CN108394403B - A kind of power dividing type hybrid vehicle mode switch control method - Google Patents

A kind of power dividing type hybrid vehicle mode switch control method Download PDF

Info

Publication number
CN108394403B
CN108394403B CN201810400032.9A CN201810400032A CN108394403B CN 108394403 B CN108394403 B CN 108394403B CN 201810400032 A CN201810400032 A CN 201810400032A CN 108394403 B CN108394403 B CN 108394403B
Authority
CN
China
Prior art keywords
mode
motor
power
engine
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810400032.9A
Other languages
Chinese (zh)
Other versions
CN108394403A (en
Inventor
宋大凤
孙楚琪
曾小华
孙可华
李广含
王振伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810400032.9A priority Critical patent/CN108394403B/en
Publication of CN108394403A publication Critical patent/CN108394403A/en
Application granted granted Critical
Publication of CN108394403B publication Critical patent/CN108394403B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention discloses a kind of power dividing type hybrid vehicle mode switch control methods, the hybrid power system includes engine, first motor, second motor, first clutch second clutch etc., control method dividing system operating mode first is that MG2 directly drives mode, MG1&MG2 combines drive mode, hybrid mode, engine direct drives mode, braking mode and mechanical braking mode, then information needed and input control element are switched by detecting element acquisition mode, it is identified and is judged in control element based on currently known information, select appropriate mode, the calculation method of dependent thresholds in mode decision condition is provided simultaneously.The reasonable switching of multiple-working mode can be achieved in the present invention, allowing for driver's driving intention and vehicle driving status, ensure that engine, first motor, the second motor work in high efficiency region simultaneously, power performance, practicability with higher are ensured that while improving economy.

Description

A kind of power dividing type hybrid vehicle mode switch control method
Technical field
The invention belongs to Development of HEV Technology field, in particular to a kind of power dividing type hybrid power vapour mode is cut Change control method.
Background technique
Energy problem and pollution problem are two hang-ups urgently to be resolved for current automobile industry, orthodox car according to Generate power by internal combustion engine, higher and higher for the demand of petroleum, energy consumption is high, and the vehicle exhaust generated that burns for environment and Human life has safely larger harm.And new-energy automobile is then because its energy conservation, emission reduction, efficient advantage rapidly develop, wherein Oil-electric vehicle has both the advantages of orthodox car and pure electric automobile, reduces energy consumption under the premise of guaranteeing continual mileage And there is preferable emission performance, possess vast potential for future development.
Hybrid vehicle has a variety of configurations, wherein planet Series-Parallel HEV can be coupled by planet Mechanism decouples power source speed torque, compact-sized, and control strategy is flexible, can pass through Optimal Control Strategy and structure Type design, realizes multiple-working mode, and makes full use of the dynamic of engine and motor by the reasonable switching between different mode Power makes power source efficient operation, and the key for playing energy-saving and emission-reduction advantage is the control of each power source, and wherein pattern switching is out The premise for opening up energy management, is of crucial importance.
In the prior art, in terms of for the configuration optimization aspect and energy management strategies of planet parallel-serial hybrid power system Research it is more, and the research for the pattern switching control aspect of complicated planet parallel-serial hybrid power system is relatively fewer, mould Formula differentiation is more coarse, and the factor from the aspect of mode changeover condition is less.Patent publication No is 106494383 A's of CN Patent disclosed the control method and control device of a kind of driving mode change in 2017.03.15 days, and this method is for single shaft Parallel hybrid electric vehicle, power and reference driving force needed for calculating current system by controller, reference driving force is as threshold value Adjust the switching between pure electric vehicle (EV) mode and hybrid power (EVT) mode.Uniaxial parallel configuration mode is simple, this method Only account for one factor of system requirements power.Patent publication No is the patent of 106427991 A of CN, and date of publication is 2017.02.22, disclose a kind of operating mode control system, it is same for uniaxial parallel configuration, it is contemplated that battery SOC with Automobile speed factor selects drive mode.The patent of 103171559 A of Patent No. CN discloses a kind of point in 2013.06.26 Mode optimizes Series-Parallel HEV energy management method, and this method is related to mode switch section and considers speed, battery The factor of SOC and vehicle demand power switch between normal mode, low-speed mode and high-speed mode, and Three models do not have Body meaning is not accurate enough detailed.
Summary of the invention
The present invention is directed to band, and there are two the power dividing type configurations of clutch to propose the control system of one mode switching And control method, the careful each mode for having distinguished the research object of this method utilize three power source indicatrixes and detection The current vehicle driving information of element acquisition has carried out calculating and mode changeover condition in control element and has differentiated process, and by Three power sources and two clutches execute the mode handover command that control element issues in system.
The control model of the control system includes: that MG2 directly drives mode, MG1&MG2 joint drive mode, hybrid power mould Formula, engine direct drive mode and braking mode and mechanical braking mode.When MG2 directly drives mode, two clutches are disconnected It opens, by the second motor direct-drive vehicle.MG1&MG2 joint drive mode then passes through first clutch by planet carrier locking, in fact Existing two motor parallels driving.When hybrid mode, two clutches are disconnected, and engine and the second motor drive jointly, the One electric power generation.When engine direct drives mode, the second motor is closed, by second clutch by sun gear locking, by engine Directly drive vehicle.When braking mode, two clutches are disconnected, and braking energy is individually recycled by the second motor.Machine When tool braking mode, forced brake is carried out by brake, does not recycle braking energy.
Realize the switching of the above-mentioned operating mode mode switching method the following steps are included:
A, present vehicle information, including accelerator opening angle signal a, brake pedal aperture are acquired by each signal transducer Signal b, current vehicle speed v, current operation mode, the rotary speed information of three power sources and battery SOC information simultaneously calculate driving and need Seek power Pd, charge requirement power Pc, then input entire car controller;
B, it carries out the calculating of demand power: according to current vehicle speed v, calculating the second motor maximum speed ωmaxAnd it calculates and starts Then machine maximum speed is started with the respective rotary speed-torque external characteristic curve of the second motor by interpolation according to engine Machine torque capacity TeWith the second motor torque capacity T2, and then it is exportable most by Planetary Gear Transmission relationship to obtain current system Big total torque Tmax:
Tmax=T2+kTe/(1+k) (1)
Then drive demand power PdCalculation method are as follows:
Pd=aTmaxωmax/9549 (2)
Calculate charge requirement power PcFor
Pc=β (SOCmax-SOCre) (3)
In formula, SOCreIt is charging coefficient for present battery SOC, β;If present battery SOC is lower than SOCmin, then vehicle demand Power PreqTo drive demand power PdWith charge requirement power PcSum, otherwise vehicle demand power PreqWith driving demand power PdIt is equal;
It includes battery SOC upper threshold SOC that the control method, which is related to threshold value,maxWith battery SOC bottom threshold SOCmin, need Seek power threshold PrWith electric-only mode judgment threshold Sr
The demand power threshold value PrCalculation method are as follows: it is respective according to three power source of power dividing hybrid power system The map curve of revolving speed, torque and relationship between efficiency selects engine, first motor, the respective efficient operation region of the second motor. Output power threshold calculations formula is under electric-machine directly-driven mode
Po1=Tmax2ωmax2/9549 (4)
In formula, Tmax2For the second motor efficient operation region maximum torque, unit Nm;ωmax2For efficient operation region highest The corresponding maximum (top) speed of torque, unit r/min;
MG1&MG2 combines under drive mode, the optimal online threshold value P of output powero2Calculation formula is
Po2=(kT 'max1+T′max2)ω′max1/k (5)
In formula, k is planet row characterisitic parameter, T 'max1,′ωmax1,T′max2,ω′max2When to meet same output revolving speed, The revolving speed and torque range that the efficient work area overlapping region part of first motor and the second motor limits jointly, meet:
ω′max2=ω 'max1/k (6)
Then demand power threshold value PrFor
Pr=min { Po1,Po2,Pemin} (7)
Wherein, PeminFor the lower limit of the power value of engine optimum working curve, unit kW;
The electric-only mode judgment threshold SrCalculation method are as follows: choose the second motor efficiency operation region in highest Torque and corresponding revolving speed, consider that the revolving speed corresponds to speed vr, driver's non-emergent acceleration when accelerator pedal change rate mean value Δ arTwo A factor, then electric-only mode judgment threshold SrCalculation method:
Sr=n1vr+n2Δar (8)
N in formula1, n2The weight coefficient of respectively v and Δ α, and meet:
n1+n2=1 (9)
C, specific pattern switching judgement is carried out.
When C1, detection brake pedal opening amount signal b are greater than 0, if if present battery SOC is lower than battery SOC upper threshold SOCmax, into Brake energy recovery mode, control clutch 1 and disconnected with clutch 2, braking is individually recycled by the second motor Otherwise energy enters mechanical braking mode;
C2, detection brake pedal opening amount signal b are 0, when accelerator opening angle signal a is also 0, automobile slide;Work as detection Brake pedal opening amount signal b be 0, and accelerator opening angle signal a be greater than 0 when, Automobile drive, according to subsequent judgement enter accordingly Driving function mode:
If C3, vehicle demand power PreqGreater than demand power threshold value Pr, whether further judgement is current is in hybrid power Mode or engine direct drive mode;If it is not, then entering hybrid mode;If so, further detection present mode continues Time, if less than three signal acquisition step-lengths of duration, maintain present mode;
If C4, present mode duration are more than or equal to three signal acquisition step-lengths, further judge that present operating point is It is no to be near planet coupled system mechanical points: to judge engine speed ωeWith the second motor speed ω on gear ringMG2Relationship Whether meet:
Wherein μ is one close to 0 minizone boundary value, and numerical value between generally 0~0.1 can be taken as 0.05;If full Foot then enters engine direct and drives mode, otherwise, into hybrid mode;
If C5, demand power PreqLess than demand power threshold value Pr, then battery SOC is judged, if lower than under battery SOC threshold value Limit SOCmin, then currently whether work near planet coupling mechanism mechanical points according further to formula (10) judgement, repeat step C4;Otherwise, it is carried out for two parameters of current accelerator pedal change rate Δ a and speed v using the method for linear weighted function summation pure Electric model classification:
Srel=n1v+n2Δa (11)
If Srel≥Sr, then enter MG1&MG2 and combine drive mode, otherwise enter MG2 and directly drive mode;The control method Middle calculating demand power threshold value PrRequired engine, first motor, the second motor speed-torque-efficiency map curve and meter Engine needed for calculation demand torque, the second motor external characteristic curve are product unique characteristics curve.
In conclusion the present invention in the mode switching control system and method for proposition, has carried out the careful of operating mode Classification and pattern switching judgment threshold it is preferred, actually drive when driver can be met by the switching of different mode Dynamic property demand under different operating conditions, takes into account the efficacious workaround of each power source, to improve economy.
Extention and advantage of the invention will be provided by one embodiment, and in conjunction with attached drawing and corresponding explanation.
Detailed description of the invention
Fig. 1 is the planet parallel-serial hybrid power system structure diagram of the embodiment of the present invention;
Fig. 2 is the control flow chart switched according to a kind of planet parallel-serial hybrid power mode motor of the embodiment of the present invention;
Fig. 3 is the control method general illustration of the embodiment of the present invention;
Fig. 4 is to switch schematic diagram according to the various operating modes of the embodiment of the present invention.
In figure: 1, entire car controller;2, first clutch oil pressure control;3, first motor controller;4, battery management System;5, the second electric machine controller;6, engine controller;7, second clutch oil pressure control;8, engine;9, torsion subtracts Shake device;10, first clutch;11, first motor;12, second clutch;13, planet coupling mechanism;14, the second motor;15, Rear left wheel;16, main reducing gear;17, right rear wheel;18, inverter;19, battery.
Specific embodiment
Specific implementation method of the invention is described in detail in embodiment shown in connection with figures below, wherein from beginning extremely Same or similar label indicates same or similar element or element with the same or similar functions eventually.Below with reference to The embodiment of attached drawing description is exemplary, and for explaining only the invention, and is not considered as limiting the invention.
In the description of the present invention, it should be noted that unless otherwise clearly defined and limited, term " connected " " connects Connect " it shall be understood in a broad sense, it may be a fixed connection, may be a detachable connection;It can be mechanical connection, be also possible to two Connection inside element;It can be directly connected, it can also indirectly connected through an intermediary, for the ordinary skill of this field For personnel, the concrete meaning of above-mentioned term can be understood as the case may be.
Since planet power dividing type hybrid vehicle and planetary gear basic structure are those skilled in the art institute It notes, therefore this is no longer going to repeat them.
Firstly, Fig. 1 is the planet parallel-serial hybrid power system structure diagram of the embodiment of the present invention.As shown in Figure 1, starting Machine 8 is connected on the planet carrier in planetary gear coupling mechanism 13 by torsion vibration absorber 9 and first clutch 10, first motor 11 are connect by second clutch with the sun gear of planetary gear coupling mechanism 13, the power and planet row gear ring of the second motor 14 Be connected, engine 8, first motor 11, second 14 3 power sources of motor synthesized-power be transmitted to by main reducing gear 16 after Left wheel 15 and rear right wheel 17 driving vehicle traveling, battery 19 are supplied by inverter 18 to first motor 11 and the second motor 14 Electricity.
The control unit comprising mode switch control method is located at entire car controller 1, by entire car controller 1 receive Lai The signal of self-test element carries out operation and control, detecting element include vehicle speed sensor, accelerator pedal jaw opening sensor, braking Pedal opening sensor etc., when the operating mode that control element need to switch by judgement selection, entire car controller output mode Switching signal and the control instruction of each executing agency pass through CAN bus and each Parts Controller: engine controller 6, first Clutch oil pressure controller 2, second clutch oil pressure control 7, first motor controller 3;Second electric machine controllers 5 etc. carry out Interaction is realized to engine 8, first clutch 20, second clutch 12, first motor 11, the second motor 14 and brake Control.
According to embodiments of the present invention, it can be achieved that operating mode include electric-machine directly-driven mode, electric-only mode in parallel, mixing Dynamic mode, engine direct drive mode, braking mode and mechanical braking mode.Wherein, electric-machine directly-driven mode is second Motor 14 directly drives vehicle, controls first clutch 10 at this time and disconnects with second clutch 12.When electric-only mode in parallel, Locking first clutch 10, i.e. fixed carrier are needed, first motor 11 and 14 parallel drive vehicle of the second motor travel, with motor Straight drive mode is compared, the exportable bigger power of electric-only mode in parallel, but since first motor is by planet row rotation speed relation Limitation, only work in lower vehicle speed range.When hybrid mode, engine 8 drives whole jointly with the second motor 14 Vehicle, first motor 11 generate electricity, and first clutch is disconnected with second clutch.When engine direct drives mode, second clutch 12 Locking sun gear, the second motor dally with output shaft, and engine directly drives vehicle, which can avoid hybrid mode Under, it is increased with speed, bring power cycle is lost when operating point is more than mechanical points, promotes economy.When braking mode, Braking energy is individually recycled by the second motor, and two clutches disconnect, to guarantee recovery efficiency.When mechanical braking mode, electricity Pond SOC higher, not recycling braking energy.
Then, according to embodiments of the present invention, as shown in Fig. 2 pattern switching control block diagram, black arrow represents each mode Between the feasibility that mutually switches need to first disconnect first clutch 10 when electric-only mode in parallel drives pattern switching to engine direct, Started by planet carrier dragging engine 8 in planet coupling mechanism 13, first motor 12 and the second motor 14, the process could be closed Hybrid mode is had to pass through, therefore directly can not drive pattern switching to engine direct.Can mutually it switch between remaining each mode.
Further, according to embodiments of the present invention, mode switch control method general illustration is as shown in figure 3, by each The signal processing module of the input entire car controller such as signal such as battery SOC, speed, each power source speed of sensor acquisition carries out Analysis is calculated, by the information such as obtained current demand power and preset threshold input pattern decision-making module, carries out specific mould Formula switching control judgement, then inputs obtained mode switching signal in the controller of each component, carries out to all parts single The management of vehicle mode is realized in solely control.
The specific judgment method of pattern switching control is as shown in figure 4, be first depending on accelerator opening angle signal and braking is stepped on Plate opening amount signal judges that current vehicle should be at drive mode or braking mode.
If brake pedal opening amount signal is greater than 0, then it is assumed that driver has braking intention, and entire car controller is sent to brake Brake signal, then through present battery SOC compared with default SOC threshold, selection enters braking mode or mechanical braking mould Formula.If brake pedal signal is equal to 0, accelerator pedal signal is also equal to 0, then vehicle enters sliding state, and three power source loads are 0, vehicle slows down gradually under the action of running resistance.If brake pedal signal is equal to 0, accelerator pedal signal is greater than 0, then into one The drive mode that step judgement should be at.
Successively compare vehicle demand power and battery SOC when the judgement of drive mode in control element, demand power is high Or battery SOC it is low when need to start engine, it is dynamic then whether to operate in mechanical points mixing selected around according to planet coupled system Force mode or engine direct drive mode, need judgment model duration when switching between two modes to prevent mode frequent start-stop. By electric-only mode enter have engine participate in power transmitting mode when, be introduced into hybrid mode with decompose engine with The movement of clutch.
Demand power is low, and when battery SOC is high, into electric-only mode.Control unit comprehensively considers accelerator pedal and opens Three change rate, speed and demand torque factors are spent, line weighted sum of going forward side by side compares, straight in electric-only mode in parallel and motor Judged between drive mode.

Claims (2)

1. a kind of power dividing type hybrid vehicle mode switch control method, it is characterised in that:
The power dividing type hybrid power configuration includes engine, three first motor, the second motor power sources, power battery And inverter, first clutch and second clutch and brake;
The driving mode of the control method include: MG2 directly drive mode, MG1&MG2 joint drive mode, hybrid mode, Engine direct drives mode and braking mode and mechanical braking mode;
The specific drive form of the driving mode are as follows: MG2 directly drives mode by the second motor direct-drive vehicle, first clutch It is disconnected with second clutch;MG1&MG2 joint drive mode then passes through first clutch for planet carrier locking, realizes two motors Parallel drive;When hybrid mode, engine and the second motor drive jointly, and first motor power generation, clutch disconnects;Hair When motivation directly drives mode, by clutch 2 by sun gear locking, power is provided separately by engine;Braking mode, braking Energy is recycled by the second motor, and clutch disconnects;Mechanical braking mode, does not recycle braking energy;
The mode switch control method the following steps are included:
A, pattern switching information needed inputs
By each signal transducer acquire present vehicle information, including accelerator opening angle signal a, brake pedal opening amount signal b, Current vehicle speed v, current operation mode, the rotary speed information of three power sources and battery SOC information simultaneously calculate driving demand power Pd, charge requirement power Pc, then input entire car controller;
B, the calculating of the processing of signal and preset threshold
The calculating of the demand power: according to current vehicle speed v, the second motor maximum speed ω is calculatedmaxAnd calculate engine highest Then revolving speed obtains engine maximum by interpolation according to engine and the respective rotary speed-torque external characteristic curve of the second motor Torque TeWith the second motor torque capacity T2, and then exportable maximum total turn of current system is obtained by Planetary Gear Transmission relationship Square Tmax:
Tmax=T2+kTe/(1+k) (1)
Then drive demand power PdCalculation method are as follows:
Pd=aTmaxωmax/9549 (2)
Calculate charge requirement power PcFor
Pc=β (SOCmax-SOCre) (3)
In formula, SOCreIt is charging coefficient for present battery SOC, β;If present battery SOC is lower than SOCmin, then vehicle demand power PreqTo drive demand power PdWith charge requirement power PcSum, otherwise vehicle demand power PreqWith driving demand power PdPhase Deng;
It includes battery SOC upper threshold SOC that the control method, which is related to threshold value,maxWith battery SOC bottom threshold SOCmin, demand function Rate threshold value PrWith electric-only mode judgment threshold Sr
The demand power threshold value PrCalculation method are as follows: according to the respective revolving speed of three power source of power dividing hybrid power system, The map curve of torque and relationship between efficiency selects engine, first motor, the respective efficient operation region of the second motor;Motor is straight Output power threshold calculations formula is under drive mode
Po1=Tmax2ωmax2/9549 (4)
In formula, Tmax2For the second motor efficient operation region maximum torque, unit Nm;ωmax2For efficient operation region maximum torque Corresponding maximum (top) speed, unit r/min;
MG1&MG2 combines under drive mode, the optimal online threshold value P of output powero2Calculation formula is
Po2=(kT 'max1+T′max2)ω′max1/k (5)
In formula, k is planet row characterisitic parameter, T 'max1,ω′max1,T′max2,ω′max2When to meet same output revolving speed, the first electricity The revolving speed and torque range that the efficient work area overlapping region part of machine and the second motor limits jointly meet:
ω′max2=ω 'max1/k (6)
Then demand power threshold value PrFor
Pr=min { Po1,Po2,Pemin} (7)
Wherein, PeminFor the lower limit of the power value of engine optimum working curve, unit kW;
The electric-only mode judgment threshold SrCalculation method are as follows: choose the second motor efficiency operation region in maximum torque With corresponding revolving speed, consider that the revolving speed corresponds to speed vr, driver's non-emergent acceleration when accelerator pedal change rate mean value Δ arTwo because Element, the method summed using linear weighted function, then electric-only mode judgment threshold SrCalculation method:
Sr=n1vr+n2Δar (8)
N in formula1, n2The weight coefficient of respectively v and Δ α, and meet:
n1+n2=1 (9)
C, pattern switching specific method
When C1, detection brake pedal opening amount signal b are greater than 0, if if present battery SOC is lower than battery SOC upper threshold SOCmax, Into Brake energy recovery mode, controls clutch 1 and disconnected with clutch 2, braking energy is individually recycled by the second motor, it is no Then enter mechanical braking mode;
C2, detection brake pedal opening amount signal b are 0, when accelerator opening angle signal a is also 0, automobile slide;When detection is braked Pedal opening signal b is 0, and when accelerator opening angle signal a is greater than 0, Automobile drive enters corresponding drive according to subsequent judgement Dynamic functional mode:
If C3, vehicle demand power PreqGreater than demand power threshold value Pr, whether further judgement is current is in hybrid mode Or engine direct drives mode;If it is not, then entering hybrid mode;If so, the present mode duration is further detected, If less than three signal acquisition step-lengths of duration, maintain present mode;
If C4, present mode duration are more than or equal to three signal acquisition step-lengths, further judge whether present operating point is located Near planet coupled system mechanical points: judging engine speed ωeWith the second motor speed ω on gear ringMG2Relationship whether Meet:
Wherein μ is one close to 0 minizone boundary value, is the numerical value between 0~0.1, can be taken as 0.05;If satisfied, then into Enter engine direct and drive mode, otherwise, into hybrid mode;
If C5, demand power PreqLess than demand power threshold value Pr, then battery SOC is judged, if being lower than battery SOC bottom threshold SOCmin, then currently whether work near planet coupling mechanism mechanical points according further to formula (10) judgement, repeat step C4; Otherwise, linear weighted function and S are acquired for two parameters of current accelerator pedal change rate Δ a and speed vrel, it is used for electric-only mode Classification:
Srel=n1v+n2Δa (11)
If Srel≥Sr, then enter MG1&MG2 and combine drive mode, otherwise enter MG2 and directly drive mode.
2. a kind of power dividing type hybrid vehicle mode switch control method according to claim 1, feature exist In: calculate demand power threshold value PrRequired engine, first motor, the second motor speed-torque-efficiency map curve and Engine needed for calculating demand torque, the second motor external characteristic curve are product unique characteristics curve.
CN201810400032.9A 2018-04-28 2018-04-28 A kind of power dividing type hybrid vehicle mode switch control method Expired - Fee Related CN108394403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810400032.9A CN108394403B (en) 2018-04-28 2018-04-28 A kind of power dividing type hybrid vehicle mode switch control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810400032.9A CN108394403B (en) 2018-04-28 2018-04-28 A kind of power dividing type hybrid vehicle mode switch control method

Publications (2)

Publication Number Publication Date
CN108394403A CN108394403A (en) 2018-08-14
CN108394403B true CN108394403B (en) 2019-07-05

Family

ID=63100657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810400032.9A Expired - Fee Related CN108394403B (en) 2018-04-28 2018-04-28 A kind of power dividing type hybrid vehicle mode switch control method

Country Status (1)

Country Link
CN (1) CN108394403B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353330B (en) * 2018-10-31 2021-02-02 重庆长安汽车股份有限公司 Hybrid vehicle, working mode control system and method thereof
CN109177968B (en) * 2018-11-06 2020-02-07 吉林大学 Drive mode control method of power split type hybrid electric vehicle
CN109624977B (en) * 2018-12-19 2020-11-03 吉林大学 Cruise mode control method of hybrid electric vehicle
CN111497823A (en) * 2019-01-30 2020-08-07 郑州宇通客车股份有限公司 Hybrid vehicle control mode switching coordination control method and vehicle
CN109747626B (en) * 2019-03-15 2020-09-25 吉林大学 Torque demand analysis method for optimal power of parallel plug-in hybrid electric vehicle
CN109849890A (en) * 2019-03-15 2019-06-07 中国汽车技术研究中心有限公司 A kind of control method of finished using parallel axes planet row mixed power plant
CN109849891B (en) * 2019-03-15 2020-11-13 中国汽车技术研究中心有限公司 Control method of three-mode hybrid electric vehicle
CN109849892B (en) * 2019-03-25 2020-08-28 科力远混合动力技术有限公司 Pure electric drive mode switching control method of power split type hybrid vehicle
CN109849889B (en) * 2019-03-25 2020-08-28 科力远混合动力技术有限公司 Hybrid power driving mode switching control method of power split type hybrid power vehicle
CN110293959B (en) * 2019-05-23 2022-07-08 科力远混合动力技术有限公司 Hybrid power driving mode switching control method of power split type hybrid power vehicle
CN111152643A (en) * 2020-01-03 2020-05-15 吉林大学 Control method for timely four-wheel drive system of hybrid electric vehicle
CN111409623B (en) * 2020-03-10 2022-07-08 科力远混合动力技术有限公司 Torque control method in mode switching process of hybrid electric vehicle
CN111572534B (en) * 2020-04-03 2022-11-04 江西鼎盛新材料科技有限公司 Power-split type hybrid power truck brake safety protection mode switching control method
CN113525340A (en) * 2020-04-21 2021-10-22 乾碳国际公司 ACE heavy truck oil-saving robot system
CN113715801B (en) * 2020-05-22 2024-05-10 广州汽车集团股份有限公司 Controller of vehicle with hybrid power coupling system, control method and vehicle
CN113715804B (en) * 2020-05-22 2024-04-12 广汽埃安新能源汽车有限公司 Controller of vehicle with hybrid power coupling system, control method and vehicle
CN112937548A (en) * 2021-03-24 2021-06-11 吉林大学 Power-division type hybrid electric vehicle power domain control system
CN113427993B (en) * 2021-06-23 2022-06-03 徐工集团工程机械股份有限公司科技分公司 Electric transmission control system and loader
CN114030457B (en) * 2022-01-07 2022-03-15 北京航空航天大学 Dual-threshold working mode switching control method for series-parallel hybrid power system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103171559A (en) * 2013-03-20 2013-06-26 同济大学 Mode separated type optimized series-parallel hybrid electric vehicle energy management method
CN104417544A (en) * 2013-09-09 2015-03-18 比亚迪股份有限公司 Control system and control method of hybrid electrical vehicle (HEV)
WO2015060460A1 (en) * 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control system for a vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035653A (en) * 2010-08-03 2012-02-23 Toyota Motor Corp Control device of hybrid vehicle
KR20120062259A (en) * 2010-12-06 2012-06-14 현대자동차주식회사 System for protection friction element of hybrid vehicle and method thereof
JP5700061B2 (en) * 2013-03-21 2015-04-15 トヨタ自動車株式会社 Hybrid car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103171559A (en) * 2013-03-20 2013-06-26 同济大学 Mode separated type optimized series-parallel hybrid electric vehicle energy management method
CN104417544A (en) * 2013-09-09 2015-03-18 比亚迪股份有限公司 Control system and control method of hybrid electrical vehicle (HEV)
WO2015060460A1 (en) * 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control system for a vehicle

Also Published As

Publication number Publication date
CN108394403A (en) 2018-08-14

Similar Documents

Publication Publication Date Title
CN108394403B (en) A kind of power dividing type hybrid vehicle mode switch control method
CN108349369B (en) Operation of a drive device of a hybrid vehicle and hybrid vehicle
CN104417344B (en) Hybrid vehicle and its drive control method
CN104691301B (en) Hybrid vehicle and method for controlling same
CN105984389B (en) Vehicle
CN103260982B (en) The engine start control device of motor vehicle driven by mixed power
CN104024073B (en) Control device for motor vehicle driven by mixed power
CN1974285B (en) Regenerating brake control method for mixed power automobile
CN103171559B (en) Merotype optimization Series-Parallel HEV energy management method
CN102582616B (en) CVT (continuously variable transmission) hybrid electric vehicle power source torque optimizing distribution method
CN104411555B (en) Control device for hybrid vehicle
CN103228518B (en) There is the motor vehicles of hybrid drive and for selecting motor and/or starter motor to the method starting explosive motor
CN101492046A (en) Parallel type hybrid vehicles energy management and assembly coordinated control method
US20070151783A1 (en) Power output apparatus and motor vehicle equipped with power output apparatus
US20060097671A1 (en) Driving device and motor vehicle equipped with driving device
CN106364306B (en) The dynamical system and its operation method of hybrid vehicle
CN108068807A (en) For the automatic cruising control method of hybrid electric vehicle
CN105966391A (en) Braking mode energy management and control method for plug-in type four-wheel-drive hybrid electric vehicle
CN102514477A (en) Planet coupled hybrid system for caterpillar and control method for same
CN102862469B (en) Hybrid drive, driving method and hybrid vehicle
CN103958303A (en) Vehicle travel control device
WO2010139275A1 (en) Driving system for four-wheel driving hybrid vehicle and driving management method thereof
CN104260720B (en) A kind of parallel-serial hybrid power controls system and the control method adopting this system to realize
CN108327512A (en) Hybrid electric drive system and vehicle
US8397850B2 (en) System and method for driving hybrid electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

Termination date: 20210428