CN108427457A - 一种基于增强现实技术应用的温室控制*** - Google Patents

一种基于增强现实技术应用的温室控制*** Download PDF

Info

Publication number
CN108427457A
CN108427457A CN201810365200.5A CN201810365200A CN108427457A CN 108427457 A CN108427457 A CN 108427457A CN 201810365200 A CN201810365200 A CN 201810365200A CN 108427457 A CN108427457 A CN 108427457A
Authority
CN
China
Prior art keywords
module
environmental parameter
data
image
greenhouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810365200.5A
Other languages
English (en)
Inventor
华超
李艳春
任改玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Hai
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810365200.5A priority Critical patent/CN108427457A/zh
Publication of CN108427457A publication Critical patent/CN108427457A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

本发明涉及一种基于增强现实技术应用的温室控制***,包括:AR眼镜(1)、图像采集器(2)、微型投影仪(3)、中央控制器、环境参数感应机构、环境参数调节机构;该***通过将增强现实技术应用于农业温室内环境控制的设备上,与传统控制***相比,具有较高程度的智能控制和自助分析功能,能够为使用者提供一系列可视化分析数据,使用者不需要运用专业的农学知识对检测数据进行分析,即可获知植物的生长状态,降低了***对使用者自身文化素质及农作经验的限制,同时也避免了在人为判定的过程中会有一些因素被忽略的可能性;另外,本***还可分析获得目前需要改变的环境参数,进而采取相应的治理措施,实现温室环境及时、有效地智能控制操作。

Description

一种基于增强现实技术应用的温室控制***
技术领域
本发明涉及温室控制领域,具体涉及一种基于增强现实技术应用的温室控制***。
背景技术
我国是一个农业大国,农业还是我国最基础的产业,目前在农村,温室大棚比比皆是。而随着农业生产水平的逐渐提高,温室的结构档次也在不断提高,所需的监控技术也随之提升。建设一种可提高温室内作物产量和质量,降低生产成本,减轻工作人员劳动强度的农业温室大棚智能监测***,也是广大温室作物生产人员的迫切需求。为此,不少单位或个人引进了一些国外的计算机智能监控***,如温室环境监控***、施肥灌溉监控***、工厂化育苗智能监控***等,这些***在一定程度上实现了温室控制的智能化和自动化。
以上***都是按设定的程序对温室内的环境参数进行监测与调节,即通过多种传感器获取植物生长环境的精准参数,根据传感器数据给出相应的反馈和操作。但是,这些***并未对植物本身的生长状态进行检测,无法获知给定的环境调节参数是否与植物当前的生长周期完全匹配。
另外,目前的监控***与作物生产人员无法实现可视化的互动,导致作物生产人员无法更为直观的了解各种植物是否处于健康的生长状态,只能通过各种检测设备自行对植物进行手动检测,并利用较为专业的农学知识对检测数据进行分析,以获知植物的生长状态数据;然而,就我国目前的科学文化发展水平而言,我国的广大农民还不具备较高的文化素质和较丰富的工程技术经验,这也进一步限制了国外同类温室监控***在国内的推广应用。
发明内容
本发明的目的在于,为克服现有的温室大棚监测***未能做到对植物生长状态的有效监控,以及难于与农作物生产者之间进行可视化互动的技术问题,提供一种基于增强现实技术应用的温室控制***,利用该***能够实现植物分析数据的可视化显示、更为高效的人机交互功能。
为实现上述目的,本发明提供的一种基于增强现实技术应用的温室控制***,该***具体包括:AR眼镜、图像采集器、微型投影仪、中央控制器、环境参数感应机构、环境参数调节机构;
所述AR眼镜的两侧镜架上对称设置有两个图像采集器,所述的图像采集器用于采集其可视范围内的图像,并将生成的图像数据发送至中央控制器;
所述的中央控制器从接收的图像数据中识别出植物的特征数据,通过对特征数据进行分析后,生成植物的状态数据及对应的环境参数调节策略,同时将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,结合真实场景对虚拟显示对象进行渲染,并通过微型投影仪将渲染后的虚拟显示对象进行投影,该中央控制器还用于从接收的图像数据中识别出人体的手势数据,通过对手势数据进行分析后生成对应的动作数据,并利用该动作数据执行人机交互操作;
所述微型投影仪的信号输入端与中央控制器连接,该微型投影仪的投射端与AR眼镜上设置的半透射镜相对,用于将中央控制器输出的图像投影至半透射镜上;
所述环境参数感应机构的信号输出端与中央控制器连接,用于感应温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度,并将生成的感应数据发送至中央控制器;
所述环境参数调节机构的信号输入端与中央控制器连接,该环境参数调节机构受环境参数调节策略的控制,用于调节温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度。
作为上述技术方案的进一步改进,所述的中央控制器包括:信号处理模块、特征提取模块、状态判定模块、策略匹配模块、策略存储模块、设备驱动模块、图像渲染模块和手势辨识模块;
所述信号处理模块用于接收图像采集器输出的图像信号,并将图像信号进行处理,生成供特征提取模块和手势辨识模块识别的图像数据;
所述的特征提取模块用于在图像数据中识别出植物的特征数据,并将获得的特征数据发送至状态判定模块,所述的特征数据包括植物叶片的颜色、形状、尺寸及纹理;
所述的状态判定模块用于从特征数据中识别获得植物种类,并将该特征数据与设定的标准样品特征值进行比较,以特征差值评定植物的状态,生成状态数据;
所述的策略匹配模块用于将特征差值与策略存储模块中存储的特征组合序列进行匹配,提取经匹配的特征组合序列所对应的环境参数调节策略;
所述的策略存储模块用于存储各种特征组合序列,所述的特征组合序列包括由叶片的颜色、形状、尺寸及纹理特征差值构成的数组及其对应的环境参数调节策略;
所述的图像渲染模块用于将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,并结合真实场景中植物叶片的位置选定虚拟显示对象的显示位置,同时根据真实场景图像帧中的亮度对虚拟显示对象进行光照渲染;
所述的手势辨识模块用于在图像数据中识别出人体的手势数据,并通过对手势数据进行分析后生成对应的动作数据;
所述的设备驱动模块的信号输入端与环境参数感应机构、策略匹配模块、手势辨识模块的信号输出端连接,该设备驱动模块受动作数据触发,使其按环境参数调节策略驱动环境参数调节机构运行,并通过环境参数感应机构实时监测温室内的环境参数。
作为上述技术方案的进一步改进,所述的策略匹配模块内存储有各种植物在不同生长阶段的特征组合序列,所述的生长阶段按植物的生长周期进行分类。
作为上述技术方案的进一步改进,所述的信号处理模块包括:A/D转换器、信号放大器和滤波器,用于将图像采集器输出的信号依次进行模数转换、放大和滤波处理。
作为上述技术方案的进一步改进,还包括声光报警机构,所述声光报警机构的信号输入端与环境参数感应机构连接,该声光报警机构将环境参数感应机构输出的感应数据与设定的阈值范围进行比较,当感应数据的数值不在阈值范围内时,向温室内发送声音及光感报警信号。
作为上述技术方案的进一步改进,所述的图像采集器采用CCD摄像头对图像进行采集。
作为上述技术方案的进一步改进,所述的环境参数感应机构包括设置于空气中的光强测量仪、温度计、空气湿度测量仪、二氧化碳浓度测量仪,以及设置于土壤中的湿度记录仪及ph值监测仪。
作为上述技术方案的进一步改进,所述的环境参数调节机构包括:用于调节光照强度的补光灯及铺设于温室外表面的电动卷帘、用于调节温度的空调、用于调节空气湿度的加湿器、用于通风并调节二氧化碳浓度的引风机、用于调节土壤湿度的滴灌设备、用于调节ph值的土壤施肥设备。
作为上述技术方案的进一步改进,所述的温室采用透明玻璃制成,所述的透明玻璃上覆盖有变色器,所述的变色器包括:电致变色颜料层、透明导电薄膜层、导电条和电源模块;所述的电致变色颜料层设置于两个透明导电薄膜层之间,并与两个透明导电薄膜层一同贴附在透明玻璃上;所述的透明导电薄膜层上设置有电极,用于产生均匀电场;所述的导电条设置于透明玻璃的一侧,该导电条的电压输入端与电源模块连接,其电压输出端与电极连接,所述的电源模块与设备驱动模块连接;
所述的设备驱动模块通过调节电源模块的电压输出值,进而调节透明玻璃的透光度。
本发明的一种基于增强现实技术应用的温室控制***优点在于:
本发明的***通过将增强现实技术应用于农业温室内环境控制的设备上,与传统的温室控制***相比,本***具有较高程度的智能控制和自助分析功能,能够为使用者提供一系列可视化的分析数据,使用者不需要运用较为专业的农学知识对检测数据进行分析,即可获知植物的生长状态,降低了***对使用者自身文化素质及农作经验的限制,同时也避免了在人为判定的过程中会有一些因素被忽略的可能性;另外,本***以若干耕作条件因素为基础,可以进一步结合***数据库的对比资料,分析获得目前需要改变的环境参数,进而采取相应的治理措施,实现温室环境及时、有效地智能控制操作,大大提高了生产效率。
附图说明
图1为本发明提供的一种基于增强现实技术应用的温室控制***结构示意图;
图2为本发明实施例中提供的中央控制器结构示意图;
图3为本发明实施例中提供的温室控制***结构示意图;
图4为本发明实施例中提供的信号处理模块结构示意图;
图5为本发明实施例中提供的环境参数调节机构在温室中的分布示意图;
图6a为本发明实施例中提供的AR眼镜佩戴示意图;
图6b为本发明实施例中提供的AR眼镜外部结构示意图;
图7为利用本发明实施例中提供的AR眼镜进行虚拟成像的效果图;
图8为本发明实施例中提供的变色器结构示意图;
图9为图8中示出的变色器结构侧视图。
附图标记
1、AR眼镜 2、图像采集器 3、微型投影仪
4、半透射镜 5、引风机 6、滴灌设备
7、土壤施肥设备 8、补光灯 9、电动卷帘
10、空调 11、加湿器 12、透明玻璃
13、电致变色颜料层 14、透明导电薄膜层 15、导电条
16、电源模块 17、电极
具体实施方式
下面结合附图和实施例对本发明所述的一种基于增强现实技术应用的温室控制***进行详细说明。
如图1所示,本发明提供的一种基于增强现实技术应用的温室控制***,包括:AR眼镜、图像采集器、微型投影仪、中央控制器、环境参数感应机构、环境参数调节机构;
如图6b所示,所述AR眼镜1的两侧镜架上对称设置有两个图像采集器2,所述的图像采集器2用于采集其可视范围内的图像,并将生成的图像数据发送至中央控制器;
所述的中央控制器从接收的图像数据中识别出植物的特征数据,通过对特征数据进行分析后,生成植物的状态数据及对应的环境参数调节策略,同时将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,结合真实场景对虚拟显示对象进行渲染,并通过微型投影仪将渲染后的虚拟显示对象进行投影,该中央控制器还用于从接收的图像数据中识别出人体的手势数据,通过对手势数据进行分析后生成对应的动作数据,并利用该动作数据执行人机交互操作;
所述微型投影仪的信号输入端与中央控制器连接,如图6b所示,该微型投影仪3的投射端与AR眼镜1上设置的半透射镜4相对,用于将中央控制器输出的图像投影至半透射镜4上,并由半透射镜4将虚拟显示对象反射至人的眼部;
所述的半透射镜4能够使微型投影仪3射出的光进行反射,而使外界环境入射的光进行透射,从而将真实场景与虚拟对象在人眼部实现了图像融合;
所述环境参数感应机构的信号输出端与中央控制器连接,用于感应温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度,并将生成的感应数据发送至中央控制器;
所述环境参数调节机构的信号输入端与中央控制器连接,该环境参数调节机构受环境参数调节策略的控制,用于调节温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度。
AR技术作为目前虚拟现实技术的前端体验,在各个行业有着广泛的应用。它是一种图像处理的概念,与相关视觉工具相互结合便成为一门技术,也就是人们常说的增强现实。这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动,在实现效果上需要将摄像头等多媒体、传感器与场景融合,增强现实技术不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。
本发明将上述AR技术应用到农业温室大棚的监控***中,通过对现实农作物的图像采集,并将采集的图像与***存储的标准样品数据进行对比,分析目前农作物的生长状态和需要采取的环境参数调节策略,同时将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,结合真实场景将虚拟显示对象直接显示在AR眼镜上。相比于现有的监控设备,利用本发明的***进行温室环境监控,使用者不需要在固定的屏幕前监测植被具体的生长参数值,仅需佩戴可移动的AR视觉眼镜,在温室内行走即可随时观察到图像化的植被生长情况和周围的环境状况,实时采集植被生长情况和环境因素。与此同时,结合人体手势的感知功能,能够实现人机交互操作,便于生产者手动控制***的运行。
为了实现上述中央控制器的智能控制功能,如图2所示,本实施例中的中央控制器具体包括:信号处理模块、特征提取模块、状态判定模块、策略匹配模块、策略存储模块、设备驱动模块、图像渲染模块和手势辨识模块;
所述信号处理模块用于接收图像采集器输出的图像信号,并将图像信号进行处理,生成供特征提取模块和手势辨识模块识别的图像数据;
所述的特征提取模块用于在图像数据中识别出植物的特征数据,并将获得的特征数据发送至状态判定模块,所述的特征数据包括植物叶片的颜色、形状、尺寸及纹理;
所述的状态判定模块用于从特征数据中识别获得植物种类,并将该特征数据与设定的标准样品特征值进行比较,以特征差值评定植物的状态,生成状态数据;
所述的策略匹配模块用于将特征差值与策略存储模块中存储的特征组合序列进行匹配,提取经匹配的特征组合序列所对应的环境参数调节策略;
所述的策略存储模块用于存储各种特征组合序列,所述的特征组合序列包括由叶片的颜色、形状、尺寸及纹理特征差值构成的数组及其对应的环境参数调节策略;
所述的图像渲染模块用于将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,并结合真实场景中植物叶片的位置选定虚拟显示对象的显示位置,同时根据真实场景图像帧中的亮度对虚拟显示对象进行光照渲染;
所述的手势辨识模块用于在图像数据中识别出人体的手势数据,并通过对手势数据进行分析后生成对应的动作数据;
所述的设备驱动模块的信号输入端与环境参数感应机构、策略匹配模块、手势辨识模块的信号输出端连接,该设备驱动模块受动作数据触发,使其按环境参数调节策略驱动环境参数调节机构运行,并通过环境参数感应机构实时监测温室内的环境参数。
对于大多数植物而言,如果以生命周期来计算可以分成三大类,一年生植物,二年生植物及多年生植物。一年生植物是指植物的生命周期在一年内完成,一生经历一粒种子发育成熟,产生出本身的种子后枯萎。二年生植物会在第一个生长季节长出叶并把养料贮存在根内,在第二个生长季节中开花结果,随后枯萎。多年生植物可生存若干年,一旦发育成熟,年年开花结果,最后死亡。不同种类的园艺植物在各自的生命周期内对环境的要求是不同的;而不同种的植物在生命周期内的各生长阶段对环境的要求也是不同的,植物的生长发育表现出与外界环境因子相适应的形态和生理变化,并呈现出一定的规律性。
为了使温室的气候环境与植物的各生长阶段相适应,本发明***中的策略匹配模块内存储有各种植物在不同生长阶段的特征组合序列,所述的生长阶段按植物的生长周期进行分类,通过不断地确定当前植物的生长阶段来提供与其对应的环境参数调节策略,以利于植物的健康生长。
如图3所示,本发明实施例中的***还可包括声光报警机构,所述声光报警机构的信号输入端与环境参数感应机构连接,该声光报警机构将环境参数感应机构输出的感应数据与设定的阈值范围进行比较,当感应数据的数值不在阈值范围内时,向温室内发送声音及光感报警信号,以便为生产者提供警示,使其能够及时排查环境失调的原因。
另外,如图3所示,本发明***中的图像采集器可采用CCD摄像头对图像进行采集。CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点;另外,本发明通过运用CCD摄像头实现图像采集,能够获得分辨率较高的清晰图像,为中央控制器后续的数据分析提供保障。
如图4所示,所述的信号处理模块可通过设置的A/D转换器,将其接收的模拟信号转换为供特征提取模块及手势辨识模块识别的数字信号;同时,为了降低信号的噪声干扰,提高信号的探测精度,所述的信号处理模块还可包括信号放大器和滤波器,用于将图像采集器输出的信号进行放大和滤波处理。
为实现上述环境参数感应机构的多个参数的监测功能,本实施例中的环境参数感应机构可包括设置于空气中的光强测量仪、温度计、空气湿度测量仪、二氧化碳浓度测量仪,以及设置于土壤中的湿度记录仪及ph值监测仪。
为了实现上述环境参数调节机构的多个参数的控制功能,如图5所示,本实施例中的环境参数调节机构包括:用于调节光照强度的补光灯8及铺设于温室外表面的电动卷帘9、用于调节温度的空调10、用于调节空气湿度的加湿器11、用于通风并调节二氧化碳浓度的引风机5、用于调节土壤湿度的滴灌设备6、用于调节ph值的土壤施肥设备7。
为了提高温室的透光度及阳光的利用率,所述的温室可采用透明玻璃制成,进一步的,本发明的***还可在透明玻璃上铺设有变色器,如图8、9所示,所述的变色器包括:电致变色颜料层13、透明导电薄膜层14、导电条15和电源模块16;所述的电致变色颜料层13设置于两个透明导电薄膜层14之间,并与两个透明导电薄膜层14一同贴附在透明玻璃12上;所述的透明导电薄膜层14上设置有电极17,用于产生均匀电场;所述的导电条15设置于透明玻璃12的一侧,该导电条15的电压输入端与电源模块16连接,其电压输出端与电极17连接,所述的电源模块16与设备驱动模块连接;
所述的设备驱动模块通过调节电源模块16的电压输出值,进而调节透明玻璃12的透光度,使得温室内的光照强度值更便于调节。
利用上述结构的***实施温室智能控制的具体实施过程为:
农作物生产者在佩戴好AR眼镜1后(如图6a所示),进入温室大棚进行生产作业;在温室内,通过AR眼镜能够将温室内的各种环境参数实时显示在眼前。当生产者需要获知农作物的生长状态时,通过行走使得CCD摄像头靠近某株植物,由CCD摄像头自动采集该植物的叶片图像,并将图像数据输出给中央控制器。之后,经过中央控制器对图像数据进行识别、分析处理、分析结果图形转化及图形渲染后,利用微型投影仪将具有植物生长状态及环境参数调节策略的图像信息投影在AR眼镜上,并通过半透射镜的作用将真实场景与虚拟显示对象相互融合,共同呈现给生产者,从而实现了可视化的数据显示功能。
通过对植物叶片颜色、形状、尺寸及纹理的特征分析,能够从特征数据中识别获得植物种类(如图7所示的植物种类为大豆),并将该特征数据与设定的标准样品特征值进行比较,以特征差值评定植物的状态,生成状态数据(如图7所示的状态为生长良好);同时还可将环境参数调节策略及当前的各个环境参数以文字、图形或两者的结合显示于半透射镜上(如图7所示的CO2浓度、温度、湿度等参数)。
另外,本发明的***还利用中央控制器具备的人体手势感知功能,实现了人机交互操作,方便使用者有选择性的启动环境参数调节策略或按自己意愿随时改变温室的环境状况。
总之,以上信息显示及参数控制方式,可以避免人为判断中的失误,直接给出合理精确的分析结果,并结合实际的农业耕作情况,给出更加准确地判定结果。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种基于增强现实技术应用的温室控制***,其特征在于,包括:AR眼镜(1)、图像采集器(2)、微型投影仪(3)、中央控制器、环境参数感应机构、环境参数调节机构;
所述AR眼镜(1)的两侧镜架上对称设置有两个图像采集器(2),所述的图像采集器(2)用于采集其可视范围内的图像,并将生成的图像数据发送至中央控制器;
所述的中央控制器从接收的图像数据中识别出植物的特征数据,通过对特征数据进行分析后,生成植物的状态数据及对应的环境参数调节策略,同时将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,结合真实场景对虚拟显示对象进行渲染,并通过微型投影仪(3)将渲染后的虚拟显示对象进行投影,该中央控制器还用于从接收的图像数据中识别出人体的手势数据,通过对手势数据进行分析后生成对应的动作数据,并利用该动作数据执行人机交互操作;
所述微型投影仪(3)的信号输入端与中央控制器连接,该微型投影仪(3)的投射端与AR眼镜(1)上设置的半透射镜(4)相对,用于将中央控制器输出的图像投影至半透射镜(4)上;
所述环境参数感应机构的信号输出端与中央控制器连接,用于感应温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度,并将生成的感应数据发送至中央控制器;
所述环境参数调节机构的信号输入端与中央控制器连接,该环境参数调节机构受环境参数调节策略的控制,用于调节温室内的光照强度、温度、空气湿度、二氧化碳浓度、土壤的湿度及酸碱度。
2.根据权利要求1所述的基于增强现实技术应用的温室控制***,其特征在于,所述的中央控制器包括:信号处理模块、特征提取模块、状态判定模块、策略匹配模块、策略存储模块、设备驱动模块、图像渲染模块和手势辨识模块;
所述信号处理模块用于接收图像采集器(2)输出的图像信号,并将图像信号进行处理,生成供特征提取模块和手势辨识模块识别的图像数据;
所述的特征提取模块用于在图像数据中识别出植物的特征数据,并将获得的特征数据发送至状态判定模块,所述的特征数据包括植物叶片的颜色、形状、尺寸及纹理;
所述的状态判定模块用于从特征数据中识别获得植物种类,并将该特征数据与设定的标准样品特征值进行比较,以特征差值评定植物的状态,生成状态数据;
所述的策略匹配模块用于将特征差值与策略存储模块中存储的特征组合序列进行匹配,提取经匹配的特征组合序列所对应的环境参数调节策略;
所述的策略存储模块用于存储各种特征组合序列,所述的特征组合序列包括由叶片的颜色、形状、尺寸及纹理特征差值构成的数组及其对应的环境参数调节策略;
所述的图像渲染模块用于将状态数据及对应的环境参数调节策略进行图像转化,获得虚拟显示对象,并结合真实场景中植物叶片的位置选定虚拟显示对象的显示位置,同时根据真实场景图像帧中的亮度对虚拟显示对象进行光照渲染;
所述的手势辨识模块用于在图像数据中识别出人体的手势数据,并通过对手势数据进行分析后生成对应的动作数据;
所述的设备驱动模块的信号输入端与环境参数感应机构、策略匹配模块、手势辨识模块的信号输出端连接,该设备驱动模块受动作数据触发,使其按环境参数调节策略驱动环境参数调节机构运行,并通过环境参数感应机构实时监测温室内的环境参数。
3.根据权利要求2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的策略匹配模块内存储有各种植物在不同生长阶段的特征组合序列,所述的生长阶段按植物的生长周期进行分类。
4.根据权利要求2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的信号处理模块包括:A/D转换器、信号放大器和滤波器,用于将图像采集器(2)输出的信号依次进行模数转换、放大和滤波处理。
5.根据权利要求2所述的基于增强现实技术应用的温室控制***,其特征在于,还包括声光报警机构,所述声光报警机构的信号输入端与环境参数感应机构连接,该声光报警机构将环境参数感应机构输出的感应数据与设定的阈值范围进行比较,当感应数据的数值不在阈值范围内时,向温室内发送声音及光感报警信号。
6.根据权利要求1或2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的图像采集器(2)采用CCD摄像头对图像进行采集。
7.根据权利要求1或2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的环境参数感应机构包括设置于空气中的光强测量仪、温度计、空气湿度测量仪、二氧化碳浓度测量仪,以及设置于土壤中的湿度记录仪及ph值监测仪。
8.根据权利要求1或2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的环境参数调节机构包括:用于调节光照强度的补光灯(8)及铺设于温室外表面的电动卷帘(9)、用于调节温度的空调(10)、用于调节空气湿度的加湿器(11)、用于通风并调节二氧化碳浓度的引风机(5)、用于调节土壤湿度的滴灌设备(6)、用于调节ph值的土壤施肥设备(7)。
9.根据权利要求1或2所述的基于增强现实技术应用的温室控制***,其特征在于,所述的温室采用透明玻璃(12)制成,所述的透明玻璃(12)上覆盖有变色器,所述的变色器包括:电致变色颜料层(13)、透明导电薄膜层(14)、导电条(15)和电源模块(16);所述的电致变色颜料层(13)设置于两个透明导电薄膜层(14)之间,并与两个透明导电薄膜层(14)一同贴附在透明玻璃(12)上;所述的透明导电薄膜层(14)上设置有电极(17),用于产生均匀电场;所述的导电条(15)设置于透明玻璃(12)的一侧,该导电条(15)的电压输入端与电源模块(16)连接,其电压输出端与电极(17)连接,所述的电源模块(16)与设备驱动模块连接;
所述的设备驱动模块通过调节电源模块(16)的电压输出值,进而调节透明玻璃(12)的透光度。
CN201810365200.5A 2018-04-23 2018-04-23 一种基于增强现实技术应用的温室控制*** Pending CN108427457A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810365200.5A CN108427457A (zh) 2018-04-23 2018-04-23 一种基于增强现实技术应用的温室控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810365200.5A CN108427457A (zh) 2018-04-23 2018-04-23 一种基于增强现实技术应用的温室控制***

Publications (1)

Publication Number Publication Date
CN108427457A true CN108427457A (zh) 2018-08-21

Family

ID=63161605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810365200.5A Pending CN108427457A (zh) 2018-04-23 2018-04-23 一种基于增强现实技术应用的温室控制***

Country Status (1)

Country Link
CN (1) CN108427457A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435429A (zh) * 2018-10-24 2019-03-08 郭桐汐 一种用于覆膜机的多功能自动控制***
CN109917561A (zh) * 2019-04-15 2019-06-21 镇江光禾时代科技有限公司 一种植物工厂用眼镜
CN110100557A (zh) * 2019-06-19 2019-08-09 南京农业大学 一种基于ar的矮化密植果树定穴施肥遥操作方法
CN111610860A (zh) * 2020-05-22 2020-09-01 江苏濠汉信息技术有限公司 一种基于增强现实的取样方法和***
CN113179787A (zh) * 2021-05-11 2021-07-30 华中农业大学 一种基于苦苣小型温室自动化补光生长***
CN113608356A (zh) * 2021-10-08 2021-11-05 煤炭科学研究总院 基于ar的全息头戴显示***、方法和全息头戴

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239046A (zh) * 2015-09-28 2016-01-13 钟林超 能调节光照度的玻璃温室及其制作方法
CN105892360A (zh) * 2016-04-29 2016-08-24 上海交通大学 基于ar的温室远程监控***及其喷灌控制方法
CN106406403A (zh) * 2016-11-28 2017-02-15 吉林师范大学 一种基于增强现实的农业管控***
CN106708139A (zh) * 2016-12-12 2017-05-24 天津知音网络科技有限公司 一种ar温室监控***及其控制方法
CN107491127A (zh) * 2017-09-15 2017-12-19 中国农业大学 一种基于虚拟现实的种植环境控制***和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239046A (zh) * 2015-09-28 2016-01-13 钟林超 能调节光照度的玻璃温室及其制作方法
CN105892360A (zh) * 2016-04-29 2016-08-24 上海交通大学 基于ar的温室远程监控***及其喷灌控制方法
CN106406403A (zh) * 2016-11-28 2017-02-15 吉林师范大学 一种基于增强现实的农业管控***
CN106708139A (zh) * 2016-12-12 2017-05-24 天津知音网络科技有限公司 一种ar温室监控***及其控制方法
CN107491127A (zh) * 2017-09-15 2017-12-19 中国农业大学 一种基于虚拟现实的种植环境控制***和方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435429A (zh) * 2018-10-24 2019-03-08 郭桐汐 一种用于覆膜机的多功能自动控制***
CN109917561A (zh) * 2019-04-15 2019-06-21 镇江光禾时代科技有限公司 一种植物工厂用眼镜
CN110100557A (zh) * 2019-06-19 2019-08-09 南京农业大学 一种基于ar的矮化密植果树定穴施肥遥操作方法
CN111610860A (zh) * 2020-05-22 2020-09-01 江苏濠汉信息技术有限公司 一种基于增强现实的取样方法和***
CN113179787A (zh) * 2021-05-11 2021-07-30 华中农业大学 一种基于苦苣小型温室自动化补光生长***
CN113179787B (zh) * 2021-05-11 2023-01-03 华中农业大学 一种基于苦苣小型温室自动化补光生长***
CN113608356A (zh) * 2021-10-08 2021-11-05 煤炭科学研究总院 基于ar的全息头戴显示***、方法和全息头戴
CN113608356B (zh) * 2021-10-08 2021-12-28 煤炭科学研究总院 基于ar的全息头戴显示***、方法和全息头戴

Similar Documents

Publication Publication Date Title
CN108427457A (zh) 一种基于增强现实技术应用的温室控制***
CN106406403B (zh) 一种基于增强现实的农业管控***
Guo et al. Crop 3D—a LiDAR based platform for 3D high-throughput crop phenotyping
CN102564593B (zh) 基于计算机视觉及物联网的植物生长状况监测***
Yu et al. Automatic image-based detection technology for two critical growth stages of maize: Emergence and three-leaf stage
KR20180072641A (ko) 사물인터넷 기반 식물 재배 데이터 수집 및 관리 시스템
CN110728332A (zh) 一种基于物联网的农业数据分析方法及***
CN108803755A (zh) 一种基于增强现实技术应用的温室控制***
KR20210077504A (ko) 스마트팜 데이터 생육연동시스템
KR101822410B1 (ko) 작물 영상을 사용한 작물 생육 진단 장치
CA3115301A1 (en) Method and system for plant stress determination and irrigation based thereon
CN108710766A (zh) 一种基于生长模型的温室植物水肥机调肥参数计算方法
CN103278503B (zh) 一种基于多传感器技术的葡萄水分胁迫诊断方法及***
US20220108543A1 (en) Method and Device for Analyzing Plants
CN109655108A (zh) 一种基于物联网的大田种植实时监测***及方法
CN107771563A (zh) 智能操纵下的自动植物培育***
KR101726944B1 (ko) 작물의 생육 정보 수집 장치 및 방법
KR20190069648A (ko) 인삼의 영상 이미지 분석을 통한 생육량 측정 방법
CN114460080A (zh) 一种水稻病虫智能监控***
KR101810901B1 (ko) 작물체의 생육 시뮬레이션 장치
CN108759912A (zh) 一种基于物联网的农业大棚环境检测***
CN109287477A (zh) 一种耐低温弱光的辣椒品种的筛选方法和装置
Lozoya et al. Spectral vegetation index sensor evaluation for greenhouse precision agriculture
Joo et al. Growth analysis system for IT-based plant factory
WO2018032285A1 (zh) 一种花卉种植拍照监控***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190530

Address after: 102600 No. 11 Lian Lane, Liyuan Village, Huangcun Town, Daxing District, Beijing

Applicant after: Du Hai

Address before: 476400 Handong Village 89, Handongkou Town, Xiayi County, Shangqiu City, Henan Province

Applicant before: Hua Chao

Applicant before: Li Yanchun

Applicant before: Ren Gailing

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20180821

RJ01 Rejection of invention patent application after publication