CN108363161A - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN108363161A
CN108363161A CN201810010773.6A CN201810010773A CN108363161A CN 108363161 A CN108363161 A CN 108363161A CN 201810010773 A CN201810010773 A CN 201810010773A CN 108363161 A CN108363161 A CN 108363161A
Authority
CN
China
Prior art keywords
lens
optical axis
image side
object side
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810010773.6A
Other languages
English (en)
Inventor
陈郁茗
许圣伟
王佩琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genius Electronic Optical Xiamen Co Ltd
Original Assignee
Genius Electronic Optical Xiamen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genius Electronic Optical Xiamen Co Ltd filed Critical Genius Electronic Optical Xiamen Co Ltd
Priority to CN201810010773.6A priority Critical patent/CN108363161A/zh
Priority to US15/921,821 priority patent/US10451855B2/en
Publication of CN108363161A publication Critical patent/CN108363161A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开一种光学成像镜头,其从物侧至像侧依序包括第一、第二、第三、第四、第五及第六透镜。本发明透过控制各透镜的凹凸曲面排列,而在维持大视场角及镜头长度的前提下,提高成像质量。

Description

光学成像镜头
技术领域
本发明涉及光学成像领域,尤其涉及一种光学成像镜头。
背景技术
可携式电子产品的规格日新月异,其关键零组件-光学成像镜头也更加多样化发展。而车用镜头的应用领域持续增加中,从倒车、360度环景、车道偏移***到先进驾驶辅助***(ADAS)等,一部车使用镜头从6颗到20颗都有,镜头规格也持续精进,从VGA(30万画素)升级到百万画素以上。但车用镜头的成像品质与手机镜头上千万画素的成像质量仍有很大的进步空间。因此在维持大光圈与大视场角以及镜头长度的前提下,提高车用镜头之成像质量是业界不断探讨的课题。
然而,光学成像镜头设计并非单纯将成像质量佳的镜头等比例缩小就能制作出兼具成像质量与微型化的光学镜片组,设计过程牵涉到材料特性,还必须考虑到制作、组装良率等生产面的实际问题。因此如何制作出符合应用的光学成像镜头,并持续提升其镜头的成像质量,一直是业界持续精进的目标。
发明内容
本发明之一目的系在提供一种光学成像镜头,透过控制各透镜的凹凸曲面排列,而在维持大视场角及镜头长度的前提下,提高成像质量。
依据本发明,提供一种光学成像镜头,其从一物侧至一像侧沿一光轴包括六片透镜,依序包括一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜及一第六透镜,第一透镜至第六透镜各自包括一朝向该物侧且使成像光线通过的物侧面及一朝向该像侧且使成像光线通过的像侧面。
为了便于表示本发明所指的参数,在本说明书及图式定义:T1代表第一透镜在光轴上的厚度、G12代表第一透镜之像侧面至第二透镜之物侧面在光轴上的距离、T2代表第二透镜在光轴上的厚度、G23代表第二透镜之像侧面至第三透镜之物侧面在光轴上的距离、T3代表第三透镜在光轴上的厚度、G34代表第三透镜之像侧面至第四透镜之物侧面在光轴上的距离、T4代表第四透镜在光轴上的厚度、G45代表第四透镜之像侧面至第五透镜之物侧面在光轴上的距离、T5代表第五透镜在光轴上的厚度、G56代表第五透镜之像侧面至第六透镜之物侧面在光轴上的距离、T6代表第六透镜在光轴上的厚度、G6F代表第六透镜至滤光片在光轴上的空气间隙、TTF代表滤光片在光轴上的厚度、GFP代表滤光片至成像面在光轴上的空气间隙、f1代表第一透镜的焦距、f2代表第二透镜的焦距、f3代表第三透镜的焦距、f4代表第四透镜的焦距、f5代表第五透镜的焦距、f6代表第六透镜的焦距、n1代表第一透镜的折射率、n2代表第二透镜的折射率、n3代表第三透镜的折射率、n4代表第四透镜的折射率、n5代表第五透镜的折射率、n6代表第六透镜的折射率、V1代表第一透镜的阿贝数、V2代表第二透镜的阿贝数、V3代表第三透镜的阿贝数、V4代表第四透镜的阿贝数、V5代表第五透镜的阿贝数、V6代表第六透镜的阿贝数、EFL代表光学成像镜头的***焦距、TL代表第一透镜之物侧面至第六透镜之像侧面在光轴上的距离、TTL代表第一透镜之物侧面至成像面在光轴上的距离、ALT代表第一透镜至第六透镜在光轴上的六个透镜厚度总和(即T1、T2、T3、T4、T5、T6之和)、AAG代表第一透镜之像侧面至第二透镜之物侧面在光轴上的距离、第二透镜之像侧面至第三透镜之物侧面在光轴上的距离、第三透镜之像侧面至第四透镜之物侧面在光轴上的距离、第四透镜之像侧面至第五透镜之物侧面在光轴上的距离以及第五透镜之像侧面至第六透镜之物侧面在光轴上的距离的总和(即G12、G23、G34、G45、G56之和)、BFL代表光学成像镜头的后焦距,即第六透镜之像侧面至成像面在光轴上的距离(即G6F、TTF、GFP之和)。
依据本发明的一实施例所提供的一光学成像镜头,第二透镜具有负屈光率,第三透镜之物侧面与像侧面之至少一者为非球面,第四透镜之物侧面与像侧面之至少一者为非球面,第五透镜之物侧面的圆周区域为凸面,且第五透镜之像侧面的光轴区域为凸面,及第六透镜之像侧面的光轴区域为凸面。光学成像镜头具有屈光率的透镜只有上述六片,第一透镜的物侧面到第五透镜的物侧面在光轴上的距离与第五透镜及第六透镜在光轴上的厚度总和之比值小于或等于1.900,且光学成像镜头中阿贝系数小于40.000的透镜数量小于或等于3。
依据本发明的另一实施例所提供的一光学成像镜头,第二透镜具有负屈光率,第三透镜之物侧面与像侧面之至少一者为非球面,第四透镜之物侧面与像侧面之至少一者为非球面,第五透镜之物侧面的圆周区域为凸面,且第五透镜之像侧面的光轴区域为凸面,及第六透镜之像侧面的光轴区域为凸面。光学成像镜头具有屈光率的透镜只有上述六片,第一透镜的物侧面到第五透镜的物侧面在光轴上的距离与第五透镜及第六透镜在光轴上的厚度总和之比值小于或等于1.900,且光学成像镜头符合:(T1+G12)/T2≦3.600。
本发明可选择性地控制前述参数,满足下列至少一条件式:
(T1+G12)/G45≦5.700 条件式(1);
(T1+G34)/T4≦3.300 条件式(2);
(T1+G12+G34)/G23≦2.100 条件式(3);
(EFL+BFL)/T5≦3.800 条件式(4);
EFL/T2≦6.000 条件式(5);
(ALT+BFL)/T5≦5.100 条件式(6);
TTL/(T1+T5)≦5.000 条件式(7);
TTL/ALT≦2.000 条件式(8);
AAG/(G12+G23)≦2.000 条件式(9);
(T1+G12+G56)/T2≦4.000 条件式(10);
(T1+G12+G34)/T3≦2.500 条件式(11);
(T1+G12+G34+G56)/G23≦2.700 条件式(12);
(EFL+BFL)/T6≦9.000 条件式(13);
EFL/T4≦4.500 条件式(14);
ALT/T6≦7.700 条件式(15);
TL/(T1+T6)≦5.000 条件式(16);
TL/AAG≦5.400 条件式(17);及/或
AAG/(G34+G45)≦3.900 条件式(18)。
前述所列之示例性限定条件式,亦可任意选择性地合并不等数量施用于本发明之实施态样中,并不限于此。在实施本发明时,除了前述条件式之外,亦可针对单一透镜或广泛性地针对多个透镜额外设计出其它更多的透镜的凹凸曲面排列、屈光率变化、选用各种材质或其它细部结构,以加强对***性能及/或分辨率的控制。须注意的是,此些细节需在无冲突之情况之下,选择性地合并施用于本发明之其它实施例当中。
由上述中可以得知,本发明之光学成像镜头透过控制各透镜的凹凸曲面排列,可维持其成像质量并缩小镜头长度,扩大视场角及光圈。
附图说明
图1是本发明之一实施例之透镜剖面结构示意图;
图2是透镜面形与光线焦点的关系示意图;
图3是范例一的透镜区域的面形及区域分界的关系图;
图4是范例二的透镜区域的面形及区域分界的关系图;
图5是范例三的透镜区域的面形及区域分界的关系图;
图6是依据本发明之第一实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图7是依据本发明之第一实施例之光学成像镜头之纵向球差与各项像差图示意图;
图8是依据本发明之第一实施例之光学成像镜头之各透镜之详细光学数据表格图;
图9是依据本发明之第一实施例之光学成像镜头之非球面数据表格图;
图10是依据本发明之第二实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图11是依据本发明之第二实施例之光学成像镜头之纵向球差与各项像差图示意图;
图12是依据本发明之第二实施例之光学成像镜头之各透镜之详细光学数据表格图;
图13是依据本发明之第二实施例之光学成像镜头之非球面数据表格图;
图14是依据本发明之第三实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图15是依据本发明之第三实施例之光学成像镜头之纵向球差与各项像差图示意图;
图16是依据本发明之第三实施例之光学成像镜头之各透镜之详细光学数据表格图;
图17是依据本发明之第三实施例之光学成像镜头之非球面数据表格图;
图18是依据本发明之第四实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图19是依据本发明之第四实施例之光学成像镜头之纵向球差与各项像差图示意图;
图20是依据本发明之第四实施例之光学成像镜头之各透镜之详细光学数据表格图;
图21是依据本发明之第四实施例之光学成像镜头之非球面数据表格图;
图22是依据本发明之第五实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图23是依据本发明之第五实施例之光学成像镜头之纵向球差与各项像差图示意图;
图24是依据本发明之第五实施例之光学成像镜头之各透镜之详细光学数据表格图;
图25是依据本发明之第五实施例之光学成像镜头之非球面数据表格图;
图26是依据本发明之第六实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图27是依据本发明之第六实施例之光学成像镜头之纵向球差与各项像差图示意图;
图28是依据本发明之第六实施例之光学成像镜头之各透镜之详细光学数据表格图;
图29是依据本发明之第六实施例之光学成像镜头之非球面数据表格图;
图30是依据本发明之第七实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图31是依据本发明之第七实施例之光学成像镜头之纵向球差与各项像差图示意图;
图32是依据本发明之第七实施例之光学成像镜头之各透镜之详细光学数据表格图;
图33是依据本发明之第七实施例之光学成像镜头之非球面数据表格图;
图34是依据本发明之第八实施例之光学成像镜头之六片式透镜之剖面结构示意图;
图35是依据本发明之第八实施例之光学成像镜头之纵向球差与各项像差图示意图;
图36是依据本发明之第八实施例之光学成像镜头之各透镜之详细光学数据表格图;
图37是依据本发明之第八实施例之光学成像镜头之非球面数据表格图;
图38统列出以上八个实施例的各参数及(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)值的比较表格图。
具体实施方式
为进一步说明各实施例,本发明乃提供有图式。此些图式乃为本发明揭露内容之一部分,其主要系用以说明实施例,并可配合说明书之相关描述来解释实施例的运作原理。配合参考这些内容,本领域具有通常知识者应能理解其它可能的实施方式以及本发明之优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
附图中的符号说明:1,2,3,4,5,6,7,8光学成像镜头;100,200,300,400,500透镜;130组装部;211平行光线;212平行光线;STO光圈;L1第一透镜;L2第二透镜;L3第三透镜;L4第四透镜;L5第五透镜;L6第六透镜;TF滤光片;IMA成像面;410,510,L1A1,L2A1,L3A1,L4A1,L5A1,L6A1物侧面;320,L1A2,L2A2,L3A2,L4A2,L5A2,L6A2像侧面;Z1,L1A1C,L1A2C,L2A1C,L2A2C,L3A1C,L3A2C,L4A1C,L4A2C,L5A1C,L5A2C,L6A1C,L6A2C光轴区域;Z2,L1A1P,L1A2P,L2A1P,L2A2P,L3A1P,L3A2P,L4A1P,L4A2P,L5A1P,L5A2P,L6A1P,L6A2P圆周区域;A1物侧;A2像侧;CP中心点;CP1第一中心点;CP2第二中心点;TP1第一转换点;TP2第二转换点;OB光学边界;I光轴;Lc主光线;Lm边缘光线;EL延伸线Z3中继区域;M相交点;R相交点。
本说明书之光学***包含至少一透镜,接收入射光学***之平行于光轴至相对光轴呈半视角(HFOV)角度内的成像光线。成像光线通过光学***于成像面上成像。所言之「一透镜具有正屈光率(或负屈光率)」,是指所述透镜以高斯光学理论计算出来之近轴屈光率为正(或为负)。所言之「透镜之物侧面(或像侧面)」定义为成像光线通过透镜表面的特定范围。成像光线包括至少两类光线:主光线(chief ray)Lc及边缘光线(marginal ray)Lm(如图1所示)。透镜之物侧面(或像侧面)可依不同位置区分为不同区域,包含光轴区域、圆周区域、或在部分实施例中的一个或多个中继区域,该些区域的说明将于下方详细阐述。
图1为透镜100的径向剖视图。定义透镜100表面上的二参考点:中心点及转换点。透镜表面的中心点为该表面与光轴I的一交点。如图1所例示,第一中心点CP1位于透镜100的物侧面110,第二中心点CP2位于透镜100的像侧面120。转换点是位于透镜表面上的一点,且该点的切线与光轴I垂直。定义透镜表面之光学边界OB为通过该透镜表面径向最外侧的边缘光线Lm与该透镜表面相交的一点。所有的转换点皆位于光轴I与透镜表面之光学边界OB之间。除此之外,若单一透镜表面有复数个转换点,则该些转换点由径向向外的方向依序自第一转换点开始命名。例如,第一转换点TP1(最靠近光轴I)、第二转换点TP2(如图4所示)及第N转换点(距离光轴I最远)。
定义从中心点至第一转换点TP1的范围为光轴区域,其中,该光轴区域包含中心点。定义距离光轴I最远的第N转换点径向向外至光学边界OB的区域为圆周区域。在部分实施例中,可另包含介于光轴区域与圆周区域之间的中继区域,中继区域的数量取决于转换点的数量。
当平行光轴I之光线通过一区域后,若光线朝光轴I偏折且与光轴I的交点位在透镜像侧A2,则该区域为凸面。当平行光轴I之光线通过一区域后,若光线的延伸线与光轴I的交点位在透镜物侧A1,则该区域为凹面。
除此之外,参见图1,透镜100还可包含一由光学边界OB径向向外延伸的组装部130。组装部130一般来说用以供该透镜100组装于光学***之一相对应组件(图未示)。成像光线并不会到达该组装部130。组装部130之结构与形状仅为说明本发明之示例,不以此限制本发明的范围。下列讨论之透镜的组装部130可能会在图式中被部分或全部省略。
参见图2,定义中心点CP与第一转换点TP1之间为光轴区域Z1。定义第一转换点TP1与透镜表面的光学边界OB之间为圆周区域Z2。如图2所示,平行光线211在通过光轴区域Z1后与光轴I在透镜200的像侧A2相交,即平行光线211通过光轴区域Z1的焦点位于透镜200像侧A2的R点。由于光线与光轴I相交于透镜200像侧A2,故光轴区域Z1为凸面。反之,平行光线212在通过圆周区域Z2后发散。如图2所示,平行光线212通过圆周区域Z2后的延伸线EL与光轴I在透镜200的物侧A1相交,即平行光线212通过圆周区域Z2的焦点位于透镜200物侧A1的M点。由于光线的延伸线EL与光轴I相交于透镜200物侧A1,故圆周区域Z2为凹面。于图2所示的透镜200中,第一转换点TP1是光轴区域与圆周区域的分界,即第一转换点TP1为凸面转凹面的分界点。
另一方面,光轴区域的面形凹凸判断还可依该领域中通常知识者的判断方式,即藉由近轴的曲率半径(简写为R值)的正负号来判断透镜之光轴区域面形的凹凸。R值可常见被使用于光学设计软件中,例如Zemax或CodeV。R值亦常见于光学设计软件的透镜数据表(lens data sheet)中。以物侧面来说,当R值为正时,判定为物侧面的光轴区域为凸面;当R值为负时,判定物侧面的光轴区域为凹面。反之,以像侧面来说,当R值为正时,判定像侧面的光轴区域为凹面;当R值为负时,判定像侧面的光轴区域为凸面。此方法判定的结果与前述藉由光线/光线延伸线与光轴的交点判定方式的结果一致,光线/光线延伸线与光轴交点的判定方式即为以一平行光轴之光线的焦点位于透镜之物侧或像侧来判断面形凹凸。本说明书所描述之「一区域为凸面(或凹面)」、「一区域为凸(或凹)」或「一凸面(或凹面)区域」可被替换使用。
图3至图5提供了在各个情况下判断透镜区域的面形及区域分界的范例,包含前述之光轴区域、圆周区域及中继区域。
图3为透镜300的径向剖视图。参见图3,透镜300的像侧面320在光学边界OB内仅存在一个转换点TP1。透镜300的像侧面320的光轴区域Z1及圆周区域Z2如图3所示。此像侧面320的R值为正(即R>0),因此,光轴区域Z1为凹面。
一般来说,以转换点为界的各个区域面形会与相邻的区域面形相反,因此,可用转换点来界定面形的转变,即自转换点由凹面转凸面或由凸面转凹面。于图3中,由于光轴区域Z1为凹面,面形于转换点TP1转变,故圆周区域Z2为凸面。
图4为透镜400的径向剖视图。参见图4,透镜400的物侧面410存在一第一转换点TP1及一第二转换点TP2。定义光轴I与第一转换点TP1之间为物侧面410的光轴区域Z1。此物侧面410的R值为正(即R>0),因此,光轴区域Z1为凸面。
定义第二转换点TP2与透镜400的物侧面410的光学边界OB之间为圆周区域Z2,该物侧面410的该圆周区域Z2亦为凸面。除此之外,定义第一转换点TP1与第二转换点TP2之间为中继区域Z3,该物侧面410的该中继区域Z3为凹面。再次参见图4,物侧面410由光轴I径向向外依序包含光轴I与第一转换点TP1之间的光轴区域Z1、位于第一转换点TP1与第二转换点TP2之间的中继区域Z3,及第二转换点TP2与透镜400的物侧面410的光学边界OB之间的圆周区域Z2。由于光轴区域Z1为凸面,面形自第一转换点TP1转变为凹,故中继区域Z3为凹面,又面形自第二转换点TP2再转变为凸,故圆周区域Z2为凸面。
图5为透镜500的径向剖视图。透镜500的物侧面510无转换点。对于无转换点的透镜表面,例如透镜500的物侧面510,定义自光轴I起算至透镜表面光学边界OB之间距离的0~50%为光轴区域,自光轴I起算至透镜表面光学边界OB之间距离的50~100%为圆周区域。参见图5所示之透镜500,定义光轴I至自光轴I起算到透镜500表面光学边界OB之间距离的50%为物侧面510的光轴区域Z1。此物侧面510的R值为正(即R>0),因此,光轴区域Z1为凸面。由于透镜500的物侧面510无转换点,因此物侧面510的圆周区域Z2亦为凸面。透镜500更可具有组装部(图未示)自圆周区域Z2径向向外延伸。
本发明之光学成像镜头,乃是一定焦镜头,其从物侧至像侧沿一光轴设置六片透镜,依序包括一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜及一第六透镜。第一透镜至该第六透镜各自包括一朝向物侧且使成像光线通过的物侧面及一朝向像侧且使成像光线通过的像侧面。本发明之光学成像镜头透过设计各透镜之细部特征,而可维持其成像质量并缩小镜头长度,同时扩大视场角及光圈。
在此设计的前述各镜片之特性主要是考虑光学成像镜头的光学特性与镜头长度,举例来说:第二透镜具有负屈光率有利于广角镜头设计,第三透镜的物侧面与像侧面的至少其中之一为非球面及第四透镜的物侧面与像侧面的至少其中之一为非球面之设计有利于修正各种像差,将第五透镜与第六透镜这两个透镜胶合有利于提高成像质量,而其中又以设计第五透镜的物侧面的圆周区域为凸面以及像侧面的光轴区域为凸面搭配第六透镜的像侧面的光轴区域为凸面的透镜面形配置效果较佳。
第一透镜的物侧面到第五透镜的物侧面在光轴上的距离与第五透镜、第六透镜在该光轴上的厚度总和之比值(以(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)表示)小于或等于1.900有利于增加第五透镜、第六透镜的厚度降低制程难度而使得镜头长度不致过长,较佳的范围为1.000≦(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)≦1.900。
本发明的实施例的光学成像镜头当满足阿贝系数小于40.000的透镜数量小于或等于3时,有利于修正光学成像镜头的色像差,较佳的数量为两片或三片。
当满足(T1+G12)/T2≦3.600时,有利于使第二透镜的厚度不致过小而影响像差的修正,较佳的范围为0.900≦(T1+G12)/T2≦3.600。
在此设计条件式(4)、(5)、(13)、(14)至少其中之一的目的为使***焦距与光学各参数维持一适当值,避免任一参数过大而不利于该光学成像***整体之像差的修正,或是避免任一参数过小而影响组装或是提高制造上之困难度。较佳的范围为0.600≦(EFL+BFL)/T5≦3.800、1.500≦EFL/T2≦6.000、0.700≦(EFL+BFL)/T6≦9.000、0.800≦EFL/T4≦4.500。在此设计条件式(1)~(3)、(6)~(12)、(15)~(18)至少其中之一的目的为使各透镜的厚度与间隔维持一适当值,避免任一参数过大而不利于该光学成像镜头整体之薄型化,或是避免任一参数过小而影响组装或是提高制造上之困难度。较佳的范围为1.100≦(T1+G12)/G45≦5.700、0.700≦(T1+G34)/T4≦3.300、0.500≦(T1+G12+G34)/G23≦2.100、1.500≦(ALT+BFL)/T5≦5.100、2.000≦TTL/(T1+T5)≦5.000、1.200≦TTL/ALT≦2.000、1.200≦AAG/(G12+G23)≦2.000、0.900≦(T1+G12+G56)/T2≦4.000、0.600≦(T1+G12+G34)/T3≦2.500、0.500≦(T1+G12+G34+G56)/G23≦2.700、1.800≦ALT/T6≦7.700、2.100≦TL/(T1+T6)≦5.000、1.900≦TL/AAG≦5.400、1.400≦AAG/(G34+G45)≦3.900。
有鉴于光学***设计的不可预测性,在本发明的架构之下,符合上述的条件式时,能较佳地使本发明的成像质量提升镜头、视场角增加、镜头长度缩短、光圈值(Fno)缩小及/或组装良率提升而改善先前技术的缺点。
在实施本发明时,除了上述条件式之外,亦可如以下实施例针对单一透镜或广泛性地针对多个透镜额外设计出其它更多的透镜的凹凸曲面排列、屈光率变化或其它细部结构,以加强对***性能及/或分辨率的控制以及制造上良率的提升。除此之外,材质设计方面,本发明的实施例的光学成像镜头的所有透镜中可为玻璃、塑料、树脂等各种透明材质制作之透镜。须注意的是,此些细节需在无冲突之情况之下,选择性地合并施用于本发明之其它实施例当中,并不限于此。
为了说明本发明确实可在提供良好的光学性能的同时,增加视场角及降低光圈值,以下提供多个实施例以及其详细的光学数据。首先请一并参考图6至图9,其中图6显示依据本发明之第一实施例之光学成像镜头之六片式透镜之剖面结构示意图,图7显示依据本发明之第一实施例之光学成像镜头之纵向球差与各项像差图标意图,图8显示依据本发明之第一实施例之光学成像镜头之详细光学数据,图9显示依据本发明之第一实施例光学成像镜头之各透镜之非球面数据。
如图6所示,本实施例之光学成像镜头1从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈(aperture stop)STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。一滤光片TF及一影像传感器的一成像面IMA皆设置于光学成像镜头1的像侧A2。在本实施例中,滤光片TF为红外线滤光片(IR cut filter)且设于第六透镜L6与成像面IMA之间,滤光片TF将经过光学成像镜头1的光过滤掉特定波段的波长,例如过滤掉红外光波段,可使得红外光波段的波长不会成像于成像面IMA上。
光学成像镜头1之第一透镜L1在此示例性地以玻璃材质所构成,第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6在此示例性地以塑料材质所构成,然不限于此,亦可为其它透明材质制作。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6且形成细部结构如下:第一透镜L1具有负屈光率,并具有一朝向物侧A1的物侧面L1A1及一朝向像侧A2的像侧面L1A2。物侧面L1A1的光轴区域L1A1C为凸面及其圆周区域L1A1P为凸面。像侧面L1A2的光轴区域L1A2C为凹面及其圆周区域L1A2P为凹面。第一透镜L1的物侧面L1A1与像侧面L1A2皆为球面。
第二透镜L2具有负屈光率,并具有一朝向物侧A1的物侧面L2A1及一朝向像侧A2的像侧面L2A2。物侧面L2A1的光轴区域L2A1C为凸面及其圆周区域L2A1P为凸面。像侧面L2A2的光轴区域L2A2C为凹面及其圆周区域L2A2P为凹面。第二透镜L2的物侧面L2A1与像侧面L2A2皆为非球面。
第三透镜L3具有正屈光率,并具有一朝向物侧A1的物侧面L3A1及一朝向像侧A2的像侧面L3A2。物侧面L3A1的光轴区域L3A1C为凸面以及其圆周区域L3A1P为凸面。像侧面L3A2的光轴区域L3A2C为凸面及其圆周区域L3A2P为凹面。第三透镜L3的物侧面L3A1与像侧面L3A2皆为非球面。
第四透镜L4具有正屈光率,并具有一朝向物侧A1的物侧面L4A1及具有一朝向像侧A2的像侧面L4A2。物侧面L4A1的光轴区域L4A1C为凹面以及其圆周区域L4A1P为凹面。像侧面L4A2的光轴区域L4A2C为凸面及其圆周区域L4A2P为凸面。第四透镜L4的物侧面L4A1与像侧面L4A2皆为非球面。
第五透镜L5具有正屈光率,并具有一朝向物侧A1的物侧面L5A1及一朝向像侧A2的像侧面L5A2。物侧面的光轴区域L5A1C为凸面以及其圆周区域L5A1P为凸面。像侧面L5A2的光轴区域L5A2C为凸面及其圆周区域L5A2P为凸面。第五透镜L5的物侧面L5A1与像侧面L5A2皆为非球面。
第六透镜L6具有正屈光率,并具有一朝向物侧A1的物侧面L6A1及一朝向像侧A2的像侧面L6A2。物侧面L6A1的光轴区域L6A1C为凹面以及其圆周区域L6A1P为凹面。像侧面L6A2的光轴区域L6A2C为凸面及其圆周区域L6A2P为凸面。第六透镜L6的物侧面L6A1与像侧面L6A2皆为非球面。
在本实施例中,除第五透镜L5与第六透镜L6之间对应表面轮廓设计为彼此相应,并以胶合材料彼此贴合之外,系设计各透镜、滤光片TF及影像传感器的成像面IMA之间存在一距离。
关于本实施例之光学成像镜头1中的各透镜之各光学特性及各距离之数值,请参考图8,其中滤光片TF的物侧面及像侧面分别以TFA1、TFA2标示。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
第二透镜L2的物侧面L2A1及像侧面L2A2、第三透镜L3的物侧面L3A1及像侧面L3A2、第四透镜L4的物侧面L4A1及像侧面L4A2、第五透镜L5的物侧面L5A1及像侧面L5A2及第六透镜L6的物侧面L6A1及像侧面L6A2,共十个非球面皆是依下列非球面曲线公式定义:
Y表示非球面曲面上的点与光轴的垂直距离;Z表示非球面之深度(非球面上距离光轴为Y的点,其与相切于非球面光轴上顶点之切面,两者间的垂直距离);R表示透镜表面近光轴处之曲率半径;K为锥面系数(Conic Constant);ai为第i阶非球面系数。各个非球面之参数详细数据请一并参考图9。
图7的(a)绘示本实施例的纵向球差的示意图,横轴为焦距,纵轴为视场。图7的(b)绘示本实施例的弧矢方向的场曲像差的示意图,图7的(c)绘示本实施例的子午方向的场曲像差的示意图,横轴为焦距,纵轴为像高。图7的(d)绘示本实施例的畸变像差的示意图,横轴为百分比,纵轴为像高。三种代表波长(470nm,555nm,650nm)在不同高度的离轴光线皆集中于的成像点附近,每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.015mm,明显改善不同波长的球差,弧矢方向的场曲像差在整个视场范围内的焦距变化量落在±0.025mm内,子午方向的场曲像差落在±0.025mm内,而畸变像差维持于±60%内。
从上述数据中可以看出光学成像镜头1的各种光学特性已符合光学***的成像质量要求。据此说明本第一较佳实施例之光学成像镜头1相较于现有光学镜头,在将半视角(HFOV)扩大至73.000度并提供20.000mm镜头长度的同时,仍能有效提供较佳的成像质量。
参考图10至图13,图10显示依据本发明之第二实施例之光学成像镜头之六片式透镜之剖面结构示意图,图11显示依据本发明之第二实施例光学成像镜头之纵向球差与各项像差图标意图,图12显示依据本发明之第二实施例之光学成像镜头之详细光学数据,图13显示依据本发明之第二实施例之光学成像镜头之各透镜之非球面数据。如图10中所示,本实施例之光学成像镜头2从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。
第二实施例之朝向物侧A1的物侧面L1A1,L2A1,L3A1,L4A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2之表面凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第二实施例的各曲率半径、透镜厚度、非球面系数及后焦距等相关光学参数与第一实施例不同。关于本实施例之光学成像镜头2的各透镜之各光学特性及各距离之数值,请参考图12。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图11的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.015mm以内。从图11的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.02mm内。从图11的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.02mm内。图11的(d)显示光学成像镜头2的畸变像差维持在±80%的范围内。第二实施例与第一实施例相比较,弧矢、子午方向的场曲像差较小。
从上述数据中可以看出光学成像镜头2的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头2相较于现有光学镜头,在将HFOV扩大至74.000度并提供18.961mm镜头长度的同时,仍能有效提供较佳的成像质量。第二实施例与第一实施例相比较,HFOV较大且镜头长度较短。
参考图14至图17,其中图14显示依据本发明之第三实施例之光学成像镜头之六片式透镜之剖面结构示意图,图15显示依据本发明之第三实施例光学成像镜头之各项像差图标意图,图16显示依据本发明之第三实施例之光学成像镜头之详细光学数据,图17显示依据本发明之第三实施例之光学成像镜头之各透镜之非球面数据。如图14中所示,本实施例之光学成像镜头2从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。
第三实施例之朝向物侧A1的物侧面L1A1,L3A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2等透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第三实施例的各曲率半径、透镜厚度、非球面系数、后焦距等相关光学参数及物侧面L2A1,L4A1之表面凹凸配置第一实施例不同。在此为了更清楚显示图面,仅标示表面凹凸配置与第一实施例不同之光轴区域与圆周区域之处,而省略相同凹凸配置之光轴区域与圆周区域的标号,且以下每个实施例亦仅标示透镜表面凹凸配置与第一实施例不同之光轴区域与圆周区域之处,省略相同处的标号,并不再赘述。详细地说,表面凹凸配置差异之处在于,第二透镜L2的像侧面L2A1的圆周区域L2A1P为凹面,第四透镜L4的像侧面L4A2的圆周区域L4A1P为凸面。在于关于本实施例之光学成像镜头3的各透镜之各光学特性及各距离之数值,请参考图16。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图15的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.05mm以内。从图15的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.08mm内。从图15的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.08mm内。图15的(d)显示光学成像镜头3的畸变像差维持在±80%的范围内。
从上述数据中可以看出光学成像镜头3的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头3相较于现有光学镜头,在将HFOV扩大至74.000度并提供12.228mm镜头长度的同时,仍能有效提供较佳的成像质量。与第一实施例相比较,本实施例的HFOV较大且镜头长度较短。
另请一并参考图18至图21,其中图18显示依据本发明之第四实施例之光学成像镜头之六片式透镜之剖面结构示意图,图19显示依据本发明之第四实施例光学成像镜头之纵向球差与各项像差图标意图,图20显示依据本发明之第四实施例之光学成像镜头之详细光学数据,图21显示依据本发明之第四实施例之光学成像镜头之各透镜之非球面数据。如图18中所示,本实施例之光学成像镜头4从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。
第四实施例之朝向物侧A1的物侧面L1A1,L2A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L4A2,L5A2等透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第四实施例的各曲率半径、透镜厚度、非球面系数、后焦距等相关光学参数及物侧面L3A1,L4A1及像侧面L3A2,L6A2之表面凹凸配置与第一实施例不同。详细地说,表面凹凸配置差异之处在于,第三透镜L3的物侧面L3A1的光轴区域L3A1C为凹面且圆周区域L3A1P为凹面,第三透镜L3的像侧面L3A2的圆周区域L3A2P为凸面,第四透镜L4的物侧面L4A1的圆周区域L4A1P为凸面,且第六透镜L6的像侧面L6A2的圆周区域L6A2P为凹面。关于本实施例之光学成像镜头4的各透镜之各光学特性及各距离之数值,请参考图20。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图19的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.05mm以内。从图19的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.08mm内。从图19的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.08mm内。图19的(d)显示光学成像镜头4的畸变像差维持在±80%的范围内。
从上述数据中可以看出光学成像镜头4的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头4相较于现有光学镜头,在将HFOV扩大至70.000度并提供11.270mm镜头长度的同时,仍能有效提供较佳的成像质量。与第一实施例相较,本实施例的镜头长度较短。
另请一并参考图22至图25,其中图22显示依据本发明之第五实施例之光学成像镜头之六片式透镜之剖面结构示意图,图23显示依据本发明之第五实施例光学成像镜头之纵向球差与各项像差图标意图,图24显示依据本发明之第五实施例之光学成像镜头之详细光学数据,图25显示依据本发明之第五实施例之光学成像镜头之各透镜之非球面数据。如图22中所示,本实施例之光学成像镜头5从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。第五实施例之朝向物侧A1的物侧面L1A1,L2A1,L3A1,L4A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2的透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第五实施例的各曲率半径、透镜厚度、非球面系数及后焦距等相关光学参数与第一实施例不同。关于本实施例之光学成像镜头5的各透镜之各光学特性及各距离之数值,请参考图24。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图23的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.025mm以内。从图23的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。从图23的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。图23的(d)显示光学成像镜头5的畸变像差维持在±60%的范围内。
从上述数据中可以看出光学成像镜头5的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头5相较于现有光学镜头,在将HFOV扩大至72.000度并提供20.000mm镜头长度的同时,仍能有效提供较佳的成像质量。
另请一并参考图26至图29,其中图26显示依据本发明之第六实施例之光学成像镜头之六片式透镜之剖面结构示意图,图27显示依据本发明之第六实施例光学成像镜头之纵向球差与各项像差图标意图,图28显示依据本发明之第六实施例之光学成像镜头之详细光学数据,图29显示依据本发明之第六实施例之光学成像镜头之各透镜之非球面数据。如图26中所示,本实施例之光学成像镜头6从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。第六实施例之朝向物侧A1的物侧面L1A1,L2A1,L3A1,L4A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2的透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第六实施例各透镜表面的曲率半径、透镜厚度、非球面系数及后焦距等相关光学参数与第一实施例不同。第四透镜L4具有负屈光率。关于本实施例之光学成像镜头6的各透镜之各光学特性及各距离之数值,请参考图28。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图27的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.02mm以内。从图27的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。从图27的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。图27的(d)显示光学成像镜头6的畸变像差维持在±80%的范围内。
从上述数据中可以看出光学成像镜头6的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头6相较于现有光学镜头,在将HFOV扩大至72.000度并提供18.649mm镜头长度的同时,仍能有效提供较佳的成像质量。与第一实施例相较,本实施例镜头长度较短。
另请一并参考图30至图33,其中图30显示依据本发明之第七实施例之光学成像镜头之六片式透镜之剖面结构示意图,图31显示依据本发明之第七实施例光学成像镜头之纵向球差与各项像差图标意图,图32显示依据本发明之第七实施例之光学成像镜头之详细光学数据,图33显示依据本发明之第七实施例之光学成像镜头之各透镜之非球面数据。如图30中所示,本实施例之光学成像镜头7从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。第七实施例之朝向物侧A1的物侧面L1A1,L2A1,L3A1,L4A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2的透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第七实施例的各透镜表面的曲率半径、透镜厚度、非球面系数及后焦距等相关光学参数与第一实施例不同。关于本实施例之光学成像镜头7的各透镜之各光学特性及各距离之数值,请参考图32。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图31的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.02mm以内。从图31的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。从图31的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。图31的(d)显示光学成像镜头7的畸变像差维持在±50%的范围内。与第一实施例相比较,本实施例畸变像差较小。从上述数据中可以看出光学成像镜头7的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头7相较于现有光学镜头,在将HFOV扩大至68.000度并提供20.000mm镜头长度的同时,仍能有效提供较佳的成像质量。
另请一并参考图34至图37,其中图34显示依据本发明之第八实施例之光学成像镜头之六片式透镜之剖面结构示意图,图35显示依据本发明之第八实施例光学成像镜头之纵向球差与各项像差图标意图,图36显示依据本发明之第八实施例之光学成像镜头之详细光学数据,图37显示依据本发明之第八实施例之光学成像镜头之各透镜之非球面数据。如图34中所示,本实施例之光学成像镜头8从物侧A1至像侧A2依序包括一第一透镜L1、一第二透镜L2、一第三透镜L3、一光圈STO、一第四透镜L4、一第五透镜L5及一第六透镜L6。第八实施例之朝向物侧A1的物侧面L1A1,L2A1,L3A1,L4A1,L5A1,L6A1及朝向像侧A2的像侧面L1A2,L2A2,L3A2,L4A2,L5A2,L6A2的透镜表面的凹凸配置及各透镜的正负屈光率配置大致上与第一实施例类似,唯第八实施例的各透镜表面的曲率半径、透镜厚度、非球面系数及后焦距等相关光学参数与第一实施例不同。关于本实施例之光学成像镜头8的各透镜之各光学特性及各距离之数值,请参考图36。关于(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,请参考图38。
从图35的(a)的纵向球差中,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差控制在±0.05mm以内。从图35的(b)的弧矢方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。从图35的(c)的子午方向的场曲像差中,三种代表波长在整个视场范围内的焦距变化量落在±0.05mm内。图35的(d)显示光学成像镜头8的畸变像差维持在±80%的范围内。
从上述数据中可以看出光学成像镜头8的各种光学特性已符合光学***的成像质量要求。据此说明本实施例之光学成像镜头8相较于现有光学镜头,在将HFOV扩大至70.000度并提供20.000mm镜头长度的同时,仍能有效提供较佳的成像质量。
图38统列出以上八个实施例的(T1+G12+T2+G23+T3+G34+T4+G45)/(T5+T6)、(T1+G12)/T2、(T1+G12)/G45、(T1+G34)/T4、(T1+G12+G34)/G23、(EFL+BFL)/T5、EFL/T2、(ALT+BFL)/T5、TTL/(T1+T5)、TTL/ALT、AAG/(G12+G23)、(T1+G12+G56)/T2、(T1+G12+G34)/T3、(T1+G12+G34+G56)/G23、(EFL+BFL)/T6、EFL/T4、ALT/T6、TL/(T1+T6)、TL/AAG及AAG/(G34+G45)之值,以及各实施例的详细光学数据中,可看出本发明之光学成像镜头确实可满足前述条件式(1)~(18)至少任一。其次,此处各个实施例所揭露之光学参数的组合比例关系所得的包含最大最小值以内的数值范围皆可属本发明据以实施之范畴。
本发明光学成像镜头各实施例的纵向球差、场曲像差、畸变皆符合使用规范。另外,三种代表波长在不同高度的离轴光线皆集中在成像点附近,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差皆获得控制而具有良好的球差、像差、畸变抑制能力。进一步参阅成像质量数据,三种代表波长彼此间的距离亦相当接近,显示本发明在各种状态下对不同波长光线的集中性佳而具有优良的色散抑制能力。综上所述,本发明藉由透镜的设计与相互搭配,能产生优异的成像质量。
以上叙述依据本发明多个不同实施例,其中各项特征可以单一或不同结合方式实施。因此,本发明实施方式之揭露为阐明本发明原则之具体实施例,应不拘限本发明于所揭示的实施例。进一步言之,先前叙述及其附图仅为本发明示范之用,并不受其限囿。其它组件之变化或组合皆可能,且不悖于本发明之精神与范围。此外,本发明之各个实施例所揭露之光学参数的组合比例关系所得的包含最大最小值以内的数值范围皆可据以实施。

Claims (20)

1.一种光学成像镜头,其从一物侧至一像侧沿一光轴依序包括一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜及一第六透镜,且该第一透镜至该第六透镜各自包括一朝向该物侧且使成像光线通过的物侧面及一朝向该像侧且使成像光线通过的像侧面;
该第二透镜具有负屈光率;
该第三透镜之该物侧面与该像侧面之至少一者为非球面;
该第四透镜之该物侧面与该像侧面之至少一者为非球面;
该第五透镜之该物侧面的一圆周区域为凸面,且该第五透镜之该像侧面的一光轴区域为凸面;及
该第六透镜之该像侧面的一光轴区域为凸面;
其中,该光学成像镜头具有屈光率的透镜只有上述六片,该第一透镜的该物侧面到该第五透镜的该物侧面在该光轴上的一距离与该第五透镜及该第六透镜在该光轴上的一厚度总和之比值小于或等于1.900,且该光学成像镜头中阿贝系数小于40.000的透镜数量小于或等于3。
2.一种光学成像镜头,其从一物侧至一像侧沿一光轴依序包括一第一透镜、一第二透镜、一第三透镜、一第四透镜、一第五透镜及一第六透镜,且该第一透镜至该第六透镜各自包括一朝向该物侧且使成像光线通过的物侧面及一朝向该像侧且使成像光线通过的像侧面;
该第二透镜具有负屈光率;
该第三透镜之该物侧面与该像侧面之至少一者为非球面;
该第四透镜之该物侧面与该像侧面之至少一者为非球面;
该第五透镜之该物侧面的一圆周区域为凸面,且该第五透镜之该像侧面的一光轴区域为凸面;及
该第六透镜之该像侧面的一光轴区域为凸面;
其中,该光学成像镜头具有屈光率的透镜只有上述六片,该第一透镜的该物侧面到该第五透镜的该物侧面在该光轴上的距离与该第五透镜及该第六透镜在该光轴上的厚度总和之比值小于或等于1.900,且该光学成像镜头符合:(T1+G12)/T2≦3.600,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,T2代表该第二透镜在该光轴上的一厚度。
3.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G12)/G45≦5.700,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G45代表该第四透镜之该像侧面至该第五透镜之该物侧面在该光轴上的一距离。
4.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G34)/T4≦3.300,T1代表该第一透镜在该光轴上的一厚度,G34代表该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的一距离,T4代表该第四透镜在该光轴上的一厚度。
5.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G12+G34)/G23≦2.100,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G34代表该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的一距离,G23代表该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的一距离。
6.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(EFL+BFL)/T5≦3.800,EFL代表该光学成像镜头的一***焦距,BFL代表该第六透镜之该像侧面至一成像面在该光轴上的一距离,T5代表该第五透镜在该光轴上的一厚度。
7.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足EFL/T2≦6.000,EFL代表该光学成像镜头的一***焦距,T2代表该第二透镜在该光轴上的一厚度。
8.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(ALT+BFL)/T5≦5.100,ALT代表该第一透镜至该第六透镜在该光轴上的六个透镜厚度的一总和,BFL代表该第六透镜之该像侧面至一成像面在该光轴上的一距离,T5代表该第五透镜在该光轴上的一厚度。
9.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足TTL/(T1+T5)≦5.000,TTL代表该第一透镜之该物侧面至一成像面在该光轴上的一距离,T1代表该第一透镜在该光轴上的一厚度,T5代表该第五透镜在该光轴上的一厚度。
10.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足TTL/ALT≦2.000,TTL代表该第一透镜之该物侧面至一成像面在该光轴上的一距离,ALT代表该第一透镜至该第六透镜在该光轴上的六个透镜厚度的一总和。
11.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足AAG/(G12+G23)≦2.000,AAG代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的距离、该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的距离、该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的距离、该第四透镜之该像侧面至该第五透镜之该物侧面在该光轴上的距离以及该第五透镜之该像侧面至该第六透镜之该物侧面在该光轴上的距离的一总和,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G23代表该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的一距离。
12.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G12+G56)/T2≦4.000,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G56代表该第五透镜之该像侧面至该第六透镜之该物侧面在该光轴上的一距离,T2代表该第二透镜在该光轴上的一厚度。
13.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G12+G34)/T3≦2.500,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G34代表该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的一距离,T3代表该第三透镜在该光轴上的一厚度。
14.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(T1+G12+G34+G56)/G23≦2.700,T1代表该第一透镜在该光轴上的一厚度,G12代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的一距离,G34代表该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的一距离,G56代表该第五透镜之该像侧面至该第六透镜之该物侧面在该光轴上的一距离,G23代表该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的一距离。
15.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足(EFL+BFL)/T6≦9.000,EFL代表该光学成像镜头的一***焦距,BFL代表该第六透镜之该像侧面至一成像面在该光轴上的一距离,T6代表该第六透镜在该光轴上的一厚度。
16.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足EFL/T4≦4.500,EFL代表该光学成像镜头的一***焦距,T4代表该第四透镜在该光轴上的一厚度。
17.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足ALT/T6≦7.700,ALT代表该第一透镜至该第六透镜在该光轴上的六个透镜厚度的一总和,T6代表该第六透镜在该光轴上的一厚度。
18.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足TL/(T1+T6)≦5.000,TL代表该第一透镜之该物侧面至该第六透镜之该像侧面在该光轴上的一距离,T1代表该第一透镜在该光轴上的一厚度,T6代表该第六透镜在该光轴上的一厚度。
19.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足TL/AAG≦5.400,TL代表该第一透镜之该物侧面至该第六透镜之该像侧面在该光轴上的一距离,AAG代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的距离、该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的距离、该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的距离、该第四透镜之该像侧面至该第五透镜之该物侧面在该光轴上的距离以及该第五透镜之该像侧面至该第六透镜之该物侧面在该光轴上的距离的一总和。
20.如权利要求1或2所述光学成像镜头,其中该光学成像镜头更满足AAG/(G34+G45)≦3.900,AAG代表该第一透镜之该像侧面至该第二透镜之该物侧面在该光轴上的距离、该第二透镜之该像侧面至该第三透镜之该物侧面在该光轴上的距离、该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的距离、该第四透镜之该像侧面至该第五透镜之该物侧面在该光轴上的距离以及该第五透镜之该像侧面至该第六透镜之该物侧面在该光轴上的距离的一总和,G34代表该第三透镜之该像侧面至该第四透镜之该物侧面在该光轴上的一距离,G45代表该第四透镜之该像侧面至该第五透镜之该物侧面在该光轴上的一距离。
CN201810010773.6A 2018-01-05 2018-01-05 光学成像镜头 Pending CN108363161A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810010773.6A CN108363161A (zh) 2018-01-05 2018-01-05 光学成像镜头
US15/921,821 US10451855B2 (en) 2018-01-05 2018-03-15 Optical imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810010773.6A CN108363161A (zh) 2018-01-05 2018-01-05 光学成像镜头

Publications (1)

Publication Number Publication Date
CN108363161A true CN108363161A (zh) 2018-08-03

Family

ID=63011063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810010773.6A Pending CN108363161A (zh) 2018-01-05 2018-01-05 光学成像镜头

Country Status (2)

Country Link
US (1) US10451855B2 (zh)
CN (1) CN108363161A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267872A (zh) * 2020-02-14 2021-08-17 宁波舜宇车载光学技术有限公司 光学镜头及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198435B (zh) * 2020-02-24 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201535837U (zh) * 2009-07-29 2010-07-28 富士能株式会社 摄像透镜及摄像装置
CN103048769A (zh) * 2011-10-14 2013-04-17 鸿富锦精密工业(深圳)有限公司 取像镜头
JP2014197131A (ja) * 2013-03-29 2014-10-16 キヤノン株式会社 撮像レンズ及びそれを有する撮像装置
CN205507203U (zh) * 2016-04-01 2016-08-24 杭州海康威视数字技术股份有限公司 变焦镜头
CN106125269A (zh) * 2016-06-27 2016-11-16 中国科学院西安光学精密机械研究所 双模多用途连续变焦光学***
CN106814435A (zh) * 2015-11-27 2017-06-09 大立光电股份有限公司 摄像用光学镜片组、取像装置及电子装置
CN106990507A (zh) * 2017-05-24 2017-07-28 广东弘景光电科技股份有限公司 高清广角光学***及其应用的摄像模组
CN206725835U (zh) * 2017-05-17 2017-12-08 武汉赫天光电股份有限公司 一种鱼眼镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999338A (en) * 1998-06-02 1999-12-07 Fuji Photo Optical Co., Ltd. Imaging lens
EP1980889B1 (en) * 2007-04-09 2012-01-04 FUJIFILM Corporation Endoscope objective lens and endoscope
JP5670602B2 (ja) * 2012-04-19 2015-02-18 富士フイルム株式会社 投写用レンズおよび投写型表示装置
TWI588524B (zh) * 2015-11-27 2017-06-21 大立光電股份有限公司 攝像用光學鏡片組、取像裝置及電子裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201535837U (zh) * 2009-07-29 2010-07-28 富士能株式会社 摄像透镜及摄像装置
CN103048769A (zh) * 2011-10-14 2013-04-17 鸿富锦精密工业(深圳)有限公司 取像镜头
JP2014197131A (ja) * 2013-03-29 2014-10-16 キヤノン株式会社 撮像レンズ及びそれを有する撮像装置
CN106814435A (zh) * 2015-11-27 2017-06-09 大立光电股份有限公司 摄像用光学镜片组、取像装置及电子装置
CN205507203U (zh) * 2016-04-01 2016-08-24 杭州海康威视数字技术股份有限公司 变焦镜头
CN106125269A (zh) * 2016-06-27 2016-11-16 中国科学院西安光学精密机械研究所 双模多用途连续变焦光学***
CN206725835U (zh) * 2017-05-17 2017-12-08 武汉赫天光电股份有限公司 一种鱼眼镜头
CN106990507A (zh) * 2017-05-24 2017-07-28 广东弘景光电科技股份有限公司 高清广角光学***及其应用的摄像模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267872A (zh) * 2020-02-14 2021-08-17 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113267872B (zh) * 2020-02-14 2024-03-08 宁波舜宇车载光学技术有限公司 光学镜头及电子设备

Also Published As

Publication number Publication date
US10451855B2 (en) 2019-10-22
US20190212534A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN108254890A (zh) 光学成像镜头
CN106154495B (zh) 光学成像镜头
CN106526789B (zh) 光学成像镜头
CN108459401A (zh) 光学成像镜头
CN108957691A (zh) 一种光学成像镜头
CN110297307A (zh) 光学成像镜头
CN108121055A (zh) 光学成像镜头
CN108957692A (zh) 光学成像镜头
CN108132524B (zh) 光学成像镜头
CN108121053A (zh) 光学成像镜头
CN107450159B (zh) 光学成像镜头
CN108957689A (zh) 光学成像镜头
CN108459395A (zh) 光学成像镜头
CN108107555B (zh) 光学成像镜头
CN108459394A (zh) 光学成像镜头
CN106324804A (zh) 光学成像镜头
CN108508578A (zh) 光学成像镜头
CN108152923A (zh) 光学成像镜头
CN108121054A (zh) 光学成像镜头
CN108508577A (zh) 光学成像镜头
CN108761714A (zh) 光学成像镜头
CN108363162A (zh) 光学成像镜头
CN108459393A (zh) 光学成像镜头
CN109100853A (zh) 光学成像镜头
CN110426817A (zh) 光学成像镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803

RJ01 Rejection of invention patent application after publication