CN108362380A - 基于超连续激光光源的水下光谱成像***及方法 - Google Patents

基于超连续激光光源的水下光谱成像***及方法 Download PDF

Info

Publication number
CN108362380A
CN108362380A CN201810474639.1A CN201810474639A CN108362380A CN 108362380 A CN108362380 A CN 108362380A CN 201810474639 A CN201810474639 A CN 201810474639A CN 108362380 A CN108362380 A CN 108362380A
Authority
CN
China
Prior art keywords
component
light source
optical spectrum
source assembly
spectrum imagers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810474639.1A
Other languages
English (en)
Inventor
李学龙
高晓惠
周安安
于涛
李立波
卫翠玉
胡炳樑
夏璞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201810474639.1A priority Critical patent/CN108362380A/zh
Publication of CN108362380A publication Critical patent/CN108362380A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明属于光学技术领域,涉及到一种基于超连续激光光源的水下光谱成像***及方法。本发明采用超连续谱激光光源作为水下光谱成像仪的光源,其具有普通激光能量集中、发散角小、传播距离远的优势,同时又具有一定的谱段范围,解决了水下光谱成像探测时光照不足问题。本发明一种基于超连续激光光源的水下光谱成像***,包括光源组件、消色差激光整形组件、光谱成像仪组件、数据存储处理组件,还包括通讯控制组件;光源组件、光谱成像仪组件、数据存储处理组件均与通讯控制组件连接;通讯控制组件用于对光源组件、光谱成像仪组件、数据存储处理组件进行控制;消色差激光整形光学组件设置在光源组件的输出光路上。

Description

基于超连续激光光源的水下光谱成像***及方法
技术领域
本发明属于光学技术领域,涉及到一种基于超连续激光光源的水下光谱成像***及方法。
背景技术
水下光视觉探测技术具有直观性强的特点,作为声纳探测技术的必要补充,在海底绘图、目标识别与探测、机器人视觉等方面具有非常重要的应用价值。由于水对光的吸收与散射,导致光学成像设备面临光能量不足的问题,在水下的应用受到限制。目前使用的高光谱成像设备,由于其波段较多,将有限的能量分成多个通道进行接收,每个波段图像的信噪比较低,因此在水下应用受限。
发明内容
本发明的目的在于提出一种基于超连续激光光源的水下光谱成像***,采用超连续激光光源作为水下光谱成像仪的光源,其具有普通激光能量集中、发散角小、传播距离远的优势,同时又具有一定的谱段范围,解决了水下光谱成像探测时光照不足问题。
本发明解决上述问题的技术方案是:一种基于超连续激光光源的水下光谱成像***,包括光源组件、消色差激光整形组件、光谱成像仪组件、数据存储处理组件,其特殊之处在于,
所述光源组件的光源为超连续激光光源;
还包括通讯控制组件;
所述光源组件、光谱成像仪组件、数据存储处理组件均与通讯控制组件连接;通讯控制组件用于对光源组件、光谱成像仪组件、数据存储处理组件进行协同控制;
所述消色差激光整形组件设置在光源组件的输出光路上;所述消色差激光整形组件用于调整光源组件的输出光束中不同波长光的发散角;
所述光源组件的谱段范围与光谱成像仪组件的谱段范围相同;
所述光源组件的光束出射方向与光谱成像仪组件中心视场之间有夹角,该夹角可根据探测目标距离进行调整,探测目标越远,则夹角越小,探测目标越近,夹角越大,调整范围在11.5度至0.005度之间,使得光源组件的视场与光谱成像仪组件的视场在目标处重合,光源充满光谱成像仪组件整个视场;
所述通讯控制组件可以控制光源组件的开关及功率;
所述光谱成像仪组件用于接收光源组件输出后经过物质反射散射后得到的光信号;
所述数据存储处理组件与光谱成像仪组件相连,数据存储处理组件用于存储和处理光谱成像仪组件探测到的图谱数据,并根据数据处理结果给出需要调整的光源组件参数,将该光源组件参数传输给通讯控制组件;通讯控制组件可根据需要调整光谱成像仪组件的曝光时间,采集帧数。
以上为本发明的基本结构,基于该基本结构,本发明还做出以下优化改进:
进一步地,上述通讯控制组件包括控制接口、RS232通讯串口、80C51单片机、28C64程序存储器和6664数据存储器;RS232通讯串口与80C51单片机相连,80C51单片机同时与28C64程序存储器和6664数据存储器相连,80C51单片机与控制接口的输入端相连;控制接口的输出端分别与光源组件、光谱成像仪组件相连;RS232通讯串口与数据存储处理组件相连并与其相互通讯。
进一步地,上述光源组件在远方视场的均匀度大于90%。
进一步地,上述消色差激光整形组件由消色差准直透镜和消色差展宽透镜组成,使得光源组件的光源在远方视场所呈光斑的色散控制在光谱成像仪的瞬时视场角以内,保证光源的色散不会影响到光谱成像仪所测光谱;光源组件发出的激光光源经过消色差准直透镜后进入消色差展宽透镜进行展宽,同时保证不同颜色的光具有相同的发散角。
进一步地,上述光谱成像仪组件中的光谱成像仪为色散型、干涉型或者滤光片型光谱成像仪。
本发明还提出上述基于超连续激光光源的水下光谱成像***的成像方法,其特殊之处在于,包括以下步骤:
1)将光源组件的光源功率调到最小值、光谱成像仪组件曝光时间调到最大;
2)逐步调大光源组件的功率,每调整一次,数据存储处理组件就进行一次图像的采集、处理和判断:若光源增强到某功率时,图像中像素灰度值的最大值达到(2N-1),则保持该光源功率不变,进入步骤3),其中N为图像量化位数;
3)进行推扫或者滤光片轮切换,获取图谱数据;
4)关闭光源组件,图像存储处理组件控制光谱成像仪组件连续采集k幅图像序列,其中k≥100,并将这k幅图像序列按像素取平均值后作为图像本底Backgound(x,y):
其中x,y为像素坐标;
5)对步骤3)、4)中所有待测波段的图像序列进行定标和校正。
进一步地,上述上述步骤5)中定标和校正的具体方法为:
5.1)将步骤3)、4)中获取图像中的像素image(x,y)进行暗电流去除;
5.2)对5.1)的结果根据不同光谱成像仪组件原理进行数据反演,组成数据立方体;
5.3)对5.2)进行光谱辐射定标得到定标后的数据立方体。
本发明的优点:
1、本发明基于超连续激光光源的水下光谱成像***,其光源组件采用超连续激光光源,解决了水下光谱成像探测时光照不足问题。
2、本发明基于超连续激光光源的水下光谱成像***,对于浅水或深水均适用,光谱成像仪根据环境光源调整超连续激光光源的输出,使其能够清晰成像。
3、本发明基于超连续激光光源的水下光谱成像***,在浅水或深水环境中能够采集目标两维空间信息和一维光谱信息形成数据立方体,同时进行数据立方体的存储。
4、本发明基于超连续激光光源的水下光谱成像***,可用于水下探矿,进行矿物种类和分布情况的探测识别;对海底动物、植物等生态环境监测;对海底石油管道及其漏油状况进行监测。
附图说明
图1为本发明工作原理流程框图;
图2为本发明中通讯控制组件内部结构图;
图3为本发明中消色差激光整形组件的工作原理图。
其中,1-光源组件;2-消色差激光整形组件;3-光谱成像仪组件;4-通讯控制组件;5-数据存储处理组件;21-消色差准直透镜;22-消色差展宽透镜。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
参见图1-图3,一种基于超连续激光光源的水下光谱成像***,包括光源组件1、消色差激光整形组件2、光谱成像仪组件3、通讯控制组件4和数据存储处理组件5。光源组件1、光谱成像仪组件3、数据存储处理组件5均与通讯控制组件4连接;通讯控制组件4用于对光源组件1、光谱成像仪组件3、数据存储处理组件5进行协同控制,保证各组件以一定的时间顺序和参数进行工作。
所述光源组件1的光源为超连续激光光源。光源组件1的谱段范围与光谱成像仪组件3的谱段范围相同,光源强度能够满足光谱成像仪3的探测照度需求;光源组件1的光束出射方向与光谱成像仪组件3之间有一定夹角,该夹角可根据探测目标距离进行调整,探测目标越远,则夹角越小,探测目标越近,夹角越大,调整范围在11.5度至0.005度之间,使得光源组件1的视场与光谱成像仪组件3的视场在目标处重合,光源充满光谱成像仪组件3整个视场,且光源组件在远方视场的均匀度优于90%;
光谱成像仪组件3用于获取目标物图谱数据,本实施例的光谱成像仪组件可采用推扫型、干涉型、色散型光谱成像仪。
通讯控制组件4可以控制光源组件1的开关及功率,可以触发光谱成像仪3中CCD探测器曝光、设置CCD曝光时间。
消色差激光整形组件2设置在光源组件1的输出光路上。
参见图2,通讯控制组件4包括控制接口、RS232通讯串口、80C51单片机、28C64程序存储器和6664数据存储器;RS232通讯串口与80C51单片机相连,80C51单片机同时与28C64程序存储器和6664数据存储器相连,80C51单片机与控制接口的输入端相连;控制接口的输出端分别与光源组件1和光谱成像仪组件3相连;RS232通讯串口与数据存储处理组件5相连并与其相互通讯。
消色差激光整形组件2用于对光源组件1的输出光束中不同波长光的发散角进行整形;采用消色差设计使得不同波长的发散角相同,同时光源组件的远方视场与光谱成像仪的远方视场重合或略大于光谱成像仪的远方视场。参见图3,左面第一个镜子为消色差展宽透镜22,第二个为消色差准直透镜21,激光光源经过准直后展宽,同时保证不同颜色的光具有相同的发散角。
光谱成像仪组件3用于接收光源组件1输出后经过物质反射散射后得到的光信号;数据存储处理组件5与光谱成像仪组件3相连,用于存储和处理光谱成像仪组件3探测到的图谱数据,并根据数据处理结果给出需要调整的光源组件1参数,如光源功率、光谱成像仪3曝光时间等,将该光源组件1参数传输给光源组件1,由通讯控制组件4根据该参数对相应的组件进行控制调整。
数据存储处理组件5可以是常规的具有数据采集模块、数据存储模块、数据处理模块和数据通讯模块的装置,一般由FPGA或FPGA+DSP作为核心处理单元。其中数据采集模块采集光谱成像仪3探测到的图像,数据处理模块进行处理,数据存储模块完成存储,数据通讯模块将图像处理模块输出的需要调节的组件参数传输给通讯控制组件4。
上述基于超连续激光光源的水下光谱成像***的成像方法,包括以下步骤:
1)将光源组件1的光源功率调到最小值、光谱成像仪组件3曝光时间调到最大;
2)逐步调大光源组件1的功率,每调整一次,数据存储处理组件5就进行一次图像的采集、处理和判断:若光源增强到某功率时,图像中像素灰度值的最大值达到(2N-1),则保持该光源功率不变,进入步骤3),其中N为图像量化位数;
3)进行推扫或者滤光片轮切换,获取图谱数据;
4)关闭光源组件1,图像存储处理组件控制光谱成像仪组件3连续采集k幅图像序列,其中k≥100,并将这k幅图像序列按像素取平均值后作为本底Backgound(x,y):
其中x,y为像素坐标;
5)对步骤3)、4)中所有待测波段的图像序列进行定标和校正。
上述步骤5)中定标和校正的具体方法为:
5.1)将步骤3)、4)中获取图像中的像素image(x,y)进行暗电流去除;
5.2)对5.1)的结果根据不同光谱成像仪组件3原理进行数据反演,组成数据立方体;
5.3)对5.2)进行光谱辐射定标得到定标后的数据立方体。

Claims (7)

1.一种基于超连续激光光源的水下光谱成像***,包括光源组件(1)、消色差激光整形组件(2)、光谱成像仪组件(3)、数据存储处理组件(5),其特征在于:
所述光源组件(1)的光源为超连续激光光源;
还包括通讯控制组件(4);
所述光源组件(1)、光谱成像仪组件(3)、数据存储处理组件(5)均与通讯控制组件(4)连接;通讯控制组件(4)用于对光源组件(1)、光谱成像仪组件(3)、数据存储处理组件(5)进行控制;
所述消色差激光整形组件(2)设置在光源组件(1)的输出光路上;所述消色差激光整形组件(2)用于调整光源组件(1)的输出光束中不同波长光的发散角;
所述光源组件(1)的谱段范围与光谱成像仪组件(3)的谱段范围相同;
所述光源组件(1)的光束出射方向与光谱成像仪组件(3)中心视场之间有夹角,该夹角可根据探测目标距离进行调整,调整范围在11.5度至0.005度之间,使得光源组件(1)的视场与光谱成像仪组件(3)的视场在目标处重合,光源充满光谱成像仪组件(3)整个视场;;
所述通讯控制组件(4)可以控制光源组件(1)的开关及功率;
所述光谱成像仪组件(3)用于接收光源组件(1)输出后经过物质反射散射后得到的光信号;
所述数据存储处理组件(5)与光谱成像仪组件(3)相连,数据存储处理组件(5)用于存储和处理光谱成像仪组件(3)探测到的图谱数据,并根据数据处理结果给出需要调整的光源组件(1)参数,将该光源组件(1)参数传输给通讯控制组件(4);通讯控制组件(4)可根据需要调整光谱成像仪组件(3)的曝光时间,采集帧数。
2.根据权利要求1所述的一种基于超连续激光光源的水下光谱成像***,其特征在于:
所述通讯控制组件(4)包括控制接口、RS232通讯串口、80C51单片机、28C64程序存储器和6664数据存储器;RS232通讯串口与80C51单片机相连,80C51单片机同时与28C64程序存储器和6664数据存储器相连,80C51单片机与控制接口的输入端相连;控制接口的输出端分别与光源组件(1)和光谱成像仪组件(3)相连;RS232通讯串口与数据存储处理组件(5)相连并与其相互通讯。
3.根据权利要求2所述的一种基于超连续激光光源的水下光谱成像***,其特征在于:所述光源组件(1)在远方视场的均匀度大于90%。
4.根据权利要求3所述的一种基于超连续激光光源的水下光谱成像***,其特征在于:所述消色差激光整形组件(2)由消色差准直透镜(21)和消色差展宽透镜(22)组成。
5.根据权利要求4所述的一种基于超连续激光光源的水下光谱成像***,其特征在于:所述光谱成像仪组件(3)中的光谱成像仪为色散型、干涉型或者滤光片型光谱成像仪。
6.一种基于超连续激光光源的水下光谱成像***的成像方法,其特征在于,包括以下步骤:
1)将光源组件(1)的光源功率调到最小值、光谱成像仪组件(3)曝光时间调到最大;
2)逐步调大光源组件(1)的功率,每调整一次,数据存储处理组件(5)就进行一次图像的采集、处理和判断:若光源增强到某功率时,图像中像素灰度值的最大值达到(2N-1),则保持该光源功率不变,进入步骤3),其中N为图像量化位数;
3)进行推扫或者滤光片轮切换,获取图谱数据;
4)关闭光源组件(1),图像存储处理组件控制光谱成像仪组件(3)连续采集k幅图像序列,其中k≥100,并将这k幅图像序列按像素取平均值后作为图像本底Backgound(x,y):
其中x,y为像素坐标;
5)对步骤3)、4)中所有待测波段的图像序列进行定标和校正。
7.根据权利要求6所述的一种基于超连续激光光源的水下光谱成像***的成像方法,其特征在于:
上述步骤5)中定标和校正的具体方法为:
5.1)将步骤3)、4)中获取图像中的像素image(x,y)进行暗电流去除;
5.2)对5.1)的结果根据不同光谱成像仪组件(3)原理进行数据反演,组成数据立方体;
5.3)对5.2)进行光谱辐射定标得到定标后的数据立方体。
CN201810474639.1A 2018-05-17 2018-05-17 基于超连续激光光源的水下光谱成像***及方法 Pending CN108362380A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810474639.1A CN108362380A (zh) 2018-05-17 2018-05-17 基于超连续激光光源的水下光谱成像***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810474639.1A CN108362380A (zh) 2018-05-17 2018-05-17 基于超连续激光光源的水下光谱成像***及方法

Publications (1)

Publication Number Publication Date
CN108362380A true CN108362380A (zh) 2018-08-03

Family

ID=63012034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810474639.1A Pending CN108362380A (zh) 2018-05-17 2018-05-17 基于超连续激光光源的水下光谱成像***及方法

Country Status (1)

Country Link
CN (1) CN108362380A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426640A (zh) * 2020-05-18 2020-07-17 中国工程物理研究院流体物理研究所 一种可切换式连续工作光谱相机及探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110019292A1 (en) * 2009-07-24 2011-01-27 Alexander Laskin Achromatic Optical System for Beam Shaping
CN106768333A (zh) * 2016-12-29 2017-05-31 中国科学院西安光学精密机械研究所 水下高灵敏光谱成像装置及成像方法
CN106772420A (zh) * 2017-02-28 2017-05-31 苏州四百克拉光电科技有限公司 水下微小颗粒物探测的高光谱连续光激光雷达***
CN107192453A (zh) * 2017-06-22 2017-09-22 中国科学院西安光学精密机械研究所 一种用于水下的非线性光谱成像***与方法
CN208270076U (zh) * 2018-05-17 2018-12-21 中国科学院西安光学精密机械研究所 基于超连续激光光源的水下光谱成像***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110019292A1 (en) * 2009-07-24 2011-01-27 Alexander Laskin Achromatic Optical System for Beam Shaping
CN106768333A (zh) * 2016-12-29 2017-05-31 中国科学院西安光学精密机械研究所 水下高灵敏光谱成像装置及成像方法
CN106772420A (zh) * 2017-02-28 2017-05-31 苏州四百克拉光电科技有限公司 水下微小颗粒物探测的高光谱连续光激光雷达***
CN107192453A (zh) * 2017-06-22 2017-09-22 中国科学院西安光学精密机械研究所 一种用于水下的非线性光谱成像***与方法
CN208270076U (zh) * 2018-05-17 2018-12-21 中国科学院西安光学精密机械研究所 基于超连续激光光源的水下光谱成像***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426640A (zh) * 2020-05-18 2020-07-17 中国工程物理研究院流体物理研究所 一种可切换式连续工作光谱相机及探测方法

Similar Documents

Publication Publication Date Title
KR100802525B1 (ko) 실시간 멀티밴드 카메라
CN109444056B (zh) 一种双目成像式水下光谱反射率原位测量装置及测量方法
Horvath et al. Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection
CN107343130A (zh) 一种基于dmd动态分光的高动态成像模块
CN101493646B (zh) 光学镜头检测装置及方法
CN113447127B (zh) 基于被动成像的多谱段偏振光传输特性测试装置及方法
CN110120077B (zh) 一种基于卫星姿态调整的面阵相机在轨相对辐射定标方法
CN105717629B (zh) 孔成像***
CN102735338B (zh) 基于掩膜与双阿米西棱镜的高分辨率多光谱采集***
CN108051088B (zh) 用于水下探测的高光谱高空间分辨积分视场光谱成像***
CN107024829B (zh) 多光谱相机像面装调方法
CN106769931B (zh) 一种多波长昼夜整层大气透过率实时测量装置
CN109521415A (zh) 辐射校正装置及***
CN109639942A (zh) 水下成像***、水下成像设备及水下成像方法
CN107436194A (zh) 一种高光通量实时光谱成像装置
CN104316184B (zh) 一种光谱定标方法及装置
CN208270076U (zh) 基于超连续激光光源的水下光谱成像***
CN108362380A (zh) 基于超连续激光光源的水下光谱成像***及方法
CN106768333B (zh) 水下高灵敏光谱成像装置及成像方法
CN105278093A (zh) 一种用于天文目标成像的***
CN105044113A (zh) 一种二氧化硫气体成像仪
CN115131215A (zh) 一种图像的校正方法及及屏下***
CN112203077A (zh) 一种彩色微光多目立体视觉相机及其数据融合方法
CN103558160A (zh) 一种提高光谱成像空间分辨率的方法和***
CN106773034A (zh) 主动式偏振目标增强的共光路全景环带光学成像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination