CN108398167A - 测量压力的方法以及科里奥利质量流量测量仪 - Google Patents

测量压力的方法以及科里奥利质量流量测量仪 Download PDF

Info

Publication number
CN108398167A
CN108398167A CN201810127300.4A CN201810127300A CN108398167A CN 108398167 A CN108398167 A CN 108398167A CN 201810127300 A CN201810127300 A CN 201810127300A CN 108398167 A CN108398167 A CN 108398167A
Authority
CN
China
Prior art keywords
pressure
measurement pipe
algorithm
temperature
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810127300.4A
Other languages
English (en)
Other versions
CN108398167B (zh
Inventor
T.王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne AG
Original Assignee
Krohne AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne AG filed Critical Krohne AG
Publication of CN108398167A publication Critical patent/CN108398167A/zh
Application granted granted Critical
Publication of CN108398167B publication Critical patent/CN108398167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

在科里奥利质量流量测量仪中测量压力的方法,科里奥利质量流量测量仪具有测量管、振动发生器、振动接收器、温度传感器、应力传感器、显示单元和操控和评估单元,测量管被介质穿流,温度传感器布置成,使得其测量测量管的温度且作为温度测量值传输至操控和评估单元,应力传感器设计和布置成,使得应力传感器测量测量管的机械应力且将应力测量值传输至操控和评估单元,基于温度测量值和应力测量值确定介质压力,通过算法由压力p0出发确定测量管内的压力值,采用在参考条件下的p0,且算法考虑温度测量值T与参考测量值T0之间的差别和应力测量值与参考测量值之间的差别,已在参考条件下测得参考测量值,并且经由显示单元给出借助于算法确定的压力值。

Description

测量压力的方法以及科里奥利质量流量测量仪
技术领域
本发明涉及一种用于在科里奥利质量流量测量仪的情况中测量压力的方法,其中,科里奥利质量流量测量仪具有至少一个测量管、至少一个振动发生器、至少两个振动接收器、至少一个温度传感器、至少一个应力传感器、至少一个显示单元和至少一个控制和评估单元,其中,测量管被介质穿流,其中,如此布置温度传感器,即,使得其测量测量管的温度并且作为温度测量值T传输到操控和评估单元处,其中,如此设计和布置应力传感器,即,使得应力传感器测量测量管的在轴向方向和/或周向上的机械应力并且将轴向的应力测量值Sa和/或在周向上的应力测量值Sh传输到操控和评估单元处,并且其中,基于温度测量值T和至少一个应力测量值Sa和/或Sh确定介质的压力。
此外,本发明由一种科里奥利质量流量测量仪出发,其包括至少一个测量管、至少一个振动发生器、至少两个振动接收器、至少一个温度传感器、至少一个应力传感器、至少一个显示单元和至少一个控制和评估单元,其中,测量管可被介质穿流,其中,如此设计和布置温度传感器,即,其测量测量管的温度并且作为温度测量值T传输到操控和评估单元处,其中,如此设计和布置应力传感器,即,使得应力传感器测量测量管的在轴向方向和/或周向上的机械应力并且将轴向的应力测量值Sa和/或周向的应力测量值Sh传输到操控和评估单元处,并且如此设计操控和评估单元,即,使得其基于温度测量值T和/或至少一个应力测量值Sa和/或Sh确定介质的压力。
背景技术
从现有技术中已知,利用科里奥利质量流量测量仪不仅可确定流过测量管的介质的质量流量,而且可确定其它参数,例如介质的密度或者还有介质的压力。为了测量在测量管之内的压力,在此充分利用的是,在测量管中的压力变化引起测量管的周长变化。
印刷文献DE 102 56376 A1公开了一种用于在科里奥利质量流量测量仪的情况中测量压力的方法,其中,科里奥利质量流量测量仪具有应力传感器,其测量测量管的机械应力,并且其中,根据检测到的应力获取在测量管中的压力。作为应力传感器,尤其地设置应变计,其在周向上安装在测量管处。此外,设置另一在轴向方向上安装在测量管处的应变计和测量测量管的温度的温度传感器。通过附加地存在温度传感器,可修正由于温度变化引起的测量误差。在此,根据在具体地规定的几何形状的情况中在理论上获取的、在测量管的压力和周长变化之间的相关性,或者通过在经验上获取的压力-应力的值对或经验函数确定压力。根据一设计方案,一个应变计在周向上并且一个应变计在轴向方向上布置在测量管处,其中,应变计作为电阻集成到惠斯通电桥中。
由文献US 2003/0200816 A1同样已知一种科里奥利质量流量测量仪,其中,在测量管处布置用于测量机械应力的应变计,其不仅轴向地而且在周向上定向。应变计同样集成到惠斯通电桥中。根据应力测量值确定在测量管中存在的压力。
然而,以上描述的用于确定在测量管之内的压力的方法基本上基于,根据在经验上获取的相关性或者通过直接比较不同定向的应变计,例如通过布置在惠斯通电桥中,来确定压力。
发明内容
基于以上阐述的现有技术,本发明的目标是,说明一种用于在科里奥利质量流量测量仪的情况中测量压力的方法,利用该方法可尤其简单地确定在测量管之内的压力。
根据第一教导,该目标通过开头所述的方法由此来实现,即,通过算法由压力p0出发实现在测量管之内的压力值的确定,其中,已采用在参考条件下的p0,并且此外算法考虑在温度测量值T和参考测量值T0之间的差别和在至少一个应力测量值Sa和/或Sh和参考测量值Sa0和/或Sh0之间的差别,其中,已经在参考条件下测得了参考测量值T0和/或Sa0和/或Sh0,并且经由显示单元给出借助于算法确定的压力值。
根据本发明已知,可尤其简单地由此实现在测量管之内的压力的确定,即,由已知的压力p0和已知的参考测量值T0、Sh0和/或Sa0出发确定相关的测量参数T、Sh和/或Sa的变化。如果仅仅将该变化包含到用于计算压力值的算法中,则用于确定压力的算法尤其简单并且尤其地可尤其简单地实施。由此,该方法整体具有的优点是,与从现有技术中已知的方法相比尤其简单地进行压力的确定。
根据一有利的设计方案,用于检测测量管的机械应力的应力传感器包括在周向上布置在测量管处的并且检测在周向上的机械应力的应变计和在轴向方向上布置在测量管处的且检测在轴向方向上的机械应力的应变计。
此外有利的是,实时地进行在测量管之内的压力的确定并且实时地经由显示单元给出。在此,术语“实时地”指的是,在测量管之内的介质压力的给出和温度和应力测量值的检测的时间延迟仅仅包括在处理和传输数据的情况中由技术引起的延迟。由此,该设计方案具有的优点是,始终将关于在测量管中存在的压力的信息告知使用者。
根据另一设计方案,将借助于算法确定的压力与之前确定的极限值相比较,并且当压力超过上极限值或低于下极限值时,给出信号。如果压力超过上极限值或者压力低于下极限值,则可采取其它措施以消除超过极限值或低于极限值的原因。
根据另一有利的设计方案,基本上与压力确定同时地确定介质的质量流量,并且利用测得的压力值修正测得的质量流量。该设计方案是尤其有利的,因为质量流量确定的误差尤其小。
根据另一有利的设计方案,参考条件描述测量管的如下状态,即,在其中,没有介质流过测量管。备选地,也可在每次测量开始时采用参考测量值,从而当介质流过测量管并且开始测量时,出现参考条件。
根据方法的另一优选的设计方案,线性地和/或二次方地将在温度测量值T和参考测量值T0之间的差别ΔT包含到在介质之内的压力确定中。尤其地,非线性地考虑温度差别导致,具有尤其小的误差的压力值。
此外优选的是,线性地将在应力测量值Sh和参考测量值Sh0之间的差别ΔSh和/或在应力测量值Sa和参考测量值Sa0之间的差别ΔSa包含到在介质之内的压力的确定中。
根据另一优选的设计方案,根据如下公式确定压力:
p=p0+c1ΔT+c2ΔSh
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0
并且其中,c1和c2是比例性系数,其可在回归的范围中确定。根据该设计方案的压力确定是尤其简单的且与尤其少的计算成本相关。然而,在此未考虑测量管的轴向机械应力。
在该方法的备选的设计方案中,根据如下公式确定压力:
p=p0+c1ΔT+c2ΔSh+c3ΔSa
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0并且ΔSa=Sa-Sa0
并且其中,c1,c2和c3是比例性系数,其可在回归的范围中确定。根据该设计方案的压力的确定是尤其简单的且与尤其少的计算成本相关,其中不仅考虑在周向上的机械应力而且考虑轴向的机械应力。
在备选的设计方案中,根据如下公式确定压力:
p=p0+c1ΔT+c2ΔSh+c4ΔT2
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0
并且其中,c1、c2和c4是比例性系数,其可在回归的范围中确定。根据该设计方案的压力的确定也是尤其简单的且与尤其少的计算成本相关。如下优化了压力的确定,即,不仅线性地而且二次方地考虑温度差别。其结果是压力确定的尤其小的误差。
在一备选的设计方案中,根据如下公式确定压力:
p=p0+c1ΔT+c2ΔSh+c3ΔSa+c4ΔT2
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0并且ΔSa=Sa-Sa0
并且其中,c1、c2、c3和c4是比例性系数,其可在回归的范围中确定。根据该设计方案的压力确定是尤其有利的,因为不仅线性地而且二次方地将温度差别包含到压力的确定中,并且此外不仅考虑测量管的在周向上的机械应力而且考虑轴向的机械应力。根据以上阐述的相关性的参数的该考虑的结果是压力的确定的尤其小的误差。
根据本发明的第二教导,开头所述的目标由此通过开头所述的科里奥利质量流量测量仪来实现,即,如此设计操控和评估单元,即,通过算法由压力p0出发实现在测量管之内的压力值的确定,其中,已采用在参考条件下的p0,并且此外算法考虑在温度测量值T和参考测量值T0之间的差别和在至少一个应力测量值Sa和/或Sh和参考测量值Sa0和/或Sh0之间的差别,其中,已经在参考条件下测得了参考测量值T0和/或Sa0和/或Sh0,并且经由显示单元给出借助于算法确定的压力值。
根据一尤其优选的设计方案,该科里奥利质量流量测量仪在工作中进行以上描述的方法中的一种。
附图说明
具体地,现在存在多种设计和改进根据本发明的方法和根据本发明的科里奥利质量流量测量仪的可能性。为此不仅参考从属于独立权利要求的权利要求而且参考以下结合附图对优选的实施例的描述。其中:
图1示出了用于在科里奥利质量流量测量仪的情况中确定压力的方法的第一实施例,
图2示出了用于在科里奥利质量流量测量仪的情况中确定压力的方法的第二实施例,
图3示出了用于在科里奥利质量流量测量仪的情况中确定压力的方法的第三实施例,
图4示出了用于在科里奥利质量流量测量仪的情况中确定压力的方法的第四实施例,以及
图5示出了根据本发明的科里奥利质量流量测量仪的第一实施例。
附图标记清单
1用于在科里奥利质量流量测量仪的情况中确定压力的方法
2科里奥利质量流量测量仪
3测量管
4振动发生器
5振动接收器
6温度传感器
7应力传感器
7a应变计
7b应变计
8显示单元
9操控和评估单元
10确定p0、T0和Sh0
11确定T和Sh
12确定压力:p=p0+c1ΔT+c2ΔSh
13压力
14传输到显示单元处并且给出压力值
15确定p0、T0、Sa0和Sh0
16确定T、Sa、Sh
17确定压力:p=p0+c1ΔT+c2ΔSh+c3ΔSa
18确定p0、T0和Sh0
19确定T和Sh
20确定压力:p=p0+c1ΔT+c2ΔSh+c4ΔT2
21确定p0、T0、Sa0和Sh0
22确定T、Sa和Sh
23确定压力:p=p0+c1ΔT+c2ΔSh+c3ΔSa+c4ΔT2
具体实施方式
图1示出了用于在科里奥利质量流量测量仪2的情况中确定压力的方法1的第一实施例,其中,例如在图5中示出的科里奥利质量流量测量仪2具有以下部件:测量管3、振动发生器4、两个振动接收器5、温度传感器6、至少一个应力传感器7、至少一个显示单元8和至少一个控制和评估单元9,其中,测量管3在工作中被介质穿流,其中,如此布置温度传感器6,即,使得其测量测量管3的温度并且作为温度测量值T传输到操控和评估单元9处,其中,如此设计和布置应力传感器7,即,应力传感器7测量测量管3的在周向上的机械应力并且将周向的应力测量值Sh传输到操控和评估单元9处。
在图5中示出的实施例中,应力传感器7包括布置在测量管3的轴向方向上的应变计7a和布置在测量管3的周向上的应变计7b。然而,对于在图1中示出的方法而言,仅仅需要布置在测量管3的周向上的应变计7b。
应变计7a,7b也可安装在测量管3的其它位置处,例如关于测量管3的端部明显更加中间的位置处。相同的也适用于温度传感器6的位置。
在图1中示出的方法1的第一步骤10中,在参考条件下测量压力p0、测量管3的温度T0和在周向上的机械应力Sh0。紧接着,测量管3被待测量的介质穿流。
在下一步骤11中,确定测量管3的温度T和机械应力Sh
在紧接着的步骤12中,根据如下相关性确定压力13:p=p0+c1ΔT+c2ΔSh
最终,压力13被传输并给出14到显示单元8处。
在图2中示出了用于在科里奥利质量流量测量仪2中确定压力的方法1的第二实施例,其中,科里奥利质量流量测量仪2与例如在图3中示出且以上已描述的相同。与在图1中描述的方法不同地,在图2中描述的方法中,不仅需要在测量管3的轴向方向上的应力值Sa也需要测量管3的周向的应力值Sh
在图2中示出的方法1的第一步骤15中,在参考条件下测量压力p0、测量管3的温度T0、在轴向方向上的机械应力Sa0和在周向上的机械应力Sh0。紧接着,测量管3被待测量的介质穿流。
在下一步骤16中,确定测量管3的温度T、机械应力Sh和机械应力Sa
在紧接着的步骤17中,根据如下相关性确定压力13:p=p0+c1ΔT+c2ΔSh+c3ΔSa
最终,压力13被传输并给出14到显示单元8处。
在图3中示出了用于在科里奥利质量流量测量仪2的情况中确定压力的方法1的第三实施例,其中,科里奥利质量流量测量仪2与例如在图3中示出且以上已描述的相同。如在图1中示出的方法中,仅仅需要在周向上的机械应力Sh的值。
在图2中示出的方法1的第一步骤18中,在参考条件下测量压力p0、测量管3的温度T0和在周向上的机械应力Sh0。紧接着,测量管3被待测量的介质穿流。
在下一步骤19中,确定测量管3的温度T和机械应力Sh
在紧接着的步骤20中,根据如下相关性确定压力13:p=p0+c1ΔT+c2ΔSh+c4ΔT2
最终,压力13被传输并给出14到显示单元8处。
在图4中示出了用于在科里奥利质量流量测量仪2的情况中确定压力的方法1的第四实施例,其中,科里奥利质量流量测量仪2与例如在图3中示出且以上描述的相同。
在图4中示出的方法1的第一步骤21中,在参考条件下测量压力p0、测量管3的温度T0、在轴向方向上的机械应力Sa0和在周向上的机械应力Sh0。紧接着,测量管3被待测量的介质穿流。
在下一步骤22中,确定测量管3的温度T、机械应力Sa和机械应力Sh
在紧接着的步骤23中,根据如下相关性确定压力13:p=p0+c1ΔT+c2ΔSh+c3ΔSa+c4ΔT2
最终,压力13被传输并给出14到显示单元8处。

Claims (10)

1.一种用于在科里奥利质量流量测量仪(2)的情况中测量压力的方法(1),其中,所述科里奥利质量流量测量仪(2)具有至少一个测量管(3)、至少一个振动发生器(4)、至少两个振动接收器(5)、至少一个温度传感器(6)、至少一个应力传感器(7)、至少一个显示单元(8)和至少一个控制和评估单元(9),其中,所述测量管(3)被介质穿流,其中,如此布置所述温度传感器(6),即,使得其测量所述测量管(3)的温度并且作为温度测量值(T)传输到所述操控和评估单元(9)处,其中,如此设计和布置所述应力传感器(7),即,所述应力传感器测量测量管(3)的在轴向方向和/或周向上的机械应力并且将轴向的应力测量值(Sa)和/或周向的应力测量值(Sh)传输到所述操控和评估单元(9)处,并且其中,基于所述温度测量值(T)和至少一个应力测量值Sa和/或Sh确定所述介质的压力(13),
其特征在于,
通过算法由压力p0出发实现在所述测量管(3)之内的压力值(13)的确定,其中,已采用在参考条件下的p0,并且此外所述算法考虑在所述温度测量值T和参考测量值T0之间的差别和在至少一个应力测量值Sa和/或Sh与参考测量值Sa0和/或Sh0之间的差别,其中,已经在参考条件下测得了所述参考测量值T0和/或Sa0和/或Sh0,并且经由所述显示单元(8)给出借助于所述算法确定的压力值(3)。
2.根据权利要求1所述的方法(1),其特征在于,所述参考条件描述所述测量管(3)的如下状态,即,在其中,没有介质流过所述测量管(3)。
3.根据权利要求1或2中任一项所述的方法(1),其特征在于,线性地和/或二次方地将在所述温度测量值T和所述参考测量值T0之间的差别ΔT包含到用于确定所述介质的压力(13)的算法中。
4.根据权利要求1至3中任一项所述的方法(1),其特征在于,线性地将在所述应力测量值Sh和所述参考测量值Sh0之间的差别ΔSh和/或在所述应力测量值Sa和所述参考测量值Sa0之间的差别ΔSa包含到用于确定所述介质的压力(13)的算法中。
5. 根据权利要求1至4中任一项所述的方法(1),其特征在于,所述算法包括以下公式:
p=p0+c1ΔT+c2ΔSh
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0
并且其中,c1和c2是比例性系数,其可在回归的范围中被确定。
6. 根据权利要求1至4中任一项所述的方法(1),其特征在于,所述算法包括以下公式:
p=p0+c1ΔT+c2ΔSh+c3ΔSa
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0并且ΔSa=Sa-Sa0
并且其中,c1、c2和c3是比例性系数,其可在回归的范围中被确定。
7. 根据权利要求1至4中任一项所述的方法(1),其特征在于,所述算法包括以下公式:
p=p0+c1ΔT+c2ΔSh+c4ΔT2
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0
并且其中,c1、c2和c4是比例性系数,其可在回归的范围中被确定。
8. 根据权利要求1至4中任一项所述的方法(1),其特征在于,所述算法包括以下公式:
p=p0+c1ΔT+c2ΔSh+c3ΔSa+c4ΔT2
其中,
ΔT=T-T0并且ΔSh=Sh-Sh0并且ΔSa=Sa-Sa0
并且其中,c1、c2、c3和c4是比例性系数,其可在回归的范围中被确定。
9.一种科里奥利质量流量测量仪(2),其包括至少一个测量管(3)、至少一个振动发生器(4)、至少两个振动接收器(5)、至少一个温度传感器(6)、至少一个应力传感器(7)、至少一个显示单元(8)和至少一个控制和评估单元(9),其中,所述测量管可被介质(3)穿流,其中,如此设计和布置所述温度传感器(6),即,使得其测量所述测量管(3)的温度并且作为温度测量值T传输到所述操控和评估单元(9)处,其中,如此设计和布置所述应力传感器(7),即,所述应力传感器(7)测量测量管(3)的在轴向方向和/或周向上的机械应力并且将轴向的应力测量值Sa和/或周向的应力测量值Sh传输到输送操控和评估单元(9)处,并且如此设计所述操控和评估单元(9),即,使得其基于所述温度测量值T和/或至少一个应力测量值Sa和/或Sh确定所述介质的压力(13),
其特征在于,
如此设计所述操控和评估单元(9),即,通过算法由所述压力p0出发实现在所述测量管之内的压力值(13)的确定,其中,已采用在参考条件下的p0,并且此外所述算法考虑在所述温度测量值T和所述参考测量值T0之间的差别和在至少一个应力测量值Sa和/或Sh和参考测量值Sa0和/或Sh0之间的差别,其中,已经在参考条件下测得了所述参考测量值T0和/或Sa0和/或Sh0,并且经由所述显示单元(8)给出借助于所述算法确定的压力值(3)。
10.根据权利要求9所述的科里奥利质量流量测量仪(2),其特征在于,所述科里奥利质量流量测量仪在工作中进行根据权利要求1至8中任一项所述的方法。
CN201810127300.4A 2017-02-08 2018-02-08 测量压力的方法以及科里奥利质量流量测量仪 Active CN108398167B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017102449.2 2017-02-08
DE102017102449.2A DE102017102449A1 (de) 2017-02-08 2017-02-08 Verfahren zur Druckmessung bei einem Coriolis-Massedurchflussmessgerät und Coriolis-Massedurchflussmessgerät

Publications (2)

Publication Number Publication Date
CN108398167A true CN108398167A (zh) 2018-08-14
CN108398167B CN108398167B (zh) 2022-05-13

Family

ID=60954958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810127300.4A Active CN108398167B (zh) 2017-02-08 2018-02-08 测量压力的方法以及科里奥利质量流量测量仪

Country Status (4)

Country Link
US (1) US10962397B2 (zh)
EP (1) EP3361222B1 (zh)
CN (1) CN108398167B (zh)
DE (1) DE102017102449A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459664A (zh) * 2021-12-17 2022-05-10 中裕软管科技股份有限公司 一种自动水压测试装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233322A (zh) * 1996-08-14 1999-10-27 微动公司 测量科里奥利质量流量计中压力的方法和装置
US20040261541A1 (en) * 2002-12-02 2004-12-30 Hussain Yousif A Mass flow rate measuring device and process for measuring the pressure with a mass flow rate measuring device
EP1669727A1 (de) * 2004-12-01 2006-06-14 Krohne AG Verfahren zum Betreiben eines Massendurchflussmessgeräts
DE102007053105A1 (de) * 2007-11-05 2009-05-07 Dues, Michael, Dr.-Ing. Verfahren und Vorrichtung zur Volumenstrommessung von Fluiden in Rohrleitungen
CN101581595A (zh) * 2003-09-29 2009-11-18 微动公司 用于确认科里奥利流量计的流量校准因子的方法
US20100326204A1 (en) * 2009-06-26 2010-12-30 Krohne Ag Method for installing and operating a mass flowmeter and mass flowmeter
CN103674138A (zh) * 2012-09-10 2014-03-26 克洛纳有限公司 流量测量仪
CN204101104U (zh) * 2014-09-15 2015-01-14 微动公司 流量计的电子装置壳体及流量计
CN105043478A (zh) * 2014-04-17 2015-11-11 克洛纳有限公司 科里奥利质量流量测量仪
CN105806432A (zh) * 2015-01-15 2016-07-27 克洛纳有限公司 用于运行科里奥利质量流量测量仪的方法
CN105899917A (zh) * 2013-12-09 2016-08-24 恩德斯+豪斯流量技术股份有限公司 密度测量设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1669727B1 (de) * 1967-10-17 1971-04-15 Basf Ag Verfahren zum Stabilisieren von Polyacetalen
US5497665A (en) 1991-02-05 1996-03-12 Direct Measurement Corporation Coriolis mass flow rate meter having adjustable pressure and density sensitivity
US5827979A (en) 1996-04-22 1998-10-27 Direct Measurement Corporation Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a Coriolis mass flow meter
US6732570B2 (en) 2001-06-14 2004-05-11 Calibron Systems, Inc. Method and apparatus for measuring a fluid characteristic
US7614273B2 (en) * 2003-09-29 2009-11-10 Micro Motion, Inc. Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and Coriolis flowmeters and calibration validation
DE102007052041B4 (de) 2007-10-30 2011-02-24 Krohne Ag Verfahren zum Betreiben einer Dichtemeßvorrichtung und Vorrichtung zur Dichtemessung
GB201001948D0 (en) 2010-02-06 2010-03-24 Mobrey Ltd Improvements in or relating to vibrating tube densitometers
JP6876798B2 (ja) * 2016-11-30 2021-05-26 マイクロ モーション インコーポレイテッド メータ検証に使用されるテストトーンの温度補償

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233322A (zh) * 1996-08-14 1999-10-27 微动公司 测量科里奥利质量流量计中压力的方法和装置
US20040261541A1 (en) * 2002-12-02 2004-12-30 Hussain Yousif A Mass flow rate measuring device and process for measuring the pressure with a mass flow rate measuring device
CN101581595A (zh) * 2003-09-29 2009-11-18 微动公司 用于确认科里奥利流量计的流量校准因子的方法
EP1669727A1 (de) * 2004-12-01 2006-06-14 Krohne AG Verfahren zum Betreiben eines Massendurchflussmessgeräts
DE102007053105A1 (de) * 2007-11-05 2009-05-07 Dues, Michael, Dr.-Ing. Verfahren und Vorrichtung zur Volumenstrommessung von Fluiden in Rohrleitungen
US20100326204A1 (en) * 2009-06-26 2010-12-30 Krohne Ag Method for installing and operating a mass flowmeter and mass flowmeter
CN103674138A (zh) * 2012-09-10 2014-03-26 克洛纳有限公司 流量测量仪
CN105899917A (zh) * 2013-12-09 2016-08-24 恩德斯+豪斯流量技术股份有限公司 密度测量设备
CN105043478A (zh) * 2014-04-17 2015-11-11 克洛纳有限公司 科里奥利质量流量测量仪
CN204101104U (zh) * 2014-09-15 2015-01-14 微动公司 流量计的电子装置壳体及流量计
CN105806432A (zh) * 2015-01-15 2016-07-27 克洛纳有限公司 用于运行科里奥利质量流量测量仪的方法

Also Published As

Publication number Publication date
EP3361222A1 (de) 2018-08-15
CN108398167B (zh) 2022-05-13
EP3361222B1 (de) 2023-07-19
US20180224310A1 (en) 2018-08-09
DE102017102449A1 (de) 2018-08-09
US10962397B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6124744B2 (ja) 流量計
RU2545081C2 (ru) Способ и устройство для определения температуры элемента вибрационного датчика вибрационного измерителя
RU2573611C2 (ru) Способ и устройство для определения и контроля статического давления флюида с помощью вибрационного измерителя
JP5097132B2 (ja) プロセス変量トランスミッタにおける多相オーバーリーディング補正
CN105806432B (zh) 用于运行科里奥利质量流量测量仪的方法
RU2487322C1 (ru) Способ и устройство для определения ошибки расхода в вибрационном расходомере
US20110219872A1 (en) Method for operating a density measuring device and device for density measurement
EP2926096B1 (en) Vibrating type flow meter, meter electronics and flow metering method with detection of fluid tube cross-sectional area changes by determining tube stiffness by the help of a lateral vibration mode
US9581483B2 (en) Tank overflow protection system and method
JP6498180B2 (ja) 振動計用のメータセンサの検証
CN105579820B (zh) 压力变送器
WO2013137866A1 (en) Indirect mass flow sensor
CN108398167A (zh) 测量压力的方法以及科里奥利质量流量测量仪
CN115077644B (zh) 用于补偿参数的影响的方法和科里奥利质量流量计
CN102313609B (zh) 具有二极管和模/数转换器的温度检测装置
KR102363172B1 (ko) 내부 데이터 메모리를 포함하는 측정 변수 센서
CN107101687A (zh) 用于运行科里奥利质量流量测量仪器的方法
WO2023191763A1 (en) Flowmeter primary containment failure detection
KR101188721B1 (ko) 기준유량계의 신호를 직접 입력받아 교정대상 유량계의 교정이 가능한 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant