CN108444145B - First-class lithium bromide heat pump unit with peak heating function - Google Patents

First-class lithium bromide heat pump unit with peak heating function Download PDF

Info

Publication number
CN108444145B
CN108444145B CN201810408047.XA CN201810408047A CN108444145B CN 108444145 B CN108444145 B CN 108444145B CN 201810408047 A CN201810408047 A CN 201810408047A CN 108444145 B CN108444145 B CN 108444145B
Authority
CN
China
Prior art keywords
hot water
lithium bromide
heat
peak
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810408047.XA
Other languages
Chinese (zh)
Other versions
CN108444145A (en
Inventor
贺湘晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shuangliang Eco Energy Systems Co Ltd
Original Assignee
Shuangliang Eco Energy Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuangliang Eco Energy Systems Co Ltd filed Critical Shuangliang Eco Energy Systems Co Ltd
Priority to CN201810408047.XA priority Critical patent/CN108444145B/en
Publication of CN108444145A publication Critical patent/CN108444145A/en
Application granted granted Critical
Publication of CN108444145B publication Critical patent/CN108444145B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The invention relates to a first-class lithium bromide heat pump unit with peak heating, and belongs to the technical field of air conditioning equipment. Comprising the following steps: the high-temperature cold-agent steam generator comprises a condenser (1), a generator (2), a heat exchanger (3), an absorber (4), a solution pump (5), a cold-agent pump (6), an evaporator (7), a peak heater (8) and a hot-water regulating valve (9), wherein the hot-water regulating valve regulates the hot water quantity entering the peak heater, and high-temperature cold-agent steam in the generator enters the condenser and the peak heater in parallel. The heat pump and peak shaving boiler are combined into a whole, so that the area of a machine room can be saved, and the waste heat, the water and the heat can be recovered as much as possible preferentially, thereby saving energy.

Description

First-class lithium bromide heat pump unit with peak heating function
Technical Field
The invention relates to a first-class lithium bromide heat pump unit with peak heating. Belongs to the technical field of air conditioning equipment.
Background
As shown in fig. 1, a conventional single-effect first-type lithium bromide heat pump (hereinafter referred to as a heat pump) is composed of a condenser 1, a generator 2, a heat exchanger 3, an absorber 4, a solution pump 5, a refrigerant pump 6, an evaporator 7, a control system (not shown in the figure), and pipes and valves for connecting the respective components. The waste heat water flows through the evaporator 7 for cooling; the hot water flows through the absorber 4 and the condenser 1 to raise the temperature; the heat source is driven to flow through the generator 2, and the heat is released to heat the concentrated lithium bromide solution. When the heat pump operates, the refrigerant water pumped by the refrigerant pump 6 and sprayed from the top of the evaporator 7 absorbs heat of the residual heat water flowing through the heat transfer pipe of the evaporator 7, the vaporized refrigerant steam enters the absorber 4 and is absorbed by the lithium bromide concentrated solution, the released heat is absorbed by the hot water flowing through the heat transfer pipe of the absorber 4 and is taken away, the concentration of the lithium bromide concentrated solution becomes thin after absorbing the refrigerant steam, the lithium bromide concentrated solution is pumped by the solution pump 5 and is sent into the generator 2 through the heat exchanger 3 to be heated and concentrated by the driving heat source, the concentrated refrigerant steam enters the condenser 1 to be cooled and condensed by the hot water and then returns to the evaporator 7, and the concentrated lithium bromide solution returns to the absorber 4 through the heat exchanger 3.
Because the temperature of the residual hot water is limited, the temperature of the hot water produced by the heat pump generally cannot or hardly meet the actual direct heat supply requirement, and basically, a peak regulation boiler is required to be arranged for continuously heating the hot water. A heat pump and a peak shaving boiler are installed in one heating station, so that the occupied area of a machine room is large, and land resources are wasted. The heat pump can ensure that the heat quantity of the waste heat which can be recovered to the maximum degree is basically unchanged in the whole use process of the heat pump according to the generator determined by the nominal working condition, namely, in the use process of the heat pump, even if the working condition becomes very good, the energy-saving effect of the heat pump can not be utilized to recover more waste heat, and the temperature of hot water can only be raised by a peak shaving boiler at the back. If the heat pump is designed, the generator is considered to be increased, and more waste heat can be recovered when the working condition of the heat pump is good, but the cost of the heat pump can be increased, the project investment is increased, and the investment waste is caused. Therefore, if the heating function of the peak shaving boiler can be put into the generator of the heat pump, the occupied area of a machine room can be reduced, and the heat pump generator can have larger capacity, so that the waste heat recovery amount of the heat pump is increased when the working condition of the heat pump is good, the proportion of waste heat recovery is increased under the condition that the total heating capacity is unchanged, the heat source consumption is reduced, and the energy saving is realized.
Disclosure of Invention
The invention aims to design a first lithium bromide heat pump unit (hereinafter referred to as a unit) with peak heating, which combines a first lithium bromide heat pump with a peak regulation boiler into a whole, and can heat hot water through a peak heater thereof to meet the heat supply requirement in a nominal working condition, and can reduce the heating quantity of the peak heater and increase the heating quantity of the heat pump when the working condition is good, thereby recovering more waste heat and increasing the proportion of the waste heat recovered in the total heat supply quantity.
The purpose of the invention is realized in the following way: a first type of lithium bromide heat pump unit (hereinafter referred to as unit) with peak heating, comprising: condenser, generator, heat exchanger, absorber, solution pump, refrigerant pump, evaporator, spike heater, hot water regulating valve. When the unit operates, the condenser, the generator, the heat exchanger, the absorber, the solution pump, the refrigerant pump and the evaporator form a single-effect heat pump (hereinafter referred to as a single-effect heat pump), the heat source is driven to flow through the generator, and the single-effect heat pump is driven to recover heat of residual heat water flowing through the evaporator and is used for heating hot water flowing through the absorber and the condenser; the generator and the peak heater form a peak regulating boiler, and a part of refrigerant steam generated by heating the concentrated lithium bromide solution in the generator is driven to enter the peak heater, and after heating hot water flowing through the peak heater, the heat source is cooled and condensed to return to the generator. The generator has the capacity to bear the heating quantity of the peak heater under the condition that the rated residual heat quantity is recovered under the nominal working condition by driving the single-effect heat pump, and the total heating capacity of the unit is met.
When the working condition of the single-effect heat pump is good (the concentration of the solution in the heat pump is reduced), the flow of hot water entering the peak heater is reduced by closing the hot water regulating valve, so that the amount of high-temperature refrigerant steam generated by concentration of the solution in the generator entering the peak heater is reduced, and the high-temperature refrigerant steam enters the condenser more, namely the capacity of the generator is used for driving the single-effect heat pump more, so that the heat of the waste heat water flowing through the evaporator is recovered more, and the recovered waste heat is more under the condition that the total heat supply is unchanged, and the energy is saved.
The beneficial effects of the invention are as follows:
the first lithium bromide heat pump unit with peak heating combines the first lithium bromide absorption heat pump and the peak shaving boiler, so that the area of a machine room can be reduced, and when the working condition of the heat pump is good, the heat supply quantity of the heat pump can be increased, the heating quantity of the peak shaving boiler can be reduced, thereby recovering more waste heat and saving energy.
Drawings
Fig. 1 is a schematic diagram of the operation of a conventional single-effect first-type lithium bromide heat pump.
Fig. 2 shows an application example of the first type of lithium bromide heat pump unit with peak heating in this patent.
Reference numerals in the drawings:
condenser 1, generator 2, heat exchanger 3, absorber 4, solution pump 5, refrigerant pump 6, evaporator 7, spike heater 8, hot water regulating valve 9.
Residual water enters A1, residual water exits A2, hot water enters B1, hot water exits B2, a heat source is driven to enter C1, and a heat source is driven to exit C2.
Detailed description of the preferred embodiments
Fig. 2 is a diagram showing an example of application of a first type of lithium bromide heat pump unit with spike heating (hereinafter referred to as a unit) according to the present invention, the unit is composed of a condenser 1, a generator 2, a heat exchanger 3, an absorber 4, a solution pump 5, a refrigerant pump 6, an evaporator 7, a spike heater 8, a hot water regulating valve 9, a control system (not shown), and pipes and valves connecting the respective components. The waste heat water flows through the evaporator 7, the hot water firstly flows through the absorber 4, then flows through the condenser 1 and the peak heater 8 in parallel, the hot water regulating valve 9 is used for regulating the quantity of the hot water flowing through the peak heater 8, and the heat source is driven to flow through the high-pressure generator 2. When the unit operates, the refrigerant water pumped by the refrigerant pump 6 and sprayed from the top of the evaporator 7 absorbs heat of the residual heat water flowing through the heat transfer pipe of the evaporator 7, the vaporized refrigerant steam enters the absorber 4 and is absorbed by the lithium bromide concentrated solution, the released heat is taken away by the hot water flowing through the heat transfer pipe of the absorber 4, the concentration of the lithium bromide concentrated solution becomes thin after absorbing the refrigerant steam, the lithium bromide concentrated solution is pumped by the solution pump 5 and is sent into the generator 2 through the heat exchanger 3 to be heated and concentrated by the driving heat source, the concentrated lithium bromide solution returns to the absorber 4 through the heat exchanger 3, the concentrated high-temperature refrigerant steam enters the condenser 1 and the peak heater 8 in parallel in two paths, the temperature of the concentrated high-temperature refrigerant steam is reduced and condensed into the refrigerant water by the hot water flowing through the condenser 1, the refrigerant water returns to the evaporator 7, and the refrigerant water in the peak heater 8 returns to the generator 2.
In the first type of lithium bromide heat pump unit with peak heating shown in fig. 2, hot water flows through an absorber 4, then flows through a condenser 1 and a peak heater 8 in parallel, and the hot water quantity flowing through the peak heater 8 is regulated by a hot water regulating valve 9; it may also be that the hot water flows through the absorber 4 and the condenser 1 in series, then flows through the peak heater 8, and the hot water quantity flowing through the peak heater 8 is regulated by the hot water regulating valve 9; or the hot water flows through the absorber 4 and the condenser 1 in parallel, and then flows through the peak heater 8 after being converged, and the hot water quantity flowing through the peak heater 8 is regulated by the hot water regulating valve 9; or in parallel through the absorber 4, the condenser 1 and the spike heater 8, the amount of hot water flowing through the spike heater 8 is regulated by a hot water regulating valve 9.

Claims (5)

1. A first type of lithium bromide heat pump unit with spike heating, comprising: a condenser (1), a generator (2), a heat exchanger (3), an absorber (4), a solution pump (5), a refrigerant pump (6) and an evaporator (7); the method is characterized in that: the hot water heating device also comprises a peak heater (8) and a hot water regulating valve (9);
the waste heat water flows through an evaporator (7), the hot water flows through an absorber (4), a condenser (1) and a peak heater (8), and a heat source is driven to flow through a generator (2);
the solution pump (5) pumps out the lithium bromide solution in the absorber (4), the lithium bromide solution is sent into the generator (2) through the heat exchanger (3) to be heated and concentrated, and the concentrated lithium bromide solution returns to the absorber (4) through the heat exchanger (3);
high-temperature refrigerant steam generated by concentration of lithium bromide solution in the generator (2) is connected in parallel to the condenser (1) and the peak heater (8), refrigerant water cooled and condensed in the condenser (1) returns to the evaporator (7), and refrigerant water cooled and condensed in the peak heater (8) returns to the generator (2).
2. The lithium bromide heat pump assembly of the first type with spike heating of claim 1 wherein: the hot water firstly flows through the absorber (4), then flows through the condenser (1) and the peak heater (8) in parallel, and the hot water quantity flowing through the peak heater (8) is regulated by the hot water regulating valve (9).
3. The lithium bromide heat pump assembly of the first type with spike heating of claim 1 wherein: the hot water flows through the absorber (4) and the condenser (1) in series and then flows through the peak heater (8), and the hot water quantity flowing through the peak heater (8) is regulated by the hot water regulating valve (9).
4. The lithium bromide heat pump assembly of the first type with spike heating of claim 1 wherein: the hot water flows through the absorber (4) and the condenser (1) in parallel, and then flows through the peak heater (8) after being converged, and the hot water quantity flowing through the peak heater (8) is regulated by the hot water regulating valve (9).
5. The lithium bromide heat pump assembly of the first type with spike heating of claim 1 wherein: the hot water flows through the absorber (4), the condenser (1) and the peak heater (8) in parallel, and the hot water quantity flowing through the peak heater (8) is regulated by the hot water regulating valve (9).
CN201810408047.XA 2018-05-02 2018-05-02 First-class lithium bromide heat pump unit with peak heating function Active CN108444145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810408047.XA CN108444145B (en) 2018-05-02 2018-05-02 First-class lithium bromide heat pump unit with peak heating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810408047.XA CN108444145B (en) 2018-05-02 2018-05-02 First-class lithium bromide heat pump unit with peak heating function

Publications (2)

Publication Number Publication Date
CN108444145A CN108444145A (en) 2018-08-24
CN108444145B true CN108444145B (en) 2023-09-26

Family

ID=63201999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810408047.XA Active CN108444145B (en) 2018-05-02 2018-05-02 First-class lithium bromide heat pump unit with peak heating function

Country Status (1)

Country Link
CN (1) CN108444145B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204806734U (en) * 2014-12-08 2015-11-25 北京国电德安电力工程有限公司 Novel heat pump tandem compound waste heat recovery system
CN105241117A (en) * 2015-10-15 2016-01-13 华南理工大学 Data center CCHP energy supply system and method utilizing cold source
CN105402927A (en) * 2015-12-23 2016-03-16 双良节能***股份有限公司 Dual-condition direct-combustion type single-effect lithium bromide absorption heat pump set
CN105423592A (en) * 2015-12-23 2016-03-23 双良节能***股份有限公司 Double-working-condition direct-fired double-effect type lithium bromide absorption type heat pump set
CN205957280U (en) * 2016-06-16 2017-02-15 北京龙威发电技术有限公司 Absorption heat pump heating steam extracting and heat supplying system
CN106989535A (en) * 2017-03-29 2017-07-28 上海电力学院 A kind of lithium bromide chiller combustion adjustment method based on combustion gas distributed busbar protection
CN107420138A (en) * 2017-08-02 2017-12-01 大唐东北电力试验研究所有限公司 Turbo-generator Set novel energy-conserving system and method
CN206695430U (en) * 2017-04-14 2017-12-01 双良节能***股份有限公司 First class lithium bromide absorptive heat pump unit with condensate recuperation of heat
CN208487824U (en) * 2018-05-02 2019-02-12 双良节能***股份有限公司 First kind lithium bromide heat pump unit with spike heating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204806734U (en) * 2014-12-08 2015-11-25 北京国电德安电力工程有限公司 Novel heat pump tandem compound waste heat recovery system
CN105241117A (en) * 2015-10-15 2016-01-13 华南理工大学 Data center CCHP energy supply system and method utilizing cold source
CN105402927A (en) * 2015-12-23 2016-03-16 双良节能***股份有限公司 Dual-condition direct-combustion type single-effect lithium bromide absorption heat pump set
CN105423592A (en) * 2015-12-23 2016-03-23 双良节能***股份有限公司 Double-working-condition direct-fired double-effect type lithium bromide absorption type heat pump set
CN205957280U (en) * 2016-06-16 2017-02-15 北京龙威发电技术有限公司 Absorption heat pump heating steam extracting and heat supplying system
CN106989535A (en) * 2017-03-29 2017-07-28 上海电力学院 A kind of lithium bromide chiller combustion adjustment method based on combustion gas distributed busbar protection
CN206695430U (en) * 2017-04-14 2017-12-01 双良节能***股份有限公司 First class lithium bromide absorptive heat pump unit with condensate recuperation of heat
CN107420138A (en) * 2017-08-02 2017-12-01 大唐东北电力试验研究所有限公司 Turbo-generator Set novel energy-conserving system and method
CN208487824U (en) * 2018-05-02 2019-02-12 双良节能***股份有限公司 First kind lithium bromide heat pump unit with spike heating

Also Published As

Publication number Publication date
CN108444145A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
CN101881526B (en) Lithium bromide single-effect or dual-effect absorption type cold/warm water simultaneous type heat pump hot water machine set
CN108518888A (en) The solution parallel connection type lithium bromide absorption type refrigeration heat pump unit of variable effect
KR100939614B1 (en) Air conditioner using hot water heated by solar energy
CN206695430U (en) First class lithium bromide absorptive heat pump unit with condensate recuperation of heat
CN108800275A (en) A kind of big temperature-difference central heating system and working method using residual heat of electric power plant
CN108534207B (en) First-class lithium bromide heat pump unit with peak heating function and capable of directly supplying heat
CN102679623B (en) Ammonia-water-absorption water refrigerating and heating system device
CN108692482B (en) Efficiency improving system combining thermoelectric unit and refrigeration and application method
CN108444145B (en) First-class lithium bromide heat pump unit with peak heating function
CN208907657U (en) A kind of big temperature-difference central heating system using residual heat of electric power plant
KR101363492B1 (en) High efficiency hybrid cooling/heating water apparatus with absorption type
CN208487824U (en) First kind lithium bromide heat pump unit with spike heating
CN215295422U (en) Heating type lithium bromide absorption heat pump unit
CN208154873U (en) The solution series type lithium bromide absorption type refrigeration heat pump unit of variable effect
CN208154868U (en) The solution parallel connection type lithium bromide absorption type refrigeration heat pump unit of variable effect
CN209840253U (en) Heat pump system for power plant waste heat cold and hot coupling utilization
CN113432104A (en) Energy-saving system and method for electric steam boiler with condensed water circulation
CN208154867U (en) The solution lithium bromide absorption type refrigeration heat pump of the falling tandem type unit of variable effect
CN110234941B (en) Absorption refrigerator
CN110173919A (en) The device of gas type ammonium hydroxide bromine heat pump performance is promoted based on electric drive membrane separation technique
CN215295423U (en) Lithium bromide absorption heat pump unit
CN216769840U (en) First-class absorption heat pump for increasing heat supply temperature
CN111520695B (en) Comprehensive utilization system for recycling flue gas waste heat of aluminum electrolysis cell
CN216204459U (en) Novel absorption heat pump for improving heat supply temperature
CN216644606U (en) First-class absorption heat pump for increasing heat supply temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant