CN108359971A - 一种基于碳纳米管的量子陶瓷涂层的制备方法 - Google Patents

一种基于碳纳米管的量子陶瓷涂层的制备方法 Download PDF

Info

Publication number
CN108359971A
CN108359971A CN201810008162.8A CN201810008162A CN108359971A CN 108359971 A CN108359971 A CN 108359971A CN 201810008162 A CN201810008162 A CN 201810008162A CN 108359971 A CN108359971 A CN 108359971A
Authority
CN
China
Prior art keywords
carbon nanotube
mixture
ceramic coating
parts
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810008162.8A
Other languages
English (en)
Inventor
万玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Navigation Cosmos Ceramics Material Co Ltd
Original Assignee
Jiangxi Navigation Cosmos Ceramics Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Navigation Cosmos Ceramics Material Co Ltd filed Critical Jiangxi Navigation Cosmos Ceramics Material Co Ltd
Priority to CN201810008162.8A priority Critical patent/CN108359971A/zh
Publication of CN108359971A publication Critical patent/CN108359971A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:(1)制备碳纳米管沉积的硼纤维;(2)将金属氧化物、硅复合物、钛复合物、氮化硼混匀制得混合物B;(3)将混合物B加热熔化后经水萃取得到固体萃取物并烘干,再将其破碎后球磨得混合物C;(4)将混合物A、混合物C与金属基合金粉末加入无机粘结剂制成浆料涂料;(5)将涂料喷涂于基体表面干燥后,将其置于真空环境经梯度加热烧结即得。陶瓷涂层经抗氧化测试后涂层保持完整没有出现脱落,导热系数小于1.53 W/m,陶瓷涂层具有较高的隔热性能,其耐高温性能有望达到2500‑3000℃。在航空航天、汽车、发动机、水下潜水设备等领域具有重要的应用前景。

Description

一种基于碳纳米管的量子陶瓷涂层的制备方法
技术领域
本发明属于陶瓷材料制备技术领域,具体涉及一种基于碳纳米管的量子陶瓷涂层的制备方法。
背景技术
涂层(coating)是涂料对基体施涂所得到的固态连续膜,是为了防护、绝缘、装饰等目的,涂布于金属,织物,塑料等基体上的薄层。目前,随着工业的发展,人们对涂层的耐磨性、耐热性、强度和硬度等提出了更高的要求,使金属陶瓷涂层得到了迅速的发展。金属陶瓷涂层是以物理或化学方法在基体表面沉浸一层无机涂层,这种涂层具有金属材料的强韧性、可加工型、导电导热性,同时具有陶瓷材料的高熔点、高硬度、高化学稳定性、耐磨、耐蚀并且制造成本低等特点。因此,陶瓷涂层广泛应用于发动机、燃气机以及航空航天等领域。
碳纳米管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料,碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。碳纳米管由于其极大的表面积,良好的导电导热性能,优越的机械特性,近年来有着很大的应用前景。碳纳米管在陶瓷材料的制备过程中,已有广泛的应用,然而在应用过程中,碳纳米管大多以单独的形式添加,然而碳纳米管极易团聚,因此添加到反应体系中使得碳纳米管分散度较低,分布不均匀,同时碳纳米管的单独添加容易造成陶瓷材料在烧结的过程中会发生剥离甚至断裂的现象,从而进一步影响陶瓷材料的断裂韧性、强度、硬度、耐磨性等。因此,有必要对基于碳纳米管的量子陶瓷材料进行进一步研究,充分发挥碳纳米管的功能并提高碳纳米管的有效利用率。
发明内容
为了解决以上现有技术存在的问题,本发明的目的在于提供一种一种基于碳纳米管的量子陶瓷涂层的制备方法,使得陶瓷涂层的综合性能得到有效的提高。
为了实现上述目的,本发明提供以下技术方案:
一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:
(1)将碳纳米管50-100份与硼纤维30-80份混合均匀,在搅拌的条件下将混合物加入到3-5倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于200-250℃的温度下煅烧2-4h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过100-200目筛,制得混合物A;
(2)将金属氧化物10-40份、硅复合物10-60份、钛复合物20-80份、氮化硼10-60份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1500~1800℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为100-200目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末10-20份加入球磨机中进行混合粉碎,然后加入固体混合物5-10倍重量份的无机粘结剂在在70-90℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至1600-2000℃保温1-5h后冷却,得到基于碳纳米管的量子陶瓷涂层。
优选的,所述金属氧化物为Al2O3、ZnO、ZrO2、或TiO2的一种或几种组合。
优选的,所述硅复合物为SiO2、SiC或SiN的一种或几种组合。
优选的,所述钛复合物TiN、TiC、TiSiC2或TiAlN的一种或几种组合。
优选的,所述步骤(4)中的金属基合金粉末为钴粉合金粉末、镍粉合金粉末、或碳化钨合金粉末的一种或几种组合。
优选的,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
优选的,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为400-600℃,优选的,所述步骤(5)中梯度加热烧结步骤为:首先加热到500-800℃,保温1-3h;再加热到1200-1500℃,保温1-2h;最后加热到1600-2000℃。
本发明所述的制备方法制备的基于碳纳米管的量子陶瓷涂层。
有益效果:本发明提供了一种基于碳纳米管的量子陶瓷涂层的制备方法,本发明的陶瓷涂层材料在制备过程中将碳纳米管与硼纤维进行预反应制得碳纳米管沉积的硼纤维,借助硼纤维对碳纳米管的附着提高碳纳米管的分散性以及在反应体系中的牢固性。涂层试样经150h,1500℃空气中抗氧化测试,涂层保持完整,没有出现脱落,陶瓷涂层的氧化增重率小于0.09%,硬度大于964MPa,孔隙率小于0.64%,结合强度大于40.85 MPa,弯曲强度大于516 MPa,耐腐蚀性良好,导热系数小于1.53 W/m,因此陶瓷涂层具有较高的隔热性能,其耐高温性能有望达到2500-3000℃。从对比例的实验数据得出,本发明产品在制备过程中,硼纤维对碳纳米管的预处理对陶瓷涂层的性能起到了重要的作用,同时,钛复合物和金属基合金粉末对陶瓷涂层的性能也起到了关键的作用。本发明在航空航天、汽车、发动机、水下潜水设备等领域具有重要的应用前景。
在本发明技术方案的基础上,也可以通过添加以下几种耐高温金属材料或者其金属合金材料,以提高材料的耐高温性能和耐腐蚀性能,如钼、钽、铌、徕等耐高温材料。钼是应用最广泛的难熔金属,熔点2610℃,沸点5560℃,钼的熔点高达2610℃,具有非常均衡的物理和化学特性,而其优异的抗蠕变性能,卓越的耐腐蚀性能和高热导率保证了其在众多不同领域的出色表现。钽是良好的抗腐蚀材料,熔点3017℃,沸点5505℃,钽具有极高的抗腐蚀性,无论是在冷和热的条件下,对盐酸、浓硝酸及“王水”都不反应。铌熔点3017℃,沸点5505℃,铌的具有良好的耐腐蚀性能,并且重量相对较轻。因此,将以上几种材料与本发明技术方案的材料进行组合,制备的涂层材料预期能够达到更好的耐高温、抗腐蚀效果,有望在航空航天领域发挥更重要的作用。
具体实施方式
下面结合具体实施例来进一步描述本发明,但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1
一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:
(1)将碳纳米管80份与硼纤维40份混合均匀,在搅拌的条件下将混合物加入到4倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于220℃的温度下煅烧3h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过150目筛,制得混合物A;
(2)将金属氧化物12份、硅复合物35份、钛复合物50份、氮化硼35份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1600℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为150目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末15份加入球磨机中进行混合粉碎,然后加入固体混合物8倍重量份的无机粘结剂在在70-90℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至1800℃保温3h后冷却,得到基于碳纳米管的量子陶瓷涂层。
优选的,所述金属氧化物为等重量份的ZrO2和TiO2
优选的,所述硅复合物为等重量份的SiC和SiN。
优选的,所述钛复合物等重量份的TiC、TiSiC2和TiAlN。
优选的,所述步骤(4)中的金属基合金粉末为等重量份的镍粉合金粉末和碳化钨合金粉末。
优选的,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
优选的,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为500℃,优选的,所述步骤(5)中梯度加热烧结步骤为:首先加热到650℃,保温2h;再加热到1350℃,保温1.5h;最后加热到1800℃。
实施例2-实施例6制备的陶瓷涂层所用的金属氧化物、硅复合物、钛复合物、金属基合金粉末
组成如表1所示,其他原料及其重量份同实施例1,制备方法同实施例1。
表1
性能测试:将实施例1-6制备的陶瓷涂层材料进行以下性能测试,性能测试结果如表2所示。
抗氧化测试:将实施例1-6制备的陶瓷涂层试样经150h、1500℃空气中进行抗氧化测试。
硬度测试:采用维式硬度计测定涂层的硬度。
孔隙率测试:采用金相测定法测定陶瓷涂层的孔隙率。
结合强度测试:按ASTM C633标准测量涂层的结合强度。
耐腐蚀性能测试:将陶瓷涂层经封闭处理的试样进行48 h 人工加速腐蚀实验。
弯曲强度:根据GB-T 14390-2008方法测定陶瓷涂层的弯曲强度。
表2
测试项 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
氧化增重率(%) 0.04 0.05 0.07 0.08 0.10 0.11
硬度(MPa) 986 982 981 975 970 963
孔隙率(%) 0.47 0.52 0.58 0.63 0.65 0.87
结合强度(MPa) 42.8 41.9 41.5 41.2 40.9 40.5
耐腐蚀性能 表面良好 表面良好 表面良好 表面良好 表面良好 少量腐蚀斑
弯曲强度(MPa) 578 554 541 529 506 501
从表2中得出,实施例1制备的陶瓷涂层具有良好的综合性能。因此在实施例1的原料组成的基础上进行进一步的试验优化,得出最佳的重量份配比和最佳的实验条件,并得出最佳的制备条件。优化调价见实施例7-9。
实施例7
一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:
(1)将碳纳米管50份与硼纤维30份混合均匀,在搅拌的条件下将混合物加入到3倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于200℃的温度下煅烧2h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过100目筛,制得混合物A;
(2)将金属氧化物10份、硅复合物10份、钛复合物20份、氮化硼10份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1500℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为100目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末10份加入球磨机中进行混合粉碎,然后加入固体混合物5倍重量份的无机粘结剂在在70℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至1600℃保温1h后冷却,得到基于碳纳米管的量子陶瓷涂层。
优选的,所述金属氧化物为等重量份的ZrO2和TiO2
优选的,所述硅复合物为等重量份的SiC和SiN。
优选的,所述钛复合物等重量份的TiC、TiSiC2和TiAlN。
优选的,所述步骤(4)中的金属基合金粉末为等重量份的镍粉合金粉末和碳化钨合金粉末。
优选的,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
优选的,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为400℃,优选的,所述步骤(5)中梯度加热烧结步骤为:首先加热到500℃,保温1h;再加热到1200℃,保温1h;最后加热到1600℃。
实施例8
一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:
(1)将碳纳米管100份与硼纤维80份混合均匀,在搅拌的条件下将混合物加入到5倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于200-250℃的温度下煅烧2-4h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过100-200目筛,制得混合物A;
(2)将金属氧化物40份、硅复合物60份、钛复合物80份、氮化硼60份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1800℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为200目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末20份加入球磨机中进行混合粉碎,然后加入固体混合物5-10倍重量份的无机粘结剂在在90℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至2000℃保温5h后冷却,得到基于碳纳米管的量子陶瓷涂层。
优选的,所述金属氧化物为等重量份的ZrO2和TiO2
优选的,所述硅复合物为等重量份的SiC和SiN。
优选的,所述钛复合物等重量份的TiC、TiSiC2和TiAlN。
优选的,所述步骤(4)中的金属基合金粉末为等重量份的镍粉合金粉末和碳化钨合金粉末。
优选的,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
优选的,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为600℃,优选的,所述步骤(5)中梯度加热烧结步骤为:首先加热到800℃,保温3h;再加热到1500℃,保温2h;最后加热到2000℃。
实施例9
一种基于碳纳米管的量子陶瓷涂层的制备方法,包括以下步骤:
(1)将碳纳米管60份与硼纤维40份混合均匀,在搅拌的条件下将混合物加入到3.5倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于210℃的温度下煅烧2.5h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过120目筛,制得混合物A;
(2)将金属氧化物20份、硅复合物20份、钛复合物40份、氮化硼20份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1600℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为120目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末12份加入球磨机中进行混合粉碎,然后加入固体混合物5-10倍重量份的无机粘结剂在在75℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至1700℃保温2h后冷却,得到基于碳纳米管的量子陶瓷涂层。
优选的,所述金属氧化物为等重量份的ZrO2和TiO2
优选的,所述硅复合物为等重量份的SiC和SiN。
优选的,所述钛复合物等重量份的TiC、TiSiC2和TiAlN。
优选的,所述步骤(4)中的金属基合金粉末为等重量份的镍粉合金粉末和碳化钨合金粉末。
优选的,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
优选的,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为450℃,优选的,所述步骤(5)中梯度加热烧结步骤为:首先加热到600℃,保温1.5h;再加热到1300℃,保温1-2h;最后加热到1700℃。
对比例1
将实施例1中步骤(1)去掉,使得碳纳米管作为混合物A进行后续的实验。
对比例2
将实施例1中的钛复合物和金属基合金粉末去除,其他步骤与实施例1相同。
从表3中得出,制得的涂层试样经150h,1500℃空气中抗氧化测试,涂层保持完整,没有出现脱落,陶瓷涂层的氧化增重率小于0.09%,硬度大于964MPa,孔隙率小于0.64%,结合强度大于40.85 MPa,弯曲强度大于516 MPa,耐腐蚀性良好。通过激光闪光法测定陶瓷涂层的导热系数,导热系数小于1.53 W/m。从对比例的实验数据得出,本发明产品在制备过程中,硼纤维对碳纳米管的预处理对陶瓷涂层的性能起到了重要的作用,同时,钛复合物和金属基合金粉末对陶瓷涂层的性能也起到了关键的作用。
本发明制备的陶瓷涂层中添加有碳纳米管、金属氧化物Al2O3、ZnO、ZrO2、TiO2,硅复合物SiO2、SiC、SiN,钛复合物TiN、TiC、TiSiC2、TiAlN,金属基合金粉末钴粉合金粉末、镍粉合金粉末、碳化钨合金粉末,这几种材料的复合提高了材料的耐高温性能和抗腐蚀性能,兼具硬度高、脆性好、孔隙率低等优点。同时本发明涂层导热系数低、高低温度耐受性能好、在急冷急热条件下应力小,在航空航天、汽车、发动机、水下潜水设备等领域,尤其是航空航天领域的耐高温外部涂层,具有重要的应用前景。
表3
测试项 实施例1 实施例7 实施例8 实施例9 对比例1 对比例2
氧化增重率(%) 0.04 0.09 0.06 0.07 0.18 0.15
硬度(MPa) 986 964 975 970 823 856
孔隙率(%) 0.47 0.64 0.52 0.59 1.24 1.17
结合强度(MPa) 42.8 40.21 41.7 40.85 32.7 35.9
耐腐蚀性能 表面良好 表面良好 表面良好 表面良好 少量腐蚀斑 少量腐蚀斑
弯曲强度(MPa) 578 516 554 537 458 485
导热系数(W/m.k) 1.25 1.53 1.34 1.52 1.86 1.54

Claims (9)

1.一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,包括以下步骤:
(1)将碳纳米管50-100份与硼纤维30-80份混合均匀,在搅拌的条件下将混合物加入到3-5倍于混合物重量的有机粘结剂溶液中搅拌均匀,再将其置于200-250℃的温度下煅烧2-4h,冷却至室温,制得碳纳米管沉积的硼纤维,将其进行粉碎过100-200目筛,制得混合物A;
(2)将金属氧化物8-16份、硅复合物10-60份、钛复合物20-80份、氮化硼10-60份加入球磨机中混匀均匀得到混合粉体,各原料的纯度均大于99%,得混合物B;
(3)将步骤(2)制备的混合物B加热至1500~1800℃熔化后,经过水萃取后得到固体萃取物,将固体萃取物置于真空干燥箱中烘干,再将其破碎后球磨至粒度为100-200目的粉体,得混合物C;
(4)将混合物A、混合物C与金属基合金粉末10-20份加入球磨机中进行混合粉碎,然后加入固体混合物5-10倍重量份的无机粘结剂在在70-90℃的温度下搅拌混合均匀制成浆料涂料;
(5)将步骤(4)制得的涂料喷涂于基体表面,液体干燥后;将其置于真空环境下,经梯度加热烧结,最终加热至1600-2000℃保温1-5h后冷却,得到基于碳纳米管的量子陶瓷涂层。
2.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述金属氧化物为Al2O3、ZnO、ZrO2、或TiO2的一种或几种组合。
3.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述硅复合物为SiO2、SiC或SiN的一种或几种组合。
4.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述钛复合物TiN、TiC、TiSiC2或TiAlN的一种或几种组合。
5.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述步骤(4)中的金属基合金粉末为钴粉合金粉末、镍粉合金粉末、或碳化钨合金粉末的一种或几种组合。
6.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述有机粘结剂为羧甲基纤维素钠,所述无机粘结机为磷酸二氢铝。
7.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述步骤(5)中喷涂工艺条件为:工作气体为氮气或氦气,工作气体温度为400-600℃,工作气体压力为15-30个大气压;喷枪出口处距碳纳米管的表面距离为20-40mm。
8.根据权利要求1所述的一种基于碳纳米管的量子陶瓷涂层的制备方法,其特征在于,所述步骤(5)中梯度加热烧结步骤为:首先加热到500-800℃,保温1-3h;再加热到1200-1500℃,保温1-2h;最后加热到1600-2000℃。
9.权利要求1-8制备的基于碳纳米管的量子陶瓷涂层。
CN201810008162.8A 2018-01-04 2018-01-04 一种基于碳纳米管的量子陶瓷涂层的制备方法 Pending CN108359971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810008162.8A CN108359971A (zh) 2018-01-04 2018-01-04 一种基于碳纳米管的量子陶瓷涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810008162.8A CN108359971A (zh) 2018-01-04 2018-01-04 一种基于碳纳米管的量子陶瓷涂层的制备方法

Publications (1)

Publication Number Publication Date
CN108359971A true CN108359971A (zh) 2018-08-03

Family

ID=63010819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810008162.8A Pending CN108359971A (zh) 2018-01-04 2018-01-04 一种基于碳纳米管的量子陶瓷涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108359971A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088957A (zh) * 2021-02-20 2021-07-09 南昌大学 一种激光熔覆制备钛合金表面耐磨耐高温涂层的方法
US20230234890A1 (en) * 2022-01-27 2023-07-27 Nanjing University Of Aeronautics And Astronautics Method for calculating gaseous diffusion and oxidation evolution of ceramic matrix composite (cmc) structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210325A (zh) * 2007-12-25 2008-07-02 浙江工业大学 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
CN106946551A (zh) * 2017-03-10 2017-07-14 江南大学 一种石墨烯/碳纳米管增强氧化铝陶瓷涂层的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210325A (zh) * 2007-12-25 2008-07-02 浙江工业大学 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
CN106946551A (zh) * 2017-03-10 2017-07-14 江南大学 一种石墨烯/碳纳米管增强氧化铝陶瓷涂层的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088957A (zh) * 2021-02-20 2021-07-09 南昌大学 一种激光熔覆制备钛合金表面耐磨耐高温涂层的方法
CN113088957B (zh) * 2021-02-20 2022-09-02 景德镇明兴航空锻压有限公司 一种激光熔覆制备钛合金表面耐磨耐高温涂层的方法
US20230234890A1 (en) * 2022-01-27 2023-07-27 Nanjing University Of Aeronautics And Astronautics Method for calculating gaseous diffusion and oxidation evolution of ceramic matrix composite (cmc) structure

Similar Documents

Publication Publication Date Title
CN108585897B (zh) 一种难熔金属高温抗氧化Si-Mo-YSZ涂层及其制备方法
CN102581292A (zh) 一种用于热喷涂活塞环涂层的含TiB2金属陶瓷复合粉末的制备方法
WO2015169132A1 (zh) 一种制备热喷涂用WC-Co粉末的方法
Mao et al. Preparation and investigation of MoSi2/SiC coating with high infrared emissivity at high temperature
CN112830769B (zh) 一种高发射率高熵陶瓷粉体材料及涂层制备方法
CN106735249B (zh) 一种铌基复合材料及制备方法
CN107675120B (zh) 一种在钼或钼合金表面制备硅化钼涂层的方法
CN106083065B (zh) 一种高性能Si3N4-TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法
CN106699228A (zh) 一种低成本碳化钽涂层的制备方法
CN108359971A (zh) 一种基于碳纳米管的量子陶瓷涂层的制备方法
CN106116586B (zh) 一种钼合金MoSi2-ZrO2-Y2O3涂层及其制备方法和应用
CN110452565B (zh) 一种镍基合金热轧用的耐高温抗氧化涂层及其制备方法
CN107630184B (zh) 一种在铌或铌合金表面制备硅化铌涂层的方法
CN112409025A (zh) 一种具有SiC-HfB2-Si单层复合涂层的碳/碳复合材料的制备方法
CN106746666A (zh) 玻璃陶瓷复合热障涂层设计模型及涂层制备方法
CN109735788A (zh) 一种用于碳纤维增强复合材料表面的耐高温复合梯度涂层及制备方法
CN106853436B (zh) 一种钼基复合涂层及其制备方法
CN108397418A (zh) 一种高强度耐磨防蚀散热风扇叶片
CN106435460B (zh) 一种铌合金表面高温耐磨涂层及其制备方法
CN108085526B (zh) 一种低密度铌基复合材料及制备方法
CN104372226B (zh) 一种碳化钨包覆的耐磨材料及其制备方法
CN109735787A (zh) 一种耐高温抗氧化烧蚀复合涂层及制备方法
CN111826570A (zh) 一种耐高温高耐磨镍基碳化钛粉末及其制备方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN106191777A (zh) 一种氧化铝溅射靶材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803

RJ01 Rejection of invention patent application after publication