CN108352510A - 全固态再充式锂电池 - Google Patents

全固态再充式锂电池 Download PDF

Info

Publication number
CN108352510A
CN108352510A CN201580084439.XA CN201580084439A CN108352510A CN 108352510 A CN108352510 A CN 108352510A CN 201580084439 A CN201580084439 A CN 201580084439A CN 108352510 A CN108352510 A CN 108352510A
Authority
CN
China
Prior art keywords
solid state
cathode
graphene
lithium battery
rechargeable lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580084439.XA
Other languages
English (en)
Other versions
CN108352510B (zh
Inventor
许晓雄
姚霞银
彭刚
周龙捷
陈赟华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN108352510A publication Critical patent/CN108352510A/zh
Application granted granted Critical
Publication of CN108352510B publication Critical patent/CN108352510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种全固态再充式锂电池,其包含:a)阴极,其中所述阴极包含:a1)VS4和石墨烯的复合物;和a2)固体阴极电解质;和b)锂基阳极。

Description

全固态再充式锂电池
技术领域
本发明涉及全固态再充式锂电池(all-solid-state lithium rechargeablecell),也称为“全固态再充式锂电池(battery)”(本文后面简称“ASSLRB”)。
背景技术
全固态再充式锂电池只包含固体材料,特别是固态电解质。但是,含有传统氧化物材料(例如LiCoO2)作为阴极的ASSLRB经常具有的缺点是低理论容量、以及高界面阻力和低能量密度。因此,开发在材料水平具有高能量密度的用于ASSLRB的新的阴极材料很重要,以便符合能量存储***和/或电动车辆的要求。
发明内容
本发明的发明人们在深入研究之后,出人意料地发现VS4和石墨烯的复合物(本文后面简称“VS4/石墨烯复合物”)可用于提供用于全固态再充式锂电池的新型的阴极。
基于这样的发现,提供了全固态再充式锂电池,其包含:
a)阴极,其中所述阴极包含:
a1)VS4和石墨烯的复合物;和
a2)固体阴极电解质;和
b)锂基阳极。
任选地,所述阴极还可以包含:a3)导电添加剂和/或a4)粘合剂。
任选地,所述电池还可以包含位于所述阴极与所述阳极之间的固体电解质。
本发明的发明人们首次提出,VS4/石墨烯复合物可用在ASSLRB的阴极中。特别地,本发明的发明人们通过采用VS4/石墨烯复合物和固体阴极电解质的组合作为阴极,以及采用锂基材料作为阳极,提供了新型的ASSLRB。出人意料地,发现本公开的ASSLRB呈现出高的初始放电容量、高的初始库伦效率、好的可逆容量、优异的循环稳定性、高的能量密度以及优异的安全性。
通过后面对各种实例的描述,结合附图,本公开的这些和其他特征、方面和优点对于本领域技术人员变得更加明显。
附图说明
图1(a)是根据本公开的实施例制备的VS4/石墨烯复合物的透射电子显微术(TEM)图片。
图1(b)是根据本公开的实施例制备的VS4/石墨烯复合物的高分辨率透射电子显微术(HRTEM)图片。
图2是根据本公开的实施例制备的VS4/石墨烯复合物的X射线衍射(XRD)图形。
图3显示了根据本公开的实施例制备的ASSLRB的循环伏安图。
图4显示了根据本公开的实施例制备的ASSLRB的充/放电曲线。
图5显示了根据本公开的实施例制备的ASSLRB的循环性能。
图6显示了根据本公开的实施例制备的ASSLRB的充/放电曲线。
图7显示了根据本公开的实施例制备的ASSLRB的充/放电曲线。
这里,显示这些附图是用于帮助解释说明本公开的各种实例,因此,这些图不必按比例绘制。
具体实施方式
在本公开的全文中,除非另有说明,所有的科技术语的意思应该具有与本领域技术人员已知的相同。如果存在不一致的地方,应该采用本公开中提供的定义。
应该理解的是,对所有材料、方法、实例和附图的详细说明是为了解释说明的目的,因此,除非另有明确说明,它们不应理解为对本发明的限制。
这里,术语“电池(cell)”和“电池(battery)”可交换使用。术语“全固态再充式锂电池(cell或battery)”可简称为“电池(cell)”、“电池(battery)”或“ASSLRB”。
这里,术语“包含”指的是,可以包括不影响最终效果的其他成分或其他步骤。该术语涵盖了术语“由……组成”和“主要由……组成”。根据本公开的产品和方法可以包含以下特征,由以下特征组成,或者主要由以下特征组成:本文描述的本公开的主要技术特征和/或限制,以及本文描述的任何额外的和/或任选的成分、组分、步骤或限制。
在描述本申请的主题的上下文中(特别是在后面的权利要求的上下文中),除非本文另有说明或者上下文明显矛盾,采用术语“一个”、“一种”和“所述”以及类似的术语,应理解为涵盖了单数和复数的所指物。
术语“电解质”指的是位于阴极与阳极之间的电解质。术语“阴极电解质”具体指阴极中包含的电解质。在同一电池中的“阴极电解质”和“电解质”可以由相同或不同的材料形成。
除非另有说明,本申请上下文中的每个数值范围意在包括两个端点和落在所述数值范围内的任何数值和子范围。
除非具体说明,本公开中采用的所有材料和试剂都是商购可得的。
下面详细描述本公开的实例。
a):阴极
阴极可以包含:
a1)VS4和石墨烯的复合物;和
a2)固体阴极电解质.
任选地,阴极还可以包含:a3)导电添加剂和/或a4)粘合剂。
根据本公开的一些实例,所述阴极包含:
a1)20-95重量份的VS4和石墨烯的复合物;
a2)5-80重量份的固体阴极电解质;
a3)0-40重量份的导电添加剂;和
a4)0-20重量份的粘合剂。
根据本公开的一些实例,所述阴极包含:
a1)20-80重量份的VS4和石墨烯的复合物;
a2)20-80重量份的固体阴极电解质;
a3)0-40重量份的导电添加剂;和
a4)0-20重量份的粘合剂。
a1):VS4/石墨烯复合物
根据本公开的一些实例,阴极可以包含组分a1):VS4/石墨烯复合物作为阴极活性材料。归因于VS4的高理论容量和石墨烯的高导电性,VS4/石墨烯复合物显示出高能量密度。
优选地,VS4/石墨烯复合物可以具有以下结构:VS4颗粒与石墨烯片化学连接或者VS4颗粒物理地嵌入(embed)石墨烯片中。优选地,VS4颗粒均匀地分布在石墨烯片上。优选地,VS4是绿硫钒矿形式的硫化钒。
根据本公开的一些实例,石墨烯是石墨烯氧化物的还原产物。
优选地,VS4/石墨烯复合物是粉末形式。
根据本公开的一些实例,基于VS4/石墨烯复合物的总重量,石墨烯的含量可以大于为0重量%但不大于20重量%,以及VS4颗粒的含量可以为不小于重量80%但小于100重量%。
a2):固体阴极电解质
根据本公开的一些实例,阴极可以包含组分a2):固体阴极电解质。固体阴极电解质可以有利地改善锂离子穿过前述VS4/石墨烯复合物以及穿过整个阴极的传输。
对固体阴极电解质没有具体限制,可以采用已知用于再充式锂电池的那些,只有它们是锂离子传导性材料即可。例如,固体阴极电解质可以是聚乙烯氧化物(PEO)、锂离子传导性硫化物、锂离子传导性氯化物及它们的组合。在一些实例中,锂离子传导性硫化物可以是包含硫化锂和硫化磷的复合物,并且所述复合物可以任选地掺杂有一些氧化物以便改性,例如Li10GeP2S12、Li3PS4、Li7P3S11、Li8P2S9、Li3.25Ge0.25P0.75S4、Li10GeP2S12、70Li2S-29P2S5-1P2O5、Li2S-P2S5及它们的任意组合。Li7La3Zr2O12是固体阴极电解质的另一个实例。
优选地,固体阴极电解质是粉末形式,或者被磨成粉末。
a3):导电添加剂
任选地,根据本公开的阴极可以包含组分a3):导电添加剂。导电添加剂可以增加阴极的导电性和/或容量。
对导电添加剂没有具体限制,可以采用已知用于再充式锂电池中的那些。优选地,导电添加剂可选自炭黑、超级导电炭黑(super P)、乙炔黑、科琴黑(Ketjen black)、石墨、石墨烯、碳纳米管、气相生长碳纤维(VGCF)及它们的组合;更优选超级导电炭黑。例如,超级导电炭黑可商购得自Timical。
优选地,导电添加剂是粉末形式,或者被磨成粉末。
a4):粘合剂
任选地,根据本公开的阴极可以包含组分a4):粘合剂。通过采用粘合剂,不仅阴极的组分牢固地粘结在一起,而且整个阴极与阳极或固体电解质(如果存在的话)粘合性地连接在一起。这种粘合可以抑制阴极以及整个ASSLRB在重复充/放电循环中发生体积变化,由此改善ASSLRB的电化学性能,特别是循环性能。
优选地,粘合剂可选自聚偏二氟乙烯(PVDF),聚丙烯酸(PAA)及它们的组合。优选地,适用于本公开的粘合剂不包含羧甲基纤维素(CMC),这是因为CMC经常以水溶液的形式使用。
b):阳极
对适用于本公开的阳极材料没有具体限制,可以采用已知用于再充式锂电池中的那些锂基电极材料,只要它们与根据本公开的阴极相容并且不会不利地影响根据本公开的阴极的效果即可。有用的锂基阳极的实例包括但不限于,锂金属;锂合金,例如Li-In合金;由锂金属层和一层或多层不同于锂的其他金属组成的叠层,例如Li-In叠层;预锂化石墨,例如包含期望量的***或吸收在其中的锂的石墨;预锂化硅,例如包含期望量的***或吸收在其中的锂的硅;及它们的组合。
例如,如果Li金属用作阳极,那么可以增加放电容量和放电平台,由此改善能量密度。
c):固体电解质
任选地,根据本公开的ASSLRB可以包含位于阴极与阳极之间的固体电解质。所述固体电解质和前面提及的固体阴极电解质可以由相同或不同的材料形成。
与液体电解质相比,固态电解质赋予ASSLRB许多优点。例如,与不可避免地包含至少30体积%至35体积%的孔的液态电解质再充式锂离子电池相比,ASSLRB显示出具有更高的体积能量密度的可能性,这是因为ASSLRB可以是100%致密的。ASSLRB还可以显示较高的重量能量密度,这是因为可以使用高能量锂基阳极。ASSLRB的高的操作温度,例如约80-约100℃,额外地有助于甚至更高的能量密度。而且,较高的安全性是ASSLRB优于液体电解质再充式锂离子电池的另一个重要优点。
而且,固体电解质也可以用作阴极与阳极之间的隔板。固体电解质也可以改善锂离子在阴极与阳极之间的传输。
而且,由于本公开的ASSLRB不含液体电解质,可以由此避免液体电解质与阴极和/或阳极之间的不期望的反应,确保更高水平的安全性。
对固体电解质没有具体限制,可以采用已知用于再充式锂电池中的那些,只要它们是锂离子传导性材料即可。例如,固体阴极电解质可以是聚乙烯氧化物(PEO)、锂离子传导性硫化物、锂离子传导性氯化物或它们的组合。上面对于固体阴极电解质描述的实例也适用于固体电解质。
优选地,固体电解质c)可以是单层的形式。固体电解质c)也可以是两层叠层、或包含三层或更多层的多层叠层的形式,其中这些层可以由相同或不同的层形成,优选由不同的层形成。例如,固体电解质可以是由Li10GeP2S12层和硫化锂-硫化磷-氧化磷(Li2S-P2S5-P2O5)层组成的两层叠层。优选地,硫化锂-硫化磷-氧化磷可以是70Li2S-29P2S5-1P2O5。如果两层或多层叠层用于固体电解质,可以有效地解决极化现象。
全固态再充式锂电池
提供了全固态再充式锂电池,其包含:
a)阴极,其中阴极包含:
a1)VS4和石墨烯的复合物;和
a2)固体阴极电解质;和
b)锂基阳极。
任选地,阴极还可以包含位于所述阴极与所述阳极之间的固体电解质。
而且,本公开的ASSLRB可以任选地包含另外的添加剂,只要它们不会不利地影响电池的电化学性能即可。另外的添加剂可以包含在阴极、阳极和固体电解质(如果存在的话)中的任一种中或者包含在它们之间。
根据本公开的ASSLRB可用于能量存储***和/或电动车辆中。
实施例
[石墨烯氧化物溶液的合成]
将1.5g石墨粉末(SP-1,Bay carbon)和1.5g KNO3(Sigma Aldrich,≥99.0%)加入0℃的69ml H2SO4(Sigma Aldrich,98.0%)中,向其中逐渐加入9g KMnO4(SigmaAldrich,≥99.0%)。然后在35℃将混合物搅拌6小时,加入120ml去离子(DI)水。在15分钟之后,通过加入300ml去离子水和9ml H2O2(SAMCHUN pure chemical,34.5%特纯)的溶液来终止反应,混合物的颜色变成黄色。过滤混合物,并且用500ml HCl(SAMCHUN purechemical,10重量%)溶液洗涤。得到的石墨氧化物再次悬浮在200ml蒸馏水中,然后进行透析(透析膜:Spectrum Laboratories,MWCO-21-14,000)以便除去过量的HCl。通过高压匀浆器,在15,000psi下,剥离石墨氧化物,得到约2.15mg/mL石墨烯氧化物溶液。剥离之后,以400rpm将溶液离心10分钟,以便除去未剥离的石墨氧化物,顶部的上清液石墨烯氧化物溶液用于合成VS4/石墨烯复合物。
[VS4/石墨烯复合物的合成]
将1.1g原钒酸钠(Na3VO4,Sigma-Aldrich,≥90%)和2.25g硫代乙酰胺(C2H5NS,aladdin,≥99%)溶解在20ml去离子水中。然后,将37ml石墨烯氧化物溶液(2.15mg/ml)添加到混合物中,将溶液的总体积调节至80ml。然后,将溶液转移至100ml的具有特氟隆衬里的不锈钢高压釜中,加热到160℃并保持24小时。在自然冷却之后,过滤产物,用去离子水洗涤,并且在真空中在110℃干燥24小时。
[VS4/石墨烯复合物结构的确认和表征]
检测获得的样品,以便证明和表征其结构。检测结果概述如下:
如图1(a)所示,透射电子显微术(TEM)图片表明,石墨烯是片状,VS4颗粒均匀地分布在石墨烯片上,VS4颗粒的横向长度为25-50nm并且VS4颗粒的纵向长度为50-200nm。在FEITecnai G2F20透射电子显微仪上,以200kV的加速电压获得TEM图片。
在图1(b)所示的高分辨率TEM(HRTEM)图片中,观察到约0.56nm的面间距离,与已知单斜VS4的d(110)间距[PDF No.072-1294]匹配非常好。也在FEI Tecnai G2F20透射电子显微仪上以200kV的加速电压获得HRTEM图片。
如图2所示,VS4/石墨烯复合物的XRD图形还证实了单斜VS4相的形成,因为所有的峰都可以索引至已知的单斜VS4[JCPDS No.072-1294]。而且,相应于(110)面的衍射峰以15.8°存在,相应于0.56nm的距离,这也与图1(b)中显示的HRTEM结果一致。在D8-Advance(Bruker AXS,德国)粉末衍射仪上获得XRD图形,在40kV的电压下操作,并且从10°至80°扫描。
在图2中,在VS4/石墨烯复合物样品中没有检测到杂质或其他相。推测归因于最终VS4/石墨烯复合物中的石墨烯的低含量。石墨烯的低衍射强度也导致缺乏石墨烯的峰。
因此,图1(a)、图1(b)和图2的组合清楚地证明和表征了VS4/石墨烯复合物的结构。
实施例1
[阴极的制备]
将45mg VS4/石墨烯、50mg固体电解质Li10GeP2S12和5mg超级导电炭黑(40nm,可得自Timical)混合在一起。在置于氩气氛围下的手套箱中的研钵中,手工研磨得到的混合物,以便获得阴极材料复合物。
[电池的制备]
如下制备用于电化学测量的全固态电池。采用下面的两种硫化物电解质(SEs):Li10GeP2S12和70 Li2S-29 P2S5-1 P2O5,来形成双层硫化物电解质SE。通过在100MPa,将50mg70 Li2S-29 P2S5-1 P2O5SE冷压在100mg经冷压的Li10GeP2S12上,来构建双SE层,Li10GeP2S12层的厚度为0.67mm,并且70Li2S-29 P2S5-1 P2O5层的厚度为0.23mm。将5mg阴极材料复合物平坦地铺展在Li10GeP2S12SE层上,并且通过在100MPa冷压来造粒。然后,在200MPa,将锂箔贴附至70 Li2S-29 P2S5-1 P2O5SE侧。采用不锈钢板作为工作电极(即,阴极)和对电极(即,阳极)的集流体。在手套箱中,在氩气气氛下,进行所有的压制和实验操作。由此获得电池。
[电化学测量]
在0.5-3.0V(vs.Li/Li+)的电压范围内,在0.1mA cm-1的电流密度,使由此获得的电池在室温下恒流(galvanostatically)循环。实施例1的电池的循环伏安图和充/放电曲线分别绘制在图3和图4中。
图3显示了根据本公开实施例1制备的电池的循环伏安(CV)图,这是在0.5-3.0V(vs Li/Li+)的电压范围内,以0.1mV s-1的扫描速率在头三个循环中测量的。
基于后面描述的CV测试结果和充/放电曲线,ASSLRB中的VS4/石墨烯的可能的电化学反应过程如下:
在初始放电时(参见第一次放电曲线):
2.0V:VS4+3Li+3e-→Li3VS4
1.8/0.6V:Li3VS4+5Li+5e-→4Li2S+V
然后是(参见第一次至第三次充电曲线,以及第二次和第三次放电曲线):
图4显示了根据本公开实施例1制备的电池的充/放电曲线,这是在0.5-3.0V(vsLi/Li+)的电压范围内,以0.1mA cm-1的电流密度,在第一次循环、第二次循环、第五次循环和第十次循环中测量的。ASSLRB具有880.6/662.8mAh/g的初始充/放电容量,相应于75.3%的初始库伦效率(CE)。
图5显示了根据本公开的实施例1制备的ASSLRB的循环性能。参见图4和图5,可以看出,在第一次循环后,极大地改善了CE,在第二次循环和第三次循环中实现了92%和96%。同时,第二次循环和第三次循环的放电容量分别为688.1mAh g-1和642.9mAh g-1。在0.1mA cm-2,即使在10次循环之后,电池仍然保持609.7的高的可逆放电容量。在4-10次充/放电循环之后,CE约为100%。
实施例2
以与上面对实施例1所述相同的方式制备ASSLiB,除了阴极中的VS4/石墨烯:Li10GeP2S12:超级导电炭黑的重量比为5:5:0。
以与上面对实施例1所述相同的方式测量ASSLiB的电化学性能。测量结果绘制在图6中。
图6显示了,在0.1mA cm-2的电流密度下,电池具有77.8%的高初始CE和689.4mAhg-1的高放电容量。
实施例3
以与上面对实施例1所述相同的方式制备ASSLiB,除了阴极中的VS4/石墨烯:Li10GeP2S12:超级导电炭黑的重量比为3:6:2。
以与上面对实施例1所述相同的方式测量ASSLiB的电化学性能。测量结果绘制在图7中。
图7显示了,在0.1mA cm-2的电流密度下,电池具有948.1mAh g-1的高初始放电容量和68.7%的高初始CE。
可以看出,根据本公开的ASSLRB实现了高的初始CE和初始放电容量。而且,根据本公开的ASSLRB的循环性能也是优异的。
本领域技术人员清楚的是,可以对本公开进行许多改进和变化而不脱离本公开的精神和范围。仅通过举例的方式提供了本文描述的具体实施方式,本公开仅被所附权利要求书中的术语以及这些权利要求授权的等同物的全部范围限制。

Claims (10)

1.全固态再充式锂电池,其包含:
a)阴极,其中所述阴极包含:
a1)VS4和石墨烯的复合物;和
a2)固体阴极电解质;和
b)锂基阳极。
2.根据权利要求1所述的全固态再充式锂电池,其中所述VS4和石墨烯的复合物具有以下结构:VS4颗粒与石墨烯片化学连接或者VS4颗粒物理地嵌入石墨烯片中。
3.根据权利要求1或2所述的全固态再充式锂电池,其中所述石墨烯是石墨烯氧化物的还原产物。
4.根据前述权利要求中任一项所述的全固态再充式锂电池,其中所述阴极电解质选自聚乙烯氧化物、锂离子传导性硫化物、锂离子传导性氯化物及它们的组合。
5.根据前述权利要求中任一项所述的全固态再充式锂电池,其中所述锂基阳极选自锂金属、锂合金、预锂化石墨、预锂化硅、由锂金属层和一层或多层其他金属组成的叠层、及它们的组合。
6.根据前述权利要求中任一项所述的全固态再充式锂电池,其中所述阴极还包含:a3)导电添加剂。
7.根据前述权利要求中任一项所述的全固态再充式锂电池,其中所述阴极还包含:a4)粘合剂。
8.根据前述权利要求中任一项所述的全固态再充式锂电池,其还包含:c)位于所述阴极与所述阳极之间的固体电解质,其中所述固体电解质和所述固体阴极电解质由相同或不同的材料形成。
9.根据前述权利要求中任一项所述的全固态再充式锂电池,其中所述阴极包含:
a1)20-95重量份的VS4和石墨烯的复合物;
a2)5-80重量份的固体阴极电解质;
a3)0-40重量份的导电添加剂;和
a4)0-20重量份的粘合剂。
10.根据前述权利要求中任一项所述的全固态再充式锂电池,其中,基于所述VS4和石墨烯的复合物的总重量,所述石墨烯的含量为大于0重量%但不大于20重量%。
CN201580084439.XA 2015-11-09 2015-11-09 全固态再充式锂电池 Active CN108352510B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094126 WO2017079873A1 (en) 2015-11-09 2015-11-09 All-solid-state lithium rechargeable cells

Publications (2)

Publication Number Publication Date
CN108352510A true CN108352510A (zh) 2018-07-31
CN108352510B CN108352510B (zh) 2021-06-15

Family

ID=58694555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580084439.XA Active CN108352510B (zh) 2015-11-09 2015-11-09 全固态再充式锂电池

Country Status (6)

Country Link
US (1) US10749166B2 (zh)
EP (1) EP3375031B1 (zh)
JP (1) JP2018537813A (zh)
KR (1) KR20180074701A (zh)
CN (1) CN108352510B (zh)
WO (1) WO2017079873A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755553A (zh) * 2019-03-20 2019-05-14 北京航空航天大学 一种镁锂双离子电池复合正极材料及其制备方法和应用、电池体系
CN110247050A (zh) * 2019-06-21 2019-09-17 东北大学 一种利用含钒浸出液制备四硫化钒/石墨烯复合材料的方法
CN111193058A (zh) * 2018-11-15 2020-05-22 丰田自动车株式会社 全固体锂二次电池和全固体锂二次电池的劣化判定方法
CN112038590A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 新型固态电池及其正极材料
CN114302859A (zh) * 2019-08-30 2022-04-08 国立研究开发法人产业技术综合研究所 含磷低结晶性钒硫化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200129383A (ko) 2019-05-08 2020-11-18 주식회사 엘지화학 전고체 이차전지용 음극의 전리튬화 방법 및 이를 이용한 이차전지
CN110299527B (zh) * 2019-07-02 2020-03-31 张蓓 一种锂离子电池负极材料及其制备方法
EP4246629A1 (en) * 2020-11-10 2023-09-20 National Institute Of Advanced Industrial Science and Technology Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053324A (zh) * 1989-10-13 1991-07-24 加州大学评议会 产生二次电池组的电池
CN104069873A (zh) * 2014-06-19 2014-10-01 东南大学 一种载有四硫化钒的可见光催化剂及制备方法
KR20140117189A (ko) * 2013-03-26 2014-10-07 국립대학법인 울산과학기술대학교 산학협력단 바나듐 설파이드 및 환원형 그래파이트 옥사이드의 하이브리드 제조방법 및 상기 하이브리드를 포함한 리튬 이온 배터리

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162175A (en) * 1989-10-13 1992-11-10 Visco Steven J Cell for making secondary batteries
JP5953966B2 (ja) 2012-06-13 2016-07-20 ナガセケムテックス株式会社 正極合材
JP5445809B1 (ja) * 2013-06-21 2014-03-19 ナガセケムテックス株式会社 正極合材及び全固体型リチウム硫黄電池
DE102015210402A1 (de) * 2015-06-05 2016-12-08 Robert Bosch Gmbh Kathodenmaterial für Lithium-Schwefel-Zelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053324A (zh) * 1989-10-13 1991-07-24 加州大学评议会 产生二次电池组的电池
KR20140117189A (ko) * 2013-03-26 2014-10-07 국립대학법인 울산과학기술대학교 산학협력단 바나듐 설파이드 및 환원형 그래파이트 옥사이드의 하이브리드 제조방법 및 상기 하이브리드를 포함한 리튬 이온 배터리
CN104069873A (zh) * 2014-06-19 2014-10-01 东南大学 一种载有四硫化钒的可见光催化剂及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SYLVIA BRITTO等: ""Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
XIAODONG XU等: ""Lithium reaction mechanism and high rate capability of VS4-graphene nanocomposite as an anode material for lithium batteries"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193058A (zh) * 2018-11-15 2020-05-22 丰田自动车株式会社 全固体锂二次电池和全固体锂二次电池的劣化判定方法
CN111193058B (zh) * 2018-11-15 2023-05-23 丰田自动车株式会社 全固体锂二次电池和全固体锂二次电池的劣化判定方法
CN109755553A (zh) * 2019-03-20 2019-05-14 北京航空航天大学 一种镁锂双离子电池复合正极材料及其制备方法和应用、电池体系
CN109755553B (zh) * 2019-03-20 2021-09-24 北京航空航天大学 一种镁锂双离子电池复合正极材料及其制备方法和应用、电池体系
CN112038590A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 新型固态电池及其正极材料
WO2020244333A1 (zh) * 2019-06-04 2020-12-10 中国科学院物理研究所 新型固态电池及其正极材料
CN110247050A (zh) * 2019-06-21 2019-09-17 东北大学 一种利用含钒浸出液制备四硫化钒/石墨烯复合材料的方法
CN114302859A (zh) * 2019-08-30 2022-04-08 国立研究开发法人产业技术综合研究所 含磷低结晶性钒硫化物
CN114302859B (zh) * 2019-08-30 2024-03-01 国立研究开发法人产业技术综合研究所 含磷低结晶性钒硫化物

Also Published As

Publication number Publication date
JP2018537813A (ja) 2018-12-20
US10749166B2 (en) 2020-08-18
US20190067684A1 (en) 2019-02-28
KR20180074701A (ko) 2018-07-03
EP3375031A1 (en) 2018-09-19
EP3375031A4 (en) 2018-09-19
CN108352510B (zh) 2021-06-15
EP3375031B1 (en) 2020-04-15
WO2017079873A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
He et al. A three-dimensional interconnected V 6 O 13 nest with a V 5+-rich state for ultrahigh Zn ion storage
Min et al. Synthesis of Ni (OH) 2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance
CN108352510A (zh) 全固态再充式锂电池
Huang et al. Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodium‐Ion Batteries with Favorable Kinetics
Guo et al. Boosting the lithium storage performance of MoS 2 with graphene quantum dots
Tao et al. Construction of NiCo 2 O 4 nanosheet-decorated leaf-like Co 3 O 4 nanoarrays from metal–organic framework for high-performance hybrid supercapacitors
Su et al. Scalable fabrication of MnO 2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor
Luo et al. Hierarchical TiO 2 nanobelts@ MnO 2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors
Peng et al. Ultrathin δ-MnO 2 nanoflakes with Na+ intercalation as a high-capacity cathode for aqueous zinc-ion batteries
Zhu et al. Hydrogenated CoO x nanowire@ Ni (OH) 2 nanosheet core–shell nanostructures for high-performance asymmetric supercapacitors
Zhang et al. A 3D hierarchical porous α-Ni (OH) 2/graphite nanosheet composite as an electrode material for supercapacitors
Li et al. Carbon fiber cloth@ VO 2 (B): excellent binder-free flexible electrodes with ultrahigh mass-loading
US20170207492A1 (en) Electrode materials for rechargeable zinc cells and batteries produced therefrom
Wang et al. Dicarboxylate CaC 8 H 4 O 4 as a high-performance anode for Li-ion batteries
Lee et al. Highly ordered, polypyrrole-coated Co (OH) 2 architectures for high-performance asymmetric supercapacitors
Xie et al. Graphene oxide/lithium titanate composite with binder-free as high capacity anode material for lithium-ion batteries
Meng et al. Ultrathin TiO 2-B nanowires as an anode material for Mg-ion batteries based on a surface Mg storage mechanism
Tang et al. Improved rate performance of amorphous carbon coated lithium zinc titanate anode material with alginic acid as carbon precursor and particle size controller
Long et al. The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries
Jiang et al. In situ growth of (NH 4) 2 V 10 O 25· 8H 2 O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors
Zhang et al. Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application
Wang et al. Fabrication of manganese dioxide nanosheet-based thin-film electrode and its electrochemical capacitance performance
Tang et al. Three-dimensional ordered macroporous Cu/Sn anode for high rate and long cycle life lithium-ion batteries
JPWO2014091687A1 (ja) 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池
Ren et al. Development and evaluation of Zn2+ ions hybrid supercapacitor based on ZnxMnO2-CNTs cathode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant