CN108467938B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810628811.4A CN108467938B (en) 2018-06-19 2018-06-19 A kind of annealing furnace bringing-up section radiant tube temperature setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810628811.4A CN108467938B (en) 2018-06-19 2018-06-19 A kind of annealing furnace bringing-up section radiant tube temperature setting method

Publications (2)

Publication Number Publication Date
CN108467938A CN108467938A (en) 2018-08-31
CN108467938B true CN108467938B (en) 2019-09-24

Family

ID=63259621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810628811.4A Active CN108467938B (en) 2018-06-19 2018-06-19 A kind of annealing furnace bringing-up section radiant tube temperature setting method

Country Status (1)

Country Link
CN (1) CN108467938B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408771B (en) * 2019-07-18 2021-08-20 首钢京唐钢铁联合有限责任公司 Annealing furnace process transition control method and device with temperature
CN115232955B (en) * 2022-07-22 2023-07-18 安徽工业大学 Optimization control method for strip steel temperature in dynamic heating process of continuous annealing furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149082A (en) * 1996-08-27 1997-05-07 宝山钢铁(集团)公司 Online controlling method for continuously annealing furnace
CN102392119A (en) * 2011-10-28 2012-03-28 重庆赛迪工业炉有限公司 Online comprehensive control method for hot-galvanized continuous annealing furnace
CN104962727A (en) * 2015-07-29 2015-10-07 上海宝钢节能环保技术有限公司 Continuous annealing furnace heating section furnace-temperature control system and method
CN105215057A (en) * 2014-06-27 2016-01-06 宝山钢铁股份有限公司 The control method of a kind of Medium and Heavy Plate Rolling and transporting velocity
CN106119521A (en) * 2016-08-31 2016-11-16 重庆赛迪热工环保工程技术有限公司 A kind of control method under vertical annealing furnace strip steel switching specification
CN106282497A (en) * 2015-05-21 2017-01-04 上海梅山钢铁股份有限公司 A kind of stable control method of vertical continuous annealing furnace gauge switching
CN107267744A (en) * 2017-05-23 2017-10-20 北京鞍信天硕工程技术有限公司 A kind of cold rolling continuous annealing furnace bringing-up section guide roller roll thermal crown motor speed establishing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372950C (en) * 2004-05-28 2008-03-05 上海宝信软件股份有限公司 Process for controlling temperature of strip steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149082A (en) * 1996-08-27 1997-05-07 宝山钢铁(集团)公司 Online controlling method for continuously annealing furnace
CN102392119A (en) * 2011-10-28 2012-03-28 重庆赛迪工业炉有限公司 Online comprehensive control method for hot-galvanized continuous annealing furnace
CN105215057A (en) * 2014-06-27 2016-01-06 宝山钢铁股份有限公司 The control method of a kind of Medium and Heavy Plate Rolling and transporting velocity
CN106282497A (en) * 2015-05-21 2017-01-04 上海梅山钢铁股份有限公司 A kind of stable control method of vertical continuous annealing furnace gauge switching
CN104962727A (en) * 2015-07-29 2015-10-07 上海宝钢节能环保技术有限公司 Continuous annealing furnace heating section furnace-temperature control system and method
CN106119521A (en) * 2016-08-31 2016-11-16 重庆赛迪热工环保工程技术有限公司 A kind of control method under vertical annealing furnace strip steel switching specification
CN107267744A (en) * 2017-05-23 2017-10-20 北京鞍信天硕工程技术有限公司 A kind of cold rolling continuous annealing furnace bringing-up section guide roller roll thermal crown motor speed establishing method

Also Published As

Publication number Publication date
CN108467938A (en) 2018-08-31

Similar Documents

Publication Publication Date Title
CN108467938B (en) A kind of annealing furnace bringing-up section radiant tube temperature setting method
CN106466695A (en) Optionally soften the method and system of hot stamping part by sensing heating
WO2019109766A1 (en) Control method for roller-type quenching process of large-single-weight large-section super-thick steel plate
CN102876880A (en) Heating control method of vertical galvanization annealing furnace
CN104513885A (en) Continuous quenched-tempered heat treatment production line equipment for hardened and tempered steel medium-small bars or tubular stocks
CN104971959B (en) A kind of high intensity opening-closed sectional material hot roll bending forming technology
CN104349853B (en) The expander manufacture method of metal tube
GB2083456A (en) Preventing curving of glass sheets in a tempering furnace
CN107201440A (en) A kind of furnace temperature of heating furnace system enactment method and system
CN101463414B (en) Production method for steel plate
CN106119521A (en) A kind of control method under vertical annealing furnace strip steel switching specification
CN103028615A (en) Method for predicting temperature evolution in hot continuous rolling process of strip steel
CN109022757A (en) The dynamic segmentation control method of tin-plated product annealing temperature
CN107801403A (en) The quick response heater and related Control System being used in combination with metal treatment furnace
CN110100141A (en) For controlling the system and method for the temperature graph of the steel plate in continuous annealing line
CN104805264A (en) Heat treatment method for 15NiCuMoNb5 steel pipe
CN101636511A (en) Method for the heat treatment of extended steel products
CN106282533A (en) A kind of temperature-controlled process to be rolled of heating furnace
US10619925B2 (en) Heating device for hot stamping
CN105838869A (en) Steel plate quenching furnace heating process on-line adjustment method
CN109136491A (en) A kind of heating process dynamic control method of steel containing niobium
CN204353358U (en) A kind of three-dimensional nonstorage calorifier of hot press-formed blank
CN107442670A (en) A kind of method for rolling square billet aligning
CN111983983A (en) Intelligent control method and system for hot rolled steel plate heat treatment plate shape
JP2003082412A (en) Method and device for heat-treating steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant