CN108444488A - 基于等步采样a*算法的无人驾驶局部路径规划方法 - Google Patents

基于等步采样a*算法的无人驾驶局部路径规划方法 Download PDF

Info

Publication number
CN108444488A
CN108444488A CN201810112446.1A CN201810112446A CN108444488A CN 108444488 A CN108444488 A CN 108444488A CN 201810112446 A CN201810112446 A CN 201810112446A CN 108444488 A CN108444488 A CN 108444488A
Authority
CN
China
Prior art keywords
node
point
lists
search
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810112446.1A
Other languages
English (en)
Other versions
CN108444488B (zh
Inventor
王晶
王一晶
刘正璇
左志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810112446.1A priority Critical patent/CN108444488B/zh
Publication of CN108444488A publication Critical patent/CN108444488A/zh
Application granted granted Critical
Publication of CN108444488B publication Critical patent/CN108444488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于无人驾驶路径规划领域,为满足汽车的运动学约束与实际交通限制,本发明,基于等步采样A*算法的无人驾驶局部路径规划方法,具体步骤如下:步骤1:定义搜索步长和搜索安全域;步骤2:确定局部栅格图中路径搜索的起始点与目标点;步骤3:建立Open列表和Closed列表;步骤4:求解Open列表中栅格点的代价函数;步骤5:从Open列表中选择代价函数值最小的栅格点;步骤6:分别考察当前节点的所有安全相邻节点;步骤7:搜索过程中当前节点无子节点的处理;步骤8:重复步骤5‑7的过程,直到满足条件,返回可行路径,或返回搜索失败。本发明主要应用于无人驾驶路场合。

Description

基于等步采样A*算法的无人驾驶局部路径规划方法
技术领域
本发明属于无人驾驶路径规划领域,具体讲,涉及一种利用等步采样和A*算法原理的路径搜索算法进行无人驾驶车辆的局部路径规划。
背景技术
随着社会的发展,人们对生活品质的要求越来越高,汽车成为人类生活不可或缺的交通工具,然而汽车数量的增加以及驾驶员自身安全意识薄弱导致全球交通事故发生率急剧增长。面对日益严峻的交通安全与交通拥堵问题,构建智能交通***的任务变得更加急切。无人驾驶车辆作为构建智能交通***的关键部分,近年来受到各方的关注。无人驾驶车辆融合了环境感知与定位、决策规划与运动控制等多项功能,从而代替驾驶员的眼、脑和手,具有反应迅速、行驶安全可靠等优点。目前美国、英国和德国等一些国家的无人驾驶技术已发展较为成熟,我国的无人驾驶技术起步较晚,在一些关键技术的发展距离世界先进水平还有一定的差距。
无人驾驶车辆的路径规划算法主要继承了机器人领域的算法,例如A*算法、RRT算法、人工势场法等。A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,其鲁棒性好,对环境信息反应速度快,被广泛应用于各类机器人中。A*算法是Dijkstra算法的改进,比起原始的Dijkstra算法具有收敛速度快、指向性明显、搜索空间小的优点。但是传统的基础A*算法由于依赖于方形栅格中点进行搜索,且其代价函数仅是路径长度的函数(代价只与路径长短有关),所以存在路径方向固定、路径平滑度不足、转折角度大等不足,而且在考虑车道线限制的实际道路仿真和大弯道道路仿真中,效果不理想。早在2007年美国DARPA(美国高级研究计划局)举办的城市挑战赛中,斯坦福大学研制的Junior无人车即利用一种改进的A*算法取得了比赛的亚军。我国一些科研单位也将A*算法用于无人驾驶车辆的路径规划中,例如中国科学技术大学即提出一种基于可搜索连续邻域A*算法的无人驾驶车辆路径规划方法。另外,RRT算法是一种随机采样的规划方法。自1998年提出,RRT算法由于其增量式生长特性被广泛应用于动态环境、高维状态环境以及存在运动动力学约束的环境中。人工势场法是由Khatib提出的一种虚拟力法,将机器人的运动设计成一种在人造引力场中的运动,规划出安全且较平滑的路径。由于以上两种方法在本发明中没有应用,后面不再进行说明。
虽然前人已提出多种无人驾驶路径规划算法,可是大多算法不满足车辆运动学约束,不能直接用于车辆控制,需要进行大量的处理工作。
发明内容
为了满足汽车的运动学约束与实际交通限制,针对无人驾驶车辆的局部路径规划做出以下几方面研究:
(1)加入车道线约束下的代价函数的选择;
(2)带有避障要求的代价函数的选择;
(3)考虑车辆实际运动学模型,带有转向约束的A*算法;
(4)基于栅格内任意点(非中心点)的A*路径搜索及安全域选择;
(5)十字路口车辆转弯的路径规划。
本发明将等步采样的思想引入到局部路径规划策略中,基于等步采样A*算法的无人驾驶局部路径规划方法,具体步骤如下:
步骤1:定义搜索步长和搜索安全域;
搜索步长计算公式为:
其中Step表示搜索步长,l表示栅格图精度,v表示当前车辆的行驶速度,T表示局部路径更新时间;
采用圆形安全域判断,圆形域的半径rsafe定义为:
这里Lvehicle为车身长度,max(·)为取最大值函数,在已知当前搜索节点的父节点的情况下,需要判断当前搜索节点的圆形域和当前节点与其父节点中心点的圆形域,两个圆形域覆盖的区域均无障碍物则为安全,若存在障碍物则为危险区域,该节点的代价函数值为无穷大;
步骤2:确定局部栅格图中路径搜索的起始点与目标点;
路径搜索的起始点即为车辆的当前位置,在车载坐标系下为(0,0)点,车头指向x轴正方向,故车辆在每帧栅格图中的位置和方向均相同,依据栅格图中的车道线信息可以判断出当前道路形状,通过二次拟合可以得到车道线曲线,进而得到当前车道中心线曲线,由于在车载坐标系下车辆严格按照x坐标增大的方向行驶,故路径搜索的目标点定义为栅格图范围内当前车道中心线曲线x坐标值最大位置,若该位置安全域范围内存在障碍物,则在该位置附近选择距离障碍物满足安全距离的点作为目标点;
步骤3:建立Open列表和Closed列表,Open列表存放所有已生成而未考察的节点,Closed列表存放已考察过并添加到路径中的节点,Closed列表中最后一个元素即为当前路径搜索节点,
步骤4:求解Open列表中栅格点的代价函数;
f(n)=K1g(n)+K2h(n)+K3p(n) (4a)
g(n)=g1Lacc(n)+g2Dacc(n) (4b)
h(n)=h1Lest(n)+h2Dest(n) (4c)
其中,f(n)表示栅格点的总代价,K1、K2和K3为三个正的权重系数,g(n)表示起点到该节点的累积代价,g1和g2为正的权重系数,Lacc(n)为累积的步长代价,Dacc(n)为累积的转向代价,
h(n)表示从该节点到目标点的预估代价,h1和h2为正的权重系数,Lest(n)为预估的步长代价,Dest(n)为预估的转向代价,
p(n)为惩罚项,定义为从父节点到该节点的固定代价,由于距离代价在这一项上没有区别,故该部分仅由转向角度确定,α1为正的权重系数。θ(n)表示当前节点的运动方向。
对于起点的运动方向θ(0)=0,累积代价g(0)=0,惩罚项为p(0)=0,故起点的代价函数为:
f(0)=K2(h1Lest(0)+h2Dest(0)) (5)
步骤5:从Open列表中选择代价函数值最小的栅格点,标记为当前结点,并将其从Open列表移到Closed列表中;
步骤6:分别考察当前节点的所有安全相邻节点,若该点既不在Open列表,也不在Closed列表中,将该点添加到Open列表中,求解其代价函数值,当前节点即为该点的父节点;
步骤7:若在搜索过程中当前节点无子节点,则由当前节点返回其父节点,并将该点从Closed列表中删除,在Open列表中再次选择代价函数值最小的节点;
步骤8:重复步骤5-7的过程,直到满足条件:
则视为到达目标点,结束搜索,返回可行路径。若在搜索过程中出现Open列表和Closed列表均为空,则不存在可行路径,返回搜索失败。
步骤3具体操作流程如下:
①将起点添加到Open列表和Closed列表中;
②将与起点相邻的安全栅格点添加到Open列表中,则起点即为相邻栅格点的父节点,考
虑到车的转向约束,相邻栅格点坐标(xcur,ycur)为:
其中,(xfather,yfather)表示父节点的坐标,θfatehr为父节点的运动方向。N决定选取的节点个数,即以固定的角度差选择2N+1个相邻栅格点,φmax表示车辆最大前轮偏角,i表示节点计数,其正负决定车辆的转向,i为正数时,车辆表现为右转,i为负数时,车辆表现为左转。相邻栅格点的运动方向也即为
如步骤4中的代价函数所示,K1、K2、K3、g1、g2、h1、h2以及α1均为正实数,需要通过参数整定确定,在K1=0.8,K2=1.52,K3=0.25,g1=1,g2=1.2,h1=1,h2=0.6,α1=1.2时效果符合实际要求。
与已有技术相比,本发明的技术特点与效果:
本发明提出的等步采样选取搜索节点,在确定相邻节点时即限制了节点的运动方向,既满足了车辆的转向约束,搜索到的路径也较为平滑,在匀速的情况下,车辆控制无需对路径进行拟合。传统A*算法以及前人提出的一些改进A*算法普遍存在的问题是路径中节点之间的距离不等,并且搜索方向无限制,造成搜索到的路径需要大量的处理才能用于车辆控制,例如去节点、曲线拟合等。
与已有技术相比,本发明所提出的代价函数中的累积代价和预估代价部分不仅包括距离代价,还包括角度代价,并且代价函数带有惩罚项,定义为当前节点到下一节点的固定代价,由于距离代价在这一项上没有区别,故该项仅由转向角度确定。以上因素可以尽可能的避免大转弯,使路径更加平滑,减少车辆机械损耗。在避障结束时,预估角度代价的设置使得路径尽可能快地回到车辆应行驶的车道。为降低计算复杂度,代价函数中距离代价部分均采用曼哈顿距离,实验证明采用曼哈顿距离所用的搜索时间要明显短于采用欧氏距离所用的搜索时间。
由于本发明的搜索点不在栅格中心,故安全域采用以往的方形邻域并不合适,且方形邻域对带有方向的安全检查并不准确,而圆形邻域由于其旋转对称性,与方向无关,故作为安全邻域更为合适。在本发明中所采用的安全邻域为以当前搜索节点和当前搜索节点与其父节点的中心点为圆心,直径为一个搜索步长与车身长度中最大值的两个圆所覆盖的所有栅格区域,保证了路径不会存在穿越障碍物的情况,车辆无论往哪个方向行驶均无碰撞危险。
该发明经过测试在十字路口转弯、避障以及S型弯等路况均能较快地得到可行路径,所得路径均满足车辆控制限制,在Visual Studio中所得的搜索时间均小于30ms。(Visual Studio是Windows平台应用程序的集成开发环境)
附图说明
图1为本发明算法整体流程图。
图2为车载坐标系定义。
图3为Visual Studio2013中实现的十字路口左转结果图。
图4为Visual Studio2013中实现的十字路口右转结果图。
图5为Visual Studio2013中实现的避障结果图。
图6为Visual Studio2013中实现的S型弯道路结果图。
具体实施方式
本发明将等步采样的思想加入到局部路径规划策略中,提出一种新的代价函数,具体实施步骤如下:
步骤1:定义搜索步长和搜索安全域;
定义搜索步长为一个控制周期内车辆前进的距离,故搜索步长计算公式为:
其中Step表示搜索步长,l表示栅格图精度,v表示当前车辆的行驶速度,T表示局部路径更新时间。
由于车辆前进具有方向变化的可能性,为确保路径中每一个节点都为安全,采用圆形安全域判断,圆形域的半径为:
这里Lvehicle为车身长度,max(·)为取最大值函数,在已知当前搜索节点的父节点的情况下,需要判断当前搜索节点的圆形域和当前节点与其父节点中心点的圆形域,两个圆形域覆盖的区域均无障碍物则为安全,若存在障碍物则为危险区域,该节点的代价函数值为无穷大。与方形安全搜索域相比,采用圆形安全搜索域的好处是判断范围减小,降低了路径搜索失败的可能性。
步骤2:确定局部栅格图中路径搜索的起始点与目标点;
路径搜索的起始点即为车辆的当前位置,在车载坐标系下为(0,0)点,车头指向x轴正方向,如图2所示故车辆在每帧栅格图中的位置和方向均相同。依据栅格图中的车道线信息可以判断出当前道路形状,通过二次拟合可以得到车道线曲线,进而得到当前车道中心线曲线。由于在车载坐标系下车辆严格按照x坐标增大的方向行驶,故路径搜索的目标点定义为栅格图范围内当前车道中心线曲线x坐标值最大位置,若该位置安全域范围内存在障碍物,则在该位置附近选择距离障碍物满足安全距离的点作为目标点。
步骤3:建立Open列表和Closed列表,Open列表存放所有已生成而未考察的节点,Closed列表存放已考察过并添加到路径中的节点,Closed列表中最后一个元素即为当前路径搜索节点,具体操作流程如下:
①将起点添加到Open列表和Closed列表中。
②将与起点相邻的安全栅格点添加到Open列表中,则起点即为相邻栅格点的父节点,考虑到车的转向约束,相邻栅格点坐标(xcur,ycur)为:
其中,(xfather,yfather)表示父节点的坐标,θfatehr为父节点的运动方向。N决定选取的节点个数,即以固定的角度差选择2N+1个相邻栅格点,φmax表示车辆最大前轮偏角,i表示节点计数,其正负决定车辆的转向,i为正数时,车辆表现为右转,i为负数时,车辆表现为左转。相邻栅格点的运动方向也即为
步骤4:求解Open列表中栅格点的代价函数;
f(n)=K1g(n)+K2h(n)+K3p(n) (4a)
g(n)=g1Lacc(n)+g2Dacc(n) (4b)
h(n)=h1Lest(n)+h2Dest(n) (4c)
其中,f(n)表示栅格点的总代价,K1、K2和K3为三个正的权重系数。g(n)表示起点到该节点的累积代价,g1和g2为正的权重系数,累积的步长代价为:
Lacc(n)=1+Lacc(n-1)
累积的转向代价为:
h(n)表示从该节点到目标点的预估代价,h1和h2为正的权重系数,预估的步长代价为:
其中,(xgoal,ygoal)表示目标点的坐标。
预估的转向代价为:
其中,arctan(·)为取最大值函数。
p(n)为惩罚项,定义为从父节点到该节点的固定代价,由于距离代价在这一项上没有区别,故该部分仅由转向角度确定,α1为正的权重系数。θ(n)表示当前节点的运动方向。
对于起点的运动方向θ(0)=0,累积代价g(0)=0,惩罚项为p(0)=0,预估代价为:
其中,(xstart,ystart)表示起点的坐标。
故起点的代价函数为:
f(0)=K2(h1Lest(0)+h2Dest(0)) (5)
步骤5:从Open列表中选择代价函数值最小的栅格点,标记为当前结点,并将其从Open列表移到Closed列表中;
步骤6:分别考察当前节点的所有安全相邻节点,若该点既不在Open列表,也不在Closed列表中,将该点添加到Open列表中,求解其代价函数值,当前节点即为该点的父节点;
步骤7:若在搜索过程中当前节点无子节点,则由当前节点返回其父节点,并将该点从Closed列表中删除,在Open列表中再次选择代价函数值最小的节点;
步骤8:重复步骤5-7的过程,直到满足条件:
则视为到达目标点,结束搜索,返回可行路径。若在搜索过程中出现Open列表和Closed列表均为空,则不存在可行路径,返回搜索失败。
本发明实施步骤流程图如图1所示,实验结果表明该算法可以满足无障碍物时保持车道行驶,如图2、3所示,十字路口转弯时也可得到较为平滑的路径并在无障碍物时做到车道保持,如图4、5所示,可以在满足车辆转向限制的基础上做到静态障碍物的避障。如步骤4中的代价函数所示,K1、K2、K3、g1、g2、h1、h2以及α1均为正实数,需要通过参数整定确定。参数的不同会导致对于同种路况搜索到的路径和搜索时间具有很大的差距,实验数据显示在K1=0.8,K2=1.52,K3=0.25,g1=1,g2=1.2,h1=1,h2=0.6,α1=1.2时效果基本符合实际要求。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
A*算法的提出见参考文献如下:
P.E.Hart,N.J.Nilsson,and B.Raphael.A formal basis for the heuristicdetermination of minimum cost paths in graphs.IEEE Trans.Syst.Sci.andCybernetics,SSC-4(2):100-107,1968”。

Claims (3)

1.一种基于等步采样A*算法的无人驾驶局部路径规划方法,其特征是,具体步骤如下:
步骤1:定义搜索步长和搜索安全域;
搜索步长计算公式为:
其中Step表示搜索步长,l表示栅格图精度,v表示当前车辆的行驶速度,T表示局部路径更新时间;
采用圆形安全域判断,圆形域的半径rsafe定义为:
这里Lvehicle为车身长度,max(·)为取最大值函数,在已知当前搜索节点的父节点的情况下,需要判断当前搜索节点的圆形域和当前节点与其父节点中心点的圆形域,两个圆形域覆盖的区域均无障碍物则为安全,若存在障碍物则为危险区域,该节点的代价函数值为无穷大;
步骤2:确定局部栅格图中路径搜索的起始点与目标点;
路径搜索的起始点即为车辆的当前位置,在车载坐标系下为(0,0)点,车头指向x轴正方向,故车辆在每帧栅格图中的位置和方向均相同,依据栅格图中的车道线信息可以判断出当前道路形状,通过二次拟合可以得到车道线曲线,进而得到当前车道中心线曲线,由于在车载坐标系下车辆严格按照x坐标增大的方向行驶,故路径搜索的目标点定义为栅格图范围内当前车道中心线曲线x坐标值最大位置,若该位置安全域范围内存在障碍物,则在该位置附近选择距离障碍物满足安全距离的点作为目标点;
步骤3:建立Open列表和Closed列表,Open列表存放所有已生成而未考察的节点,Closed列表存放已考察过并添加到路径中的节点,Closed列表中最后一个元素即为当前路径搜索节点,
步骤4:求解Open列表中栅格点的代价函数;
f(n)=K1g(n)+K2h(n)+K3p(n) (4a)
g(n)=g1Lacc(n)+g2Dacc(n) (4b)
h(n)=h1Lest(n)+h2Dest(n) (4c)
其中,f(n)表示栅格点的总代价,K1、K2和K3为三个正的权重系数,g(n)表示起点到该节点的累积代价,g1和g2为正的权重系数,Lacc(n)为累积的步长代价,Dacc(n)为累积的转向代价,
h(n)表示从该节点到目标点的预估代价,h1和h2为正的权重系数,Lest(n)为预估的步长代价,Dest(n)为预估的转向代价,
p(n)为惩罚项,定义为从父节点到该节点的固定代价,由于距离代价在这一项上没有区别,故该部分仅由转向角度确定,α1为正的权重系数。θ(n)表示当前节点的运动方向。
对于起点的运动方向θ(0)=0,累积代价g(0)=0,惩罚项为p(0)=0,故起点的代价函数为:
f(0)=K2(h1Lest(0)+h2Dest(0)) (5)
步骤5:从Open列表中选择代价函数值最小的栅格点,标记为当前结点,并将其从Open列表移到Closed列表中;
步骤6:分别考察当前节点的所有安全相邻节点,若该点既不在Open列表,也不在Closed列表中,将该点添加到Open列表中,求解其代价函数值,当前节点即为该点的父节点;
步骤7:若在搜索过程中当前节点无子节点,则由当前节点返回其父节点,并将该点从Closed列表中删除,在Open列表中再次选择代价函数值最小的节点;
步骤8:重复步骤5-7的过程,直到满足条件:
则视为到达目标点,结束搜索,返回可行路径了若在搜索过程中出现Open列表和Closed列表均为空,则不存在可行路径,返回搜索失败。
2.如权利要求1所述的基于等步采样A*算法的无人驾驶局部路径规划方法,其特征是,步骤3具体操作流程如下:
①将起点添加到Open列表和Closed列表中;
②将与起点相邻的安全栅格点添加到Open列表中,则起点即为相邻栅格点的父节点,考虑到车的转向约束,相邻栅格点坐标(xcur,ycur)为:
其中,(xfather,yfather)表示父节点的坐标,θfatehr为父节点的运动方向。N决定选取的节点个数,即以固定的角度差选择2N+1个相邻栅格点,φmax表示车辆最大前轮偏角,i表示节点计数,其正负决定车辆的转向,i为正数时,车辆表现为右转,i为负数时,车辆表现为左转。相邻栅格点的运动方向也即为
3.如权利要求1所述的基于等步采样A*算法的无人驾驶局部路径规划方法,其特征是,如步骤4中的代价函数所示,K1、K2、K3、g1、g2、h1、h2以及α1均为正实数,需要通过参数整定确定,在K1=0.8,K2=1.52,K3=0.25,g1=1,g2=1.2,h1=1,h2=0.6,α1=1.2时效果符合实际要求。
CN201810112446.1A 2018-02-05 2018-02-05 基于等步采样a*算法的无人驾驶局部路径规划方法 Active CN108444488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810112446.1A CN108444488B (zh) 2018-02-05 2018-02-05 基于等步采样a*算法的无人驾驶局部路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810112446.1A CN108444488B (zh) 2018-02-05 2018-02-05 基于等步采样a*算法的无人驾驶局部路径规划方法

Publications (2)

Publication Number Publication Date
CN108444488A true CN108444488A (zh) 2018-08-24
CN108444488B CN108444488B (zh) 2021-09-28

Family

ID=63191716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810112446.1A Active CN108444488B (zh) 2018-02-05 2018-02-05 基于等步采样a*算法的无人驾驶局部路径规划方法

Country Status (1)

Country Link
CN (1) CN108444488B (zh)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN109238270A (zh) * 2018-10-21 2019-01-18 浙江浙大中控信息技术有限公司 基于改进的a星算法的智能导航方法
CN109374004A (zh) * 2018-11-12 2019-02-22 智慧航海(青岛)科技有限公司 一种基于ia*算法的智能无人船舶路径规划方法
CN109634304A (zh) * 2018-12-13 2019-04-16 中国科学院自动化研究所南京人工智能芯片创新研究院 无人机飞行路径规划方法、装置和存储介质
CN109798909A (zh) * 2019-02-01 2019-05-24 安徽达特智能科技有限公司 一种全局路径规划的方法
CN109945885A (zh) * 2019-04-16 2019-06-28 清华大学 无人摩托的动态障碍物避障路径规划计算方法
CN109945882A (zh) * 2019-03-27 2019-06-28 上海交通大学 一种无人驾驶车辆路径规划与控制***及方法
CN110032187A (zh) * 2019-04-09 2019-07-19 清华大学 无人摩托静态障碍避障路径规划计算方法
CN110220528A (zh) * 2019-06-10 2019-09-10 福州大学 一种基于a星算法的自动驾驶无人车双向动态路径规划方法
CN110333659A (zh) * 2019-07-15 2019-10-15 中国人民解放军军事科学院国防科技创新研究院 一种基于改进a星搜索的无人驾驶汽车局部路径规划方法
CN110333714A (zh) * 2019-04-09 2019-10-15 武汉理工大学 一种无人驾驶汽车路径规划方法和装置
CN110398250A (zh) * 2019-08-13 2019-11-01 哈尔滨工程大学 一种无人艇全局路径规划方法
CN110531782A (zh) * 2019-08-23 2019-12-03 西南交通大学 用于社区配送的无人机航迹路径规划方法
CN110595482A (zh) * 2019-10-28 2019-12-20 深圳市银星智能科技股份有限公司 一种带避障权重的路径规划方法、装置及电子设备
CN110609547A (zh) * 2019-08-21 2019-12-24 中山大学 一种基于可视图引导的移动机器人规划方法
CN110806218A (zh) * 2019-11-29 2020-02-18 北京京东乾石科技有限公司 泊车路径规划方法、装置和***
CN110836671A (zh) * 2019-11-14 2020-02-25 北京京邦达贸易有限公司 轨迹规划方法、轨迹规划装置、存储介质与电子设备
CN110908386A (zh) * 2019-12-09 2020-03-24 中国人民解放军军事科学院国防科技创新研究院 一种无人车分层路径规划方法
CN110967032A (zh) * 2019-12-03 2020-04-07 清华大学 一种野外环境下无人车局部行驶路线实时规划方法
CN111060108A (zh) * 2019-12-31 2020-04-24 江苏徐工工程机械研究院有限公司 路径规划方法和装置、工程车辆
CN111076736A (zh) * 2020-01-02 2020-04-28 清华大学 一种基于FPGA设计的车载***和A star路径搜索方法
CN111158366A (zh) * 2019-12-31 2020-05-15 湖南大学 基于图搜索和几何曲线融合的路径规划方法
CN111196560A (zh) * 2020-01-03 2020-05-26 山东大学 桥式起重机危险区域范围动态调整方法及***
WO2020102987A1 (zh) * 2018-11-20 2020-05-28 深圳大学 智能辅助驾驶方法及***
CN111307156A (zh) * 2020-03-09 2020-06-19 中振同辂(江苏)机器人有限公司 适用于车型机器人的覆盖路径规划方法
CN111427346A (zh) * 2020-03-09 2020-07-17 中振同辂(江苏)机器人有限公司 适用于车型机器人的局部路径规划与追踪方法
CN111487975A (zh) * 2020-04-30 2020-08-04 畅加风行(苏州)智能科技有限公司 一种基于智能网联***的港口卡车自动编队方法及***
CN111679692A (zh) * 2020-08-04 2020-09-18 上海海事大学 一种基于改进A-star算法的无人机路径规划方法
CN111693050A (zh) * 2020-05-25 2020-09-22 电子科技大学 基于建筑信息模型的室内中大型机器人导航方法
CN111857148A (zh) * 2020-07-28 2020-10-30 湖南大学 一种非结构化道路车辆路径规划方法
CN111857112A (zh) * 2019-04-12 2020-10-30 广州汽车集团股份有限公司 一种汽车局部路径规划方法及电子设备
CN111897365A (zh) * 2020-08-27 2020-11-06 中国人民解放军国防科技大学 一种等高线引导线的自主车三维路径规划方法
CN111912407A (zh) * 2019-05-08 2020-11-10 胡贤良 一种多机器人***的路径规划方法
CN112612266A (zh) * 2020-12-04 2021-04-06 湖南大学 一种非结构化道路全局路径规划方法与***
CN112700668A (zh) * 2020-12-22 2021-04-23 北京百度网讯科技有限公司 自动驾驶的远程控制方法、自动驾驶车辆及云端设备
CN112764418A (zh) * 2020-12-25 2021-05-07 珠海市一微半导体有限公司 基于寻径代价的清洁入口位置确定方法、芯片及机器人
CN112764413A (zh) * 2019-10-22 2021-05-07 广州中国科学院先进技术研究所 一种机器人路径规划方法
CN112783166A (zh) * 2020-12-30 2021-05-11 深兰人工智能(深圳)有限公司 局部轨迹规划方法、装置、电子设备和存储介质
CN112923940A (zh) * 2021-01-11 2021-06-08 珠海格力电器股份有限公司 路径规划方法、装置、处理设备、移动设备及存储介质
CN113031599A (zh) * 2021-03-02 2021-06-25 珠海市一微半导体有限公司 参考点动态变化的机器人快速找座方法、芯片和机器人
CN113052350A (zh) * 2019-12-26 2021-06-29 浙江吉利汽车研究院有限公司 一种路径规划方法、装置、电子设备及存储介质
CN113119995A (zh) * 2021-03-11 2021-07-16 京东鲲鹏(江苏)科技有限公司 一种路径搜索方法及装置、设备、存储介质
CN113124849A (zh) * 2019-12-30 2021-07-16 广东博智林机器人有限公司 一种室内路径规划方法、装置、电子设备及存储介质
CN113286985A (zh) * 2020-09-17 2021-08-20 华为技术有限公司 一种路径规划方法和路径规划装置
CN113359757A (zh) * 2021-06-30 2021-09-07 湖北汽车工业学院 一种改进型混合a*算法的无人驾驶车辆路径规划与轨迹跟踪方法
CN113479105A (zh) * 2021-07-20 2021-10-08 钟求明 一种基于自动驾驶车辆的智能充电方法及智能充电站
CN113532458A (zh) * 2021-06-23 2021-10-22 厦门大学 一种基于AStar算法的路径搜索方法
CN113804207A (zh) * 2020-09-14 2021-12-17 北京京东乾石科技有限公司 车辆路径规划方法、***、设备及存储介质
CN114286383A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 网络质量确定方法、装置及存储介质
CN114510045A (zh) * 2022-01-27 2022-05-17 北京信息科技大学 一种基于安全圈的机器人全局路径规划a*改进方法
CN115586769A (zh) * 2022-08-29 2023-01-10 国网江苏省电力有限公司信息通信分公司 移动机器人路径规划方法和***
CN117073688A (zh) * 2023-10-16 2023-11-17 泉州装备制造研究所 一种基于多层代价地图的覆盖路径规划方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332436A1 (en) * 2009-06-29 2010-12-30 International Business Machines Corporation Multi-pairs shortest path finding method and system
CN103679264A (zh) * 2013-12-23 2014-03-26 山东师范大学 基于人工鱼群算法的人群疏散路径规划方法
CN105867381A (zh) * 2016-04-25 2016-08-17 广西大学 一种基于概率地图的工业机器人路径搜索优化算法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332436A1 (en) * 2009-06-29 2010-12-30 International Business Machines Corporation Multi-pairs shortest path finding method and system
CN103679264A (zh) * 2013-12-23 2014-03-26 山东师范大学 基于人工鱼群算法的人群疏散路径规划方法
CN105867381A (zh) * 2016-04-25 2016-08-17 广西大学 一种基于概率地图的工业机器人路径搜索优化算法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DIDIER DEVAURS 等: "Optimal Path Planning in Complex Cost Spaces With Sampling-Based Algorithms", 《IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING》 *
JUAN DU 等: "Research on path planning algorithm based on security patrol robot", 《2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION》 *
刘蕾: "室内环境下移动机器人路径规划", 《中国优秀硕士学位论文全文数据库》 *
李冲 等: "基于方向约束的A*算法", 《控制与决策》 *
潘允辉: "基于GIS的无人地面车辆路径规划技术研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN109238270A (zh) * 2018-10-21 2019-01-18 浙江浙大中控信息技术有限公司 基于改进的a星算法的智能导航方法
CN109374004A (zh) * 2018-11-12 2019-02-22 智慧航海(青岛)科技有限公司 一种基于ia*算法的智能无人船舶路径规划方法
WO2020102987A1 (zh) * 2018-11-20 2020-05-28 深圳大学 智能辅助驾驶方法及***
CN109634304B (zh) * 2018-12-13 2022-07-15 中国科学院自动化研究所南京人工智能芯片创新研究院 无人机飞行路径规划方法、装置和存储介质
CN109634304A (zh) * 2018-12-13 2019-04-16 中国科学院自动化研究所南京人工智能芯片创新研究院 无人机飞行路径规划方法、装置和存储介质
CN109798909A (zh) * 2019-02-01 2019-05-24 安徽达特智能科技有限公司 一种全局路径规划的方法
CN109945882A (zh) * 2019-03-27 2019-06-28 上海交通大学 一种无人驾驶车辆路径规划与控制***及方法
CN110333714B (zh) * 2019-04-09 2022-06-10 武汉理工大学 一种无人驾驶汽车路径规划方法和装置
CN110333714A (zh) * 2019-04-09 2019-10-15 武汉理工大学 一种无人驾驶汽车路径规划方法和装置
CN110032187B (zh) * 2019-04-09 2020-08-28 清华大学 无人摩托静态障碍避障路径规划计算方法
CN110032187A (zh) * 2019-04-09 2019-07-19 清华大学 无人摩托静态障碍避障路径规划计算方法
CN111857112B (zh) * 2019-04-12 2023-11-14 广州汽车集团股份有限公司 一种汽车局部路径规划方法及电子设备
CN111857112A (zh) * 2019-04-12 2020-10-30 广州汽车集团股份有限公司 一种汽车局部路径规划方法及电子设备
CN109945885A (zh) * 2019-04-16 2019-06-28 清华大学 无人摩托的动态障碍物避障路径规划计算方法
CN111912407A (zh) * 2019-05-08 2020-11-10 胡贤良 一种多机器人***的路径规划方法
CN111912407B (zh) * 2019-05-08 2022-05-17 胡贤良 一种多机器人***的路径规划方法
CN110220528A (zh) * 2019-06-10 2019-09-10 福州大学 一种基于a星算法的自动驾驶无人车双向动态路径规划方法
CN110333659A (zh) * 2019-07-15 2019-10-15 中国人民解放军军事科学院国防科技创新研究院 一种基于改进a星搜索的无人驾驶汽车局部路径规划方法
CN110333659B (zh) * 2019-07-15 2020-04-28 中国人民解放军军事科学院国防科技创新研究院 一种基于改进a星搜索的无人驾驶汽车局部路径规划方法
CN110398250A (zh) * 2019-08-13 2019-11-01 哈尔滨工程大学 一种无人艇全局路径规划方法
CN110398250B (zh) * 2019-08-13 2022-01-11 哈尔滨工程大学 一种无人艇全局路径规划方法
CN110609547A (zh) * 2019-08-21 2019-12-24 中山大学 一种基于可视图引导的移动机器人规划方法
CN110531782A (zh) * 2019-08-23 2019-12-03 西南交通大学 用于社区配送的无人机航迹路径规划方法
CN112764413B (zh) * 2019-10-22 2024-01-16 广州中国科学院先进技术研究所 一种机器人路径规划方法
CN112764413A (zh) * 2019-10-22 2021-05-07 广州中国科学院先进技术研究所 一种机器人路径规划方法
CN110595482A (zh) * 2019-10-28 2019-12-20 深圳市银星智能科技股份有限公司 一种带避障权重的路径规划方法、装置及电子设备
CN110836671A (zh) * 2019-11-14 2020-02-25 北京京邦达贸易有限公司 轨迹规划方法、轨迹规划装置、存储介质与电子设备
CN110836671B (zh) * 2019-11-14 2021-09-14 北京京邦达贸易有限公司 轨迹规划方法、轨迹规划装置、存储介质与电子设备
CN110806218B (zh) * 2019-11-29 2021-09-07 北京京东乾石科技有限公司 泊车路径规划方法、装置和***
CN110806218A (zh) * 2019-11-29 2020-02-18 北京京东乾石科技有限公司 泊车路径规划方法、装置和***
CN110967032B (zh) * 2019-12-03 2022-01-04 清华大学 一种野外环境下无人车局部行驶路线实时规划方法
CN110967032A (zh) * 2019-12-03 2020-04-07 清华大学 一种野外环境下无人车局部行驶路线实时规划方法
CN110908386A (zh) * 2019-12-09 2020-03-24 中国人民解放军军事科学院国防科技创新研究院 一种无人车分层路径规划方法
CN113052350A (zh) * 2019-12-26 2021-06-29 浙江吉利汽车研究院有限公司 一种路径规划方法、装置、电子设备及存储介质
CN113124849B (zh) * 2019-12-30 2023-11-14 广东博智林机器人有限公司 一种室内路径规划方法、装置、电子设备及存储介质
CN113124849A (zh) * 2019-12-30 2021-07-16 广东博智林机器人有限公司 一种室内路径规划方法、装置、电子设备及存储介质
CN111060108B (zh) * 2019-12-31 2021-10-12 江苏徐工工程机械研究院有限公司 路径规划方法和装置、工程车辆
CN111158366A (zh) * 2019-12-31 2020-05-15 湖南大学 基于图搜索和几何曲线融合的路径规划方法
CN111158366B (zh) * 2019-12-31 2021-11-05 湖南大学 基于图搜索和几何曲线融合的路径规划方法
CN111060108A (zh) * 2019-12-31 2020-04-24 江苏徐工工程机械研究院有限公司 路径规划方法和装置、工程车辆
CN111076736B (zh) * 2020-01-02 2020-10-27 清华大学 一种基于FPGA设计的车载***和A star路径搜索方法
CN111076736A (zh) * 2020-01-02 2020-04-28 清华大学 一种基于FPGA设计的车载***和A star路径搜索方法
CN111196560B (zh) * 2020-01-03 2020-10-20 山东大学 桥式起重机危险区域范围动态调整方法及***
CN111196560A (zh) * 2020-01-03 2020-05-26 山东大学 桥式起重机危险区域范围动态调整方法及***
CN111307156A (zh) * 2020-03-09 2020-06-19 中振同辂(江苏)机器人有限公司 适用于车型机器人的覆盖路径规划方法
CN111427346A (zh) * 2020-03-09 2020-07-17 中振同辂(江苏)机器人有限公司 适用于车型机器人的局部路径规划与追踪方法
CN111487975A (zh) * 2020-04-30 2020-08-04 畅加风行(苏州)智能科技有限公司 一种基于智能网联***的港口卡车自动编队方法及***
CN111693050A (zh) * 2020-05-25 2020-09-22 电子科技大学 基于建筑信息模型的室内中大型机器人导航方法
CN111857148A (zh) * 2020-07-28 2020-10-30 湖南大学 一种非结构化道路车辆路径规划方法
CN111857148B (zh) * 2020-07-28 2022-04-29 湖南大学 一种非结构化道路车辆路径规划方法
CN111679692A (zh) * 2020-08-04 2020-09-18 上海海事大学 一种基于改进A-star算法的无人机路径规划方法
CN111897365B (zh) * 2020-08-27 2022-09-02 中国人民解放军国防科技大学 一种等高线引导线的自主车三维路径规划方法
CN111897365A (zh) * 2020-08-27 2020-11-06 中国人民解放军国防科技大学 一种等高线引导线的自主车三维路径规划方法
CN113804207A (zh) * 2020-09-14 2021-12-17 北京京东乾石科技有限公司 车辆路径规划方法、***、设备及存储介质
CN113286985A (zh) * 2020-09-17 2021-08-20 华为技术有限公司 一种路径规划方法和路径规划装置
CN112612266A (zh) * 2020-12-04 2021-04-06 湖南大学 一种非结构化道路全局路径规划方法与***
CN112612266B (zh) * 2020-12-04 2022-04-01 湖南大学 一种非结构化道路全局路径规划方法与***
CN112700668B (zh) * 2020-12-22 2022-08-02 北京百度网讯科技有限公司 自动驾驶的远程控制方法、自动驾驶车辆及云端设备
CN112700668A (zh) * 2020-12-22 2021-04-23 北京百度网讯科技有限公司 自动驾驶的远程控制方法、自动驾驶车辆及云端设备
CN112764418B (zh) * 2020-12-25 2024-04-02 珠海一微半导体股份有限公司 基于寻径代价的清洁入口位置确定方法、芯片及机器人
CN112764418A (zh) * 2020-12-25 2021-05-07 珠海市一微半导体有限公司 基于寻径代价的清洁入口位置确定方法、芯片及机器人
CN112783166A (zh) * 2020-12-30 2021-05-11 深兰人工智能(深圳)有限公司 局部轨迹规划方法、装置、电子设备和存储介质
CN112923940A (zh) * 2021-01-11 2021-06-08 珠海格力电器股份有限公司 路径规划方法、装置、处理设备、移动设备及存储介质
CN113031599B (zh) * 2021-03-02 2024-05-07 珠海一微半导体股份有限公司 参考点动态变化的机器人快速找座方法、芯片和机器人
CN113031599A (zh) * 2021-03-02 2021-06-25 珠海市一微半导体有限公司 参考点动态变化的机器人快速找座方法、芯片和机器人
CN113119995A (zh) * 2021-03-11 2021-07-16 京东鲲鹏(江苏)科技有限公司 一种路径搜索方法及装置、设备、存储介质
CN113532458A (zh) * 2021-06-23 2021-10-22 厦门大学 一种基于AStar算法的路径搜索方法
CN113359757A (zh) * 2021-06-30 2021-09-07 湖北汽车工业学院 一种改进型混合a*算法的无人驾驶车辆路径规划与轨迹跟踪方法
CN113479105A (zh) * 2021-07-20 2021-10-08 钟求明 一种基于自动驾驶车辆的智能充电方法及智能充电站
CN114286383A (zh) * 2021-12-27 2022-04-05 中国联合网络通信集团有限公司 网络质量确定方法、装置及存储介质
CN114510045A (zh) * 2022-01-27 2022-05-17 北京信息科技大学 一种基于安全圈的机器人全局路径规划a*改进方法
CN114510045B (zh) * 2022-01-27 2024-06-25 北京信息科技大学 一种基于安全圈的机器人全局路径规划a*改进方法
CN115586769A (zh) * 2022-08-29 2023-01-10 国网江苏省电力有限公司信息通信分公司 移动机器人路径规划方法和***
CN117073688A (zh) * 2023-10-16 2023-11-17 泉州装备制造研究所 一种基于多层代价地图的覆盖路径规划方法
CN117073688B (zh) * 2023-10-16 2024-03-29 泉州装备制造研究所 一种基于多层代价地图的覆盖路径规划方法

Also Published As

Publication number Publication date
CN108444488B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN108444488A (zh) 基于等步采样a*算法的无人驾驶局部路径规划方法
CN107702716B (zh) 一种无人驾驶路径规划方法、***和装置
CN108698595B (zh) 用于控制车辆运动的方法和车辆的控制***
Li et al. Path planning based on combinaion of improved A-STAR algorithm and DWA algorithm
CN114234998A (zh) 基于语义道路地图的无人驾驶多目标点轨迹并行规划方法
CN106926844A (zh) 一种基于实时环境信息的动态自动驾驶换道轨迹规划方法
CN110488802A (zh) 一种网联环境下的自动驾驶车辆动态行为决策方法
CN112577506B (zh) 一种自动驾驶局部路径规划方法和***
CN109115220B (zh) 一种用于停车场***路径规划的方法
CN114771563A (zh) 一种自动驾驶车辆轨迹规划控制实现方法
CN113608531A (zh) 基于安全a*引导点的动态窗口的无人车实时全局路径规划方法
CN113291318B (zh) 基于部分可观测马尔科夫模型的无人车盲区转弯规划方法
CN110488842A (zh) 一种基于双向内核岭回归的车辆轨迹预测方法
WO2022173880A9 (en) System, method, and computer program product for topological planning in autonomous driving using bounds representations
Zhang et al. Structured road-oriented motion planning and tracking framework for active collision avoidance of autonomous vehicles
Yijing et al. Local path planning of autonomous vehicles based on A* algorithm with equal-step sampling
Ali et al. Minimizing the inter-vehicle distances of the time headway policy for urban platoon control with decoupled longitudinal and lateral control
Li et al. Adaptive sampling-based motion planning with a non-conservatively defensive strategy for autonomous driving
CN115840454B (zh) 非结构化道路冲突区域的多车轨迹协同规划方法及装置
Yu et al. RDT-RRT: Real-time double-tree rapidly-exploring random tree path planning for autonomous vehicles
CN115826586B (zh) 一种融合全局算法和局部算法的路径规划方法及***
CN108896065A (zh) 一种汽车路径规划方法、***、设备及计算机存储介质
Chen et al. Framework of active obstacle avoidance for autonomous vehicle based on hybrid soft actor-critic algorithm
Cao et al. Predictive trajectory planning for on-road autonomous vehicles based on a spatiotemporal risk field
Ma et al. Overtaking Path Planning for CAV based on Improved Artificial Potential Field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant