CN108344096B - Building ventilation structure - Google Patents

Building ventilation structure Download PDF

Info

Publication number
CN108344096B
CN108344096B CN201810149550.8A CN201810149550A CN108344096B CN 108344096 B CN108344096 B CN 108344096B CN 201810149550 A CN201810149550 A CN 201810149550A CN 108344096 B CN108344096 B CN 108344096B
Authority
CN
China
Prior art keywords
ventilation
plate
movable
opening
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810149550.8A
Other languages
Chinese (zh)
Other versions
CN108344096A (en
Inventor
卢军
谢柱维
梁朔
郑洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810149550.8A priority Critical patent/CN108344096B/en
Publication of CN108344096A publication Critical patent/CN108344096A/en
Application granted granted Critical
Publication of CN108344096B publication Critical patent/CN108344096B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • F24F7/013Ventilation with forced flow using wall or window fans, displacing air through the wall or window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)

Abstract

The invention discloses a building ventilation structure which comprises a building wall body, wherein a ventilation cavity is formed in the building wall body, a ventilation opening which is communicated with the ventilation cavity and used for indoor side ventilation is formed in the indoor side of the building wall body, a ventilation opening which is communicated with the ventilation cavity and used for outdoor side ventilation is formed in the outdoor side of the building wall body, a rotating shaft is arranged in the ventilation cavity and used for being in transmission connection with a power mechanism, blades used for ventilation are arranged on the rotating shaft to form an impeller, the ventilation opening and the impeller are correspondingly arranged in the rotating direction, the building ventilation structure is characterized in that the power mechanism comprises a wind wheel, and one end of the rotating shaft can rotatably extend out of the. The invention has the advantages of simple structure, good sound insulation and noise reduction effects, improvement of installation independence and application range, reduction of energy loss and the like.

Description

Building ventilation structure
Technical Field
The invention relates to the technical field of building ventilation; in particular to a building ventilation structure.
Background
For some districts and office buildings close to roads, expressways and construction sites, the sleeping quality and the working efficiency of people are seriously influenced due to the extremely high noise pollution. In order to reduce the influence of noise, people usually close doors and windows very tightly, and after a period of time, the indoor air quality is very poor, and people feel the problems of chest distress, dizziness, dysphoria and the like.
In order to solve the above problems, it is considered to provide a ventilation structure in a building, but the following defects still exist in the conventional ventilation structure: 1 can directly communicate indoor and outdoor when ventilation structure uses, lead to outdoor noise to pass into indoor through the wind current channel, so it is relatively poor to give sound insulation and noise reduction effect. 2 many ventilators have motors that increase the cost and power usage limitations, and the motors themselves increase the noise in the room when operating; resulting in poor noise reduction.
Disclosure of Invention
Aiming at the defects of the prior art, the technical problems to be solved by the invention are as follows: how to provide one kind and need not extra power, the installation independence is good, and the range of application is wide, avoids the building ventilation structure of energy loss to further improve its noise reduction effect that gives sound insulation.
In order to solve the technical problems, the invention adopts the following technical scheme:
the utility model provides a building ventilation structure, includes building wall, building wall inside is formed with the ventilation cavity, building wall indoor side is provided with and ventilates the cavity and communicate with each other and be used for the ventilation of indoor side vent, building wall outdoor side is provided with and ventilates the cavity and communicate with each other and be used for the ventilation vent of outdoor side, is provided with the pivot in the ventilation cavity, and the pivot is used for being connected with power unit transmission, installs the blade that is used for ventilating in the pivot and forms the impeller, and vent and impeller rotation direction correspond the setting, its characterized in that, power unit includes a wind wheel, pivot one end rotationally outwards extends building wall and links to each other with the wind wheel.
Therefore, when the ventilation structure is installed, the wind wheel can extend out and be installed outside the wall, outdoor wind power is received as power, the automatic ventilation effect is achieved, the dependence on a power supply is eliminated, the installation independence and the application range are improved, and energy loss is reduced.
As an optimization, the ventilation opening and closing device capable of controlling the opening and closing of the ventilation opening is respectively arranged on the ventilation opening at the indoor side and the ventilation opening at the outdoor side, and the air conditioner further comprises an opening and closing control mechanism, wherein the opening and closing control mechanism is used for controlling the opening and closing device of the ventilation opening at the indoor side and the ventilation opening at the outdoor side to be opened and closed in turn when the rotating shaft rotates.
Thus, when the ventilation structure is installed, the indoor side ventilation opening is located indoors, and the outdoor side ventilation opening is located outdoors. When the fan is used, the rotating shaft is connected and installed on the power mechanism, the rotating shaft is driven to rotate by the power mechanism, and ventilation is performed by wind flow generated by the blades. The improved place is that the switch control mechanism can be used for controlling the air opening switch devices of the indoor side ventilation opening and the outdoor side ventilation opening to be opened and closed in turn, so that in the ventilation process, the air opening switch devices of the indoor side ventilation opening and the outdoor side ventilation opening are opened and closed in turn, and only the air opening switch device on one side is in an opening state all the time. Therefore, during ventilation, only one side of the indoor side or the outdoor side is subjected to air exchange with the ventilation cavity, so that the indoor side and the outdoor side are not directly communicated, the ventilation and air exchange are kept, meanwhile, the path for transmitting outdoor noise to the indoor side through the air duct is cut off, and the outdoor noise can be shielded to the maximum extent. Greatly improving the sound insulation and noise reduction effects.
As optimization, the ventilation openings at the indoor side are at least two arranged at the two ends of the same side of the impeller respectively, and the ventilation openings at the outdoor side are at least two arranged at the two ends of the same side of the impeller respectively.
Therefore, when the indoor side ventilation opening is opened, the impeller rotates to drive one end of the indoor side ventilation opening at the two ends on the same side of the impeller to intake air and the other end to exhaust air; and meanwhile, when the outdoor ventilation opening is opened, the impeller rotates to drive one end of the outdoor ventilation opening at the two ends of the same side of the impeller to intake air and the other end to exhaust air. In this way, the ventilation chamber and the indoor and indoor air exchange efficiency can be greatly improved.
As an optimization, the air port switch device comprises a fixed switch board and a movable switch board which are arranged along the direction vertical to the indoor and outdoor directions, two air vents at two ends of the same side of the building wall are respectively provided with one fixed switch board, the fixed switch boards are opposite to each other and the opposite outer ends of the fixed switch boards are fixed on the inner wall of the ventilation cavity, one side of the ventilation cavity, which is outward, between the two fixed switch boards at two ends of the same side of the ventilation cavity is also provided with one movable switch board, the movable switch board is provided with a part overlapped with the fixed switch board, and a partition can be formed between the corresponding air vent and the ventilation cavity after the two are overlapped, and the movable switch board is provided with a closing member which can enable the overlapped parts of the movable switch board and the fixed switch board to; the switch control mechanism comprises an arc-shaped bulge which is positioned in the middle of the inner side of the fixed switch board and protrudes outwards towards the impeller, and a cam arranged on the impeller, wherein the outer side of the arc-shaped bulge is positioned in the rotating path circle range of the cam, and the maximum distance of the arc-shaped bulge, which can stretch into the rotating path circle of the cam, is smaller than the maximum distance of the closing action range generated by the closing component.
Like this, when the impeller rotates, rely on the blade to produce rotatory air current, on the cam does not pass through arc protruding position, the movable switch board and the fixed switch board of vent inner rely on the closure member effect to be closed state, on the cam passes through arc protruding position, through cam and the bellied contact interact of arc, outwards the back-open with the movable switch board, two vents that the movable switch board corresponds the homonymy this moment open the ventilation simultaneously, because two vents are located the both ends of impeller homonymy respectively, so the air inlet of vent under the effect of rotatory air current, another vent air-out, accomplish the ventilation exchange of ventilation cavity and this side outside. The movable and fixed switch plates are then closed again by the closing member after the cam has rotated out of the arcuate raised area. When the cam rotates to the arc-shaped convex position on the other side, the two ventilation openings on the side are driven to be opened by the same principle, so that ventilation exchange between the ventilation chamber and the outside of the side is realized, and further, the spaced indoor and outdoor ventilation exchange is finally realized. The air port switching device and the switch control mechanism adopting the structure have the advantages of simpler structure and reliable and stable control.
Preferably, the closing member is a ferromagnetic member which is arranged on the opposite side surfaces of the mutually overlapped part of the movable switch plate and the fixed switch plate and can be mutually attracted. This has the advantages of simple structure and reliable closing. Of course, the closing member may also be a return spring arranged between the outer side of the movable switch plate and the inner wall of the ventilation cavity.
Furthermore, a limit baffle is fixedly arranged on the inner wall of the ventilation cavity opposite to the direction in the middle of the outer side of the movable switch board, and when the distance from the inner end of the limit baffle to the ferromagnetic component is in a suction state, the distance from the outer side surface of the movable switch board is smaller than the maximum distance of a suction action range generated by the ferromagnetic component and is larger than or equal to the maximum distance that the arc-shaped bulge can extend into a rotation path circle of the cam.
Like this, can avoid two vent air currents of homonymy to mix and offset, make it form an air-out of air inlet better, improve and ventilate the inside air exchange effect of cavity.
Furthermore, a spring is arranged between the movable switch board and the limiting baffle or between the inner side walls of the ventilation cavity where the limiting baffle is located.
Therefore, the spring can play the roles of buffering and resetting, thereby better improving the operation stability and reducing the noise.
As another optimization, the air port switching device comprises a fixed channel plate and a movable channel plate which are arranged along the indoor and outdoor directions and are parallel to each other, the fixed channel plate is arranged on one side of the inner end of each ventilation opening close to the middle direction, the movable channel plate is arranged on the other side, and a closing member which can enable the movable channel plate to be attached to the fixed channel plate and block the corresponding ventilation opening under the action of no external force is arranged on the movable channel plate; the switch control mechanism comprises a push rod which is perpendicular to the fixed channel plate and the movable channel plate, one end of the push rod can slidably penetrate through the fixed channel plate and is abutted against the movable channel plate, the other end of the push rod is provided with a wedge-shaped block, the wedge-shaped block is provided with an inclined surface facing the direction of the impeller, the two wedge-shaped blocks at the two ends of the same side of the ventilation cavity are symmetrically arranged, a thrust block is arranged between the two wedge-shaped blocks, the thrust block is provided with an arc-shaped bulge facing the direction of the impeller, a thrust block reset spring is arranged between the thrust block and the inner wall of the ventilation cavity, and the left side and the right side of the thrust block are respectively provided with; the switch control mechanism further comprises a cam arranged on the impeller, the outer side of the arc-shaped bulge is located within the rotating path circle range of the cam, and the maximum distance of the cam, which acts with the arc-shaped bulge and drives the push rod to move when rotating, is smaller than the maximum distance of the closing action range generated by the closing component.
Thus, when the impeller rotates, the rotating wind flow is generated by the blades, and when the cam does not pass through the arc-shaped bulge position, the movable channel plate and the fixed channel plate at the inner end of the ventilation opening are in a closed state under the action of the closing component. When the cam passes through the arc-shaped protruding position, the thrust block is pushed outwards through the contact interaction of the cam and the arc-shaped protrusion, the push rods at two ends are driven to push outwards through the matching of the inclined plane and the inclined plane, the movable channel plates corresponding to the two ventilation openings are pushed outwards away from the fixed channel plates, so that a ventilation channel is respectively formed between the two ventilation openings at the two ends of the same side of the ventilation cavity and the ventilation cavity, the ventilation channel is just positioned in the tangential direction of the air flow generated by the rotation of the impeller, the efficient air inlet of one ventilation opening is realized under the action of the rotation air flow, the efficient air outlet of the other ventilation opening is realized, and the efficient ventilation exchange of the ventilation cavity and the outer part of the side is. Then, after the cam is rotated out of the arc-shaped convex area, the movable channel plate and the fixed channel plate are closed again under the action of the closing member. When the cam rotates to the arc-shaped convex position on the other side, the two ventilation openings on the side are driven to be opened by the same principle, so that ventilation exchange between the ventilation chamber and the outside of the side is realized, and further, the spaced indoor and outdoor ventilation exchange is finally realized. The air port switching device and the switch control mechanism adopting the structure have the advantages of more efficient ventilation and reliable and stable control.
Preferably, the closing component is a movable channel plate return spring arranged between the side surface of the movable channel plate, which is far away from the fixed channel plate, and the inner wall of the corresponding ventilation cavity.
Thus, the device has the advantages of simple structure and reliable closing and resetting. Of course, in practice, the closing member may also be obtained by disposing a ferromagnetic attraction member between the movable channel plate and the fixed channel plate.
Preferably, a flexible folding baffle is further arranged between the end part of one side, away from the fixed channel plate, of the movable channel plate close to the impeller direction and the inner wall of the corresponding ventilation cavity.
In this way, the wind flow can be better shielded, and the ventilation opening is opened through the movable channel plate when needed.
As optimization, the ventilation chamber is a rectangular body, and the wall of the inner cavity is provided with a silencing material. This makes it possible to better facilitate the installation and to improve the silencing effect.
As optimization, a primary filter is arranged at a ventilation opening at the indoor side of the building wall body, and rain-proof shutters are arranged at a ventilation opening at the outdoor side of the building wall body.
In this way, better filtration and protection against rain is possible.
The sound insulation and ventilation structure for the unpowered window has the advantages that the structure can realize ventilation, does not have power requirements and has good sound insulation effect; the device has low cost, simple structure and convenient manufacture and maintenance; the building material can automatically run all day long, and pollutants released by the building materials can be removed when no person exists in the room.
In conclusion, the sound insulation and noise reduction device has the advantages of being simple in structure, good in sound insulation and noise reduction effects, capable of improving installation independence and application range, capable of reducing energy loss and the like.
Drawings
Fig. 1 is a schematic structural view of a ventilation chamber portion in a first embodiment of the present invention.
Fig. 2 is a schematic structural diagram of a single power mechanism portion according to a first embodiment of the present invention.
Fig. 3 is a schematic structural view of a ventilation chamber portion in a second embodiment of the present invention.
The arrows in the figure indicate the direction of wind flow.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
Example 1: referring to fig. 1-2, a building ventilation structure comprises a building wall 1, a ventilation chamber is formed inside the building wall 1, a ventilation opening communicated with the ventilation chamber and used for ventilation at the indoor side is formed in the indoor side of the building wall, a ventilation opening communicated with the ventilation chamber and used for ventilation at the outdoor side is formed in the outdoor side of the building wall, a rotating shaft 2 is arranged in the ventilation chamber and used for being in transmission connection with a power mechanism, blades used for ventilation are mounted on the rotating shaft 2 to form an impeller 3, the ventilation opening and the impeller 3 are correspondingly arranged in the rotating direction, wherein the power mechanism comprises a wind wheel 12, and one end of the rotating shaft 2 rotatably extends out of the building wall and is connected with the wind wheel 12.
Therefore, when the ventilation structure is installed, the wind wheel can extend out and be installed outside the wall, outdoor wind power is received as power, the automatic ventilation effect is achieved, the dependence on a power supply is eliminated, the installation independence and the application range are improved, and energy loss is reduced. Specifically, when the building ventilation structure is implemented, the building ventilation structure can be arranged at a corner of a wall body, so that the outer end of a rotating shaft can be directly and coaxially provided with a wind wheel; if the wind wheel mounting axis and the ventilation direction of the ventilation chamber are arranged in the same direction, the outer end of the rotating shaft is connected with the wind wheel mounting shaft after being turned by a pair of meshed helical gears.
Wherein, be provided with the wind gap switching device that can control the vent switching on respectively on the vent of indoor side and the vent of outdoor side, still include on-off control mechanism, on-off control mechanism is used for controlling the wind gap switching device of indoor side vent and outdoor side vent and opens and close in turn when pivot 2 is rotatory.
Thus, when the ventilation structure is installed, the indoor side ventilation opening is located indoors, and the outdoor side ventilation opening is located outdoors. When the fan is used, the rotating shaft is connected and installed on the power mechanism, the rotating shaft is driven to rotate by the power mechanism, and ventilation is performed by wind flow generated by the blades. The improved place is that the switch control mechanism can be used for controlling the air opening switch devices of the indoor side ventilation opening and the outdoor side ventilation opening to be opened and closed in turn, so that in the ventilation process, the air opening switch devices of the indoor side ventilation opening and the outdoor side ventilation opening are opened and closed in turn, and only the air opening switch device on one side is in an opening state all the time. Therefore, during ventilation, only one side of the indoor side or the outdoor side is subjected to air exchange with the ventilation cavity, so that the indoor side and the outdoor side are not directly communicated, the ventilation and air exchange are kept, meanwhile, the path for transmitting outdoor noise to the indoor side through the air duct is cut off, and the outdoor noise can be shielded to the maximum extent. Greatly improving the sound insulation and noise reduction effects.
Wherein, the vent of indoor side is for setting up respectively in at least two at 3 homonymy both ends of impeller, the vent of outdoor side is for setting up respectively in at least two at 3 homonymy both ends of impeller.
Therefore, when the indoor side ventilation opening is opened, the impeller rotates to drive one end of the indoor side ventilation opening at the two ends on the same side of the impeller to intake air and the other end to exhaust air; and meanwhile, when the outdoor ventilation opening is opened, the impeller rotates to drive one end of the outdoor ventilation opening at the two ends of the same side of the impeller to intake air and the other end to exhaust air. In this way, the ventilation chamber and the indoor and indoor air exchange efficiency can be greatly improved.
The air port switching device comprises a fixed switching plate 4 and a movable switching plate 5 which are arranged along the direction vertical to the indoor and outdoor directions, two ventilation openings at two ends of the same side of a building wall are respectively provided with one fixed switching plate 4, the fixed switching plates 4 are arranged just opposite to each other, the outer ends of the fixed switching plates are fixed on the inner wall of a ventilation cavity, one side, which faces outwards, of two fixed switching plates 4 at two ends of the same side of the ventilation cavity is also provided with one movable switching plate 5, the movable switching plate 5 is provided with a part overlapped with the fixed switching plate 4, and a partition can be formed between the corresponding ventilation opening and the ventilation cavity after the two parts are overlapped, and the movable switching plate 5 is provided with a closing member which can enable the overlapped parts of the movable switching plate 5 and the fixed switching plates 4 to be mutually attached under the effect; the switch control mechanism comprises an arc-shaped bulge 6 which is positioned in the middle of the inner side of the fixed switch board and protrudes outwards towards the impeller, and further comprises a cam 7 arranged on the impeller, the outer side of the arc-shaped bulge 6 is positioned in the rotating path circle range of the cam 7, and the maximum distance of the arc-shaped bulge 6 which can stretch into the rotating path circle of the cam 7 is smaller than the maximum distance of the closing action range generated by the closing component.
Like this, when the impeller rotates, rely on the blade to produce rotatory air current, on the cam does not pass through arc protruding position, the movable switch board and the fixed switch board of vent inner rely on the closure member effect to be closed state, on the cam passes through arc protruding position, through cam and the bellied contact interact of arc, outwards the back-open with the movable switch board, two vents that the movable switch board corresponds the homonymy this moment open the ventilation simultaneously, because two vents are located the both ends of impeller homonymy respectively, so the air inlet of vent under the effect of rotatory air current, another vent air-out, accomplish the ventilation exchange of ventilation cavity and this side outside. The movable and fixed switch plates are then closed again by the closing member after the cam has rotated out of the arcuate raised area. When the cam rotates to the arc-shaped convex position on the other side, the two ventilation openings on the side are driven to be opened by the same principle, so that ventilation exchange between the ventilation chamber and the outside of the side is realized, and further, the spaced indoor and outdoor ventilation exchange is finally realized. The air port switching device and the switch control mechanism adopting the structure have the advantages of simpler structure and reliable and stable control.
The closing component is a ferromagnetic component 8 which is arranged on the opposite side surfaces of the mutually overlapped part of the movable switch board and the fixed switch board and can be mutually attracted. This has the advantages of simple structure and reliable closing. Of course, the closing member may also be a return spring arranged between the outer side of the movable switch plate and the inner wall of the ventilation cavity.
The middle part of the outer side of the movable switch board is fixedly provided with a limit baffle board 9 on the inner wall of the ventilation cavity facing to the direction, and the distance between the outer side surface of the movable switch board and the inner end of the limit baffle board 9 is less than the maximum distance of the attraction action range generated by the ferromagnetic component when the distance is away from the attraction state of the ferromagnetic component and is more than or equal to the maximum distance of the arc-shaped bulge which can stretch into the rotation path circle of the cam.
Like this, can avoid two vent air currents of homonymy to mix and offset, make it form an air-out of air inlet better, improve and ventilate the inside air exchange effect of cavity.
Wherein, a spring (not shown in the figure) is also arranged between the movable switch board 5 and the limit baffle or the inner side wall of the ventilation chamber where the limit baffle is arranged.
Therefore, the spring can play the roles of buffering and resetting, thereby better improving the operation stability and reducing the noise.
Wherein, the ventilation chamber is a rectangular body, and the wall of the inner cavity is provided with a silencing material. This makes it possible to better facilitate the installation and to improve the silencing effect.
Wherein, the ventilation opening of the indoor side of the building wall is provided with a primary filter 10, and the ventilation opening of the outdoor side of the building wall is provided with a rainproof louver 11.
In this way, better filtration and protection against rain is possible.
Example 2: see fig. 3.
The difference between this embodiment and the above-mentioned embodiment is that the air opening switching device and the switching control mechanism are different, and the other structures are the same as those of the above-mentioned embodiment, specifically, in this embodiment, the air opening switching device includes a fixed channel plate 14 and a movable channel plate 15 which are arranged along the indoor and outdoor directions and are parallel to each other, the fixed channel plate 14 is arranged at one side of the inner end of each ventilation opening near the middle direction, the movable channel plate 15 is arranged at the other side, and the movable channel plate 15 is provided with a closing member which can make the movable channel plate and the fixed channel plate adhere to each other and block the corresponding ventilation opening under the action of no; the switch control mechanism comprises a push rod 16 which is perpendicular to the fixed channel plate and the movable channel plate, one end of the push rod 16 slidably penetrates through the fixed channel plate and abuts against the movable channel plate, a wedge block 17 is arranged at the other end of the push rod, the wedge block 17 is provided with an inclined plane facing the direction of the impeller, two wedge blocks at two ends of the same side of the ventilation cavity are symmetrically arranged, a thrust block 18 is arranged between the two wedge blocks, the thrust block 18 is provided with an arc-shaped bulge facing the direction of the impeller, a thrust block reset spring 19 is arranged between the thrust block and the inner wall of the ventilation cavity in a direction deviating from the direction of the impeller, and the left side and the right side of the thrust block are respectively provided with an inclined; the switch control mechanism further comprises a cam 20 arranged on the impeller, the outer side of the arc-shaped bulge is located in the range of a rotating path circle of the cam 20, and the maximum distance of the cam 20, which acts with the arc-shaped bulge and drives the push rod to move when rotating, is smaller than the maximum distance of a closing action range generated by the closing component.
Thus, when the impeller rotates, the rotating wind flow is generated by the blades, and when the cam does not pass through the arc-shaped bulge position, the movable channel plate and the fixed channel plate at the inner end of the ventilation opening are in a closed state under the action of the closing component. When the cam passes through the arc-shaped protruding position, the thrust block is pushed outwards through the contact interaction of the cam and the arc-shaped protrusion, the push rods at two ends are driven to push outwards through the matching of the inclined plane and the inclined plane, the movable channel plates corresponding to the two ventilation openings are pushed outwards away from the fixed channel plates, so that a ventilation channel is respectively formed between the two ventilation openings at the two ends of the same side of the ventilation cavity and the ventilation cavity, the ventilation channel is just positioned in the tangential direction of the air flow generated by the rotation of the impeller, the efficient air inlet of one ventilation opening is realized under the action of the rotation air flow, the efficient air outlet of the other ventilation opening is realized, and the efficient ventilation exchange of the ventilation cavity and the outer part of the side is. Then, after the cam is rotated out of the arc-shaped convex area, the movable channel plate and the fixed channel plate are closed again under the action of the closing member. When the cam rotates to the arc-shaped convex position on the other side, the two ventilation openings on the side are driven to be opened by the same principle, so that ventilation exchange between the ventilation chamber and the outside of the side is realized, and further, the spaced indoor and outdoor ventilation exchange is finally realized. The air port switching device and the switch control mechanism adopting the structure have the advantages of more efficient ventilation and reliable and stable control.
The closing component is a movable channel plate return spring 21 arranged between the side surface of the movable channel plate, which is far away from the fixed channel plate, and the inner wall of the corresponding ventilation cavity.
Thus, the device has the advantages of simple structure and reliable closing and resetting. Of course, in practice, the closing member may also be obtained by disposing a ferromagnetic attraction member between the movable channel plate and the fixed channel plate.
And a flexible folding baffle 22 is also arranged between the end part of one side of the movable channel plate, which is far away from the fixed channel plate and is close to the direction of the impeller, and the inner wall of the corresponding ventilation cavity.
In this way, the wind flow can be better shielded, and the ventilation opening is opened through the movable channel plate when needed.

Claims (7)

1. A building ventilation structure comprises a building wall, wherein a ventilation cavity is formed in the building wall, a ventilation opening which is communicated with the ventilation cavity and used for indoor side ventilation is formed in the indoor side of the building wall, a ventilation opening which is communicated with the ventilation cavity and used for outdoor side ventilation is formed in the outdoor side of the building wall, a rotating shaft is arranged in the ventilation cavity and used for being in transmission connection with a power mechanism, blades used for ventilation are mounted on the rotating shaft to form an impeller, the ventilation opening and the impeller are correspondingly arranged in the rotating direction, the building ventilation structure is characterized in that the power mechanism comprises a wind wheel, and one end of the rotating shaft can rotatably extend out of the building wall and is;
the indoor side ventilation opening and the outdoor side ventilation opening are respectively provided with an air opening switching device capable of controlling the opening and closing of the ventilation opening, and the indoor side ventilation opening and the outdoor side ventilation opening are respectively provided with an air opening switching device capable of controlling the opening and closing of the ventilation opening;
the indoor side ventilation openings are at least two ventilation openings which are respectively arranged at two ends of the same side of the impeller, and the outdoor side ventilation openings are at least two ventilation openings which are respectively arranged at two ends of the same side of the impeller;
the air port switching device comprises a fixed switching plate and a movable switching plate which are arranged along the direction vertical to the indoor and outdoor directions, two air vents at two ends of the same side of the building wall are respectively provided with one fixed switching plate, the fixed switching plates are opposite to each other and the opposite outer ends of the fixed switching plates are fixed on the inner wall of the ventilation cavity, one side of the ventilation cavity, which is outward, between the two fixed switching plates at two ends of the same side of the ventilation cavity is also provided with one movable switching plate, the movable switching plate is provided with a part overlapped with the fixed switching plate, and after the movable switching plate and the fixed switching plate are overlapped, a partition can be formed between the corresponding air vent and the ventilation cavity, and the movable switching plate is provided with a closing member which can enable the overlapped parts of the movable switching; the switch control mechanism comprises an arc-shaped bulge which is positioned in the middle of the inner side of the fixed switch board and protrudes outwards towards the impeller, and a cam arranged on the impeller, wherein the outer side of the arc-shaped bulge is positioned in the rotating path circle range of the cam, and the maximum distance of the arc-shaped bulge, which can stretch into the rotating path circle of the cam, is smaller than the maximum distance of the closing action range generated by the closing component.
2. The ventilation structure for buildings as claimed in claim 1, wherein the closing member is a ferromagnetic member which is provided on each of opposite sides of the overlapping portion of the movable opening and closing plate and the fixed opening and closing plate and can be engaged with each other;
the middle part of the outer side of the movable switch plate is opposite to the inner wall of the ventilation cavity in the direction, a limiting partition plate is fixedly arranged on the inner wall of the ventilation cavity, the distance between the inner end of the limiting partition plate and the outer side surface of the movable switch plate is smaller than the maximum distance of the attraction action range generated by the ferromagnetic component when the attraction state of the ferromagnetic component is reached, and the distance is larger than or equal to the maximum distance of the arc-shaped bulge which can stretch into the rotation path circle of the.
3. The building ventilation structure of claim 2, wherein a spring is further disposed between the movable switch plate and the limiting partition plate or the inner side wall of the ventilation chamber in which the limiting partition plate is disposed.
4. The building ventilation structure as claimed in claim 1, wherein the tuyere opening and closing means comprises a fixed channel plate and a movable channel plate disposed in parallel with each other along the indoor and outdoor directions, the fixed channel plate is disposed at one side of the inner end of each ventilation opening near the middle direction, the movable channel plate is disposed at the other side, and the movable channel plate is provided with a closing member which can allow the movable channel plate and the fixed channel plate to be attached to each other and block the corresponding ventilation opening without external force; the switch control mechanism comprises a push rod which is perpendicular to the fixed channel plate and the movable channel plate, one end of the push rod can slidably penetrate through the fixed channel plate and is abutted against the movable channel plate, the other end of the push rod is provided with a wedge-shaped block, the wedge-shaped block is provided with an inclined surface facing the direction of the impeller, the two wedge-shaped blocks at the two ends of the same side of the ventilation cavity are symmetrically arranged, a thrust block is arranged between the two wedge-shaped blocks, the thrust block is provided with an arc-shaped bulge facing the direction of the impeller, a thrust block reset spring is arranged between the thrust block and the inner wall of the ventilation cavity, and the left side and the right side of the thrust block are respectively provided with; the switch control mechanism further comprises a cam arranged on the impeller, the outer side of the arc-shaped bulge is located within the rotating path circle range of the cam, and the maximum distance of the cam, which acts with the arc-shaped bulge and drives the push rod to move when rotating, is smaller than the maximum distance of the closing action range generated by the closing component.
5. The building ventilation structure according to claim 4, wherein the closing member is a movable duct plate return spring provided between a side surface of the movable duct plate facing away from the fixed duct plate and an inner wall of the corresponding ventilation chamber.
6. The building ventilation structure according to claim 4, wherein a flexible folding baffle is further provided between the end of the side of the movable channel plate, which faces away from the fixed channel plate, and which is close to the impeller direction and the inner wall of the corresponding ventilation chamber.
7. The ventilation structure for buildings as claimed in claim 1, wherein the ventilation chamber is a rectangular body, and the inner chamber wall is provided with a sound-deadening material;
the ventilation opening of the indoor side of the building wall body is provided with a primary filter, and the ventilation opening of the outdoor side of the building wall body is provided with a rainproof louver.
CN201810149550.8A 2018-02-13 2018-02-13 Building ventilation structure Active CN108344096B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810149550.8A CN108344096B (en) 2018-02-13 2018-02-13 Building ventilation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810149550.8A CN108344096B (en) 2018-02-13 2018-02-13 Building ventilation structure

Publications (2)

Publication Number Publication Date
CN108344096A CN108344096A (en) 2018-07-31
CN108344096B true CN108344096B (en) 2020-04-24

Family

ID=62959811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810149550.8A Active CN108344096B (en) 2018-02-13 2018-02-13 Building ventilation structure

Country Status (1)

Country Link
CN (1) CN108344096B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286769B (en) * 2018-02-13 2020-08-11 重庆大学 Indoor sound insulation ventilation unit
CN110777966B (en) * 2019-11-05 2020-11-17 台州学院 Wind-resistant wall block structure capable of conducting wind
CN113124521B (en) * 2021-04-30 2022-06-03 重庆交通大学 Ventilation energy-saving device for green building
CN113356407B (en) * 2021-08-11 2021-10-15 江苏南通冠仟新型建材科技有限公司 Unilateral ventilation wall structure
CN114165077B (en) * 2021-11-19 2023-07-04 北京城乡建设集团有限责任公司 Self-help hydrogenation station

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2125098U (en) * 1992-06-18 1992-12-16 清华大学 Low-noise elimination ventilator
CN1614202A (en) * 2004-08-23 2005-05-11 王洪泽 Muffler on fluid pipe and instralling method thereof
CN2871782Y (en) * 2005-04-14 2007-02-21 孙双全 Dustproofing and noise-lowering aerating window
CN1945142A (en) * 2006-05-23 2007-04-11 郑文涛 Pneumatic air inlet and outlet device
CN200982305Y (en) * 2006-12-07 2007-11-28 岳国胜 Fan
CN201059358Y (en) * 2007-07-19 2008-05-14 上海开纯洁净室技术工程有限公司 Pressure differential type gas sealing valve
CN201795573U (en) * 2009-08-12 2011-04-13 蒋绍中 Natural ventilator for houses
WO2014135960A1 (en) * 2013-03-07 2014-09-12 Zehnder Group International Ag Active flow transfer arrangement
CN205980153U (en) * 2016-08-24 2017-02-22 吉林省韦伯通风设备有限公司 Window type ventilator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2125098U (en) * 1992-06-18 1992-12-16 清华大学 Low-noise elimination ventilator
CN1614202A (en) * 2004-08-23 2005-05-11 王洪泽 Muffler on fluid pipe and instralling method thereof
CN2871782Y (en) * 2005-04-14 2007-02-21 孙双全 Dustproofing and noise-lowering aerating window
CN1945142A (en) * 2006-05-23 2007-04-11 郑文涛 Pneumatic air inlet and outlet device
CN200982305Y (en) * 2006-12-07 2007-11-28 岳国胜 Fan
CN201059358Y (en) * 2007-07-19 2008-05-14 上海开纯洁净室技术工程有限公司 Pressure differential type gas sealing valve
CN201795573U (en) * 2009-08-12 2011-04-13 蒋绍中 Natural ventilator for houses
WO2014135960A1 (en) * 2013-03-07 2014-09-12 Zehnder Group International Ag Active flow transfer arrangement
CN205980153U (en) * 2016-08-24 2017-02-22 吉林省韦伯通风设备有限公司 Window type ventilator

Also Published As

Publication number Publication date
CN108344096A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
CN108344096B (en) Building ventilation structure
US11204183B2 (en) Ventilator with dual flow passages
CN111411686B (en) Energy-conserving ventilation structure for architectural design
CN103175279A (en) Curtain wall forced ventilator
CN108286769B (en) Indoor sound insulation ventilation unit
CN108332338B (en) Indoor partition type noise reduction and ventilation method for building
CN204327535U (en) The ventilation fan that a kind of intake grill can be closed automatically
CN201723467U (en) Negative-pressure fan with good dust-exhausting property
CN113720003B (en) Green building with wisdom temperature control system
CN216114506U (en) Building energy-saving environment-friendly ventilator
CN206093001U (en) Blast gate that hundred lobate shaped formulas were easily adjusted
KR20120001882U (en) Device for controlling ventilation direction
KR200374308Y1 (en) a Windows and Doors have the Faculty of Automatic Ventilation
CN212132820U (en) Regulating valve for heating ventilation air conditioner
CN113738681A (en) Electric roller shutter window for shading and sealing heat preservation of fan and using method of electric roller shutter window
CN203066802U (en) Indoor large-opening louvered ventilation device used for building double-layer curtain wall
CN208184605U (en) It is a kind of to take a breath, filter integral type shutter fan
CN220319432U (en) Wall-mounted exhaust fan with electric shutter
WO2020246912A1 (en) Supply and exhaust ventilation apparatus
CN204830316U (en) Ventilator
CN202419843U (en) Curtain wall forced ventilator
KR102370391B1 (en) Window type ventilation system with improved airtightness and watertightness
CN220103324U (en) Ventilator with air door switch
CN213273143U (en) Air conditioner air door outer baffle device compatible with multiple models
CN218544815U (en) Ventilation air conditioner mounting frame convenient to adjust ventilation angle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant