CN108336062A - 一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法 - Google Patents

一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法 Download PDF

Info

Publication number
CN108336062A
CN108336062A CN201810086772.XA CN201810086772A CN108336062A CN 108336062 A CN108336062 A CN 108336062A CN 201810086772 A CN201810086772 A CN 201810086772A CN 108336062 A CN108336062 A CN 108336062A
Authority
CN
China
Prior art keywords
entropy alloy
coating
alcrtatizrmo
coatings
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810086772.XA
Other languages
English (en)
Other versions
CN108336062B (zh
Inventor
李荣斌
蒋春霞
乔帮威
张静
尚海龙
张如林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201810086772.XA priority Critical patent/CN108336062B/zh
Publication of CN108336062A publication Critical patent/CN108336062A/zh
Application granted granted Critical
Publication of CN108336062B publication Critical patent/CN108336062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明是半导体集成电路技术领域,尤其涉及到一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法。一种Cu互连集成电路高熵合金扩散阻挡层,自下而上依次包括Si基体层、高熵合金中间涂层和Cu膜,所述高熵合金中间涂层自下而上依次包括第三涂层、第二涂层以及第一涂层,所述第一涂层为AlCrTaTiZrMo高熵合金涂层,所述第二涂层为纯Ti涂层,所述第三涂层为AlCrTaTiZrMoNx高熵合金涂层。本发明有利于提高原子的堆积密度,减少空位等缺陷的产生,减少了原子的扩散通道,提高了高熵合金涂层的扩散阻挡性能和热稳定性。

Description

一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法
技术领域
本发明是半导体集成电路技术领域,尤其涉及到一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法。
背景技术
随着集成电路集成度的提高以及特征尺寸的不断下降,Cu由于具有低电阻率和高抗电迁移能力可作为金属互连材料,取代传统Al互连材料,从而减少RC延迟问题。但Cu与介质层的粘附性差,且Cu易扩散进入Si与SiO2介质层中,生成铜硅化合物,成为深能级杂质,从而影响器件的可靠性、稳定性与传输效率等。因此,为阻止Cu与Si之间发生扩散,拥有高热稳定性、电阻率低、与介质层粘附性好的扩散阻挡层迫切需要用于Cu互连材料。
一些过渡组难熔金属如:Ti、Ta、Zr、Mo以及氮化物TiN、TaN等,因其具有很高的熔点且与Cu之间存在化学惰性,常常被用来当作阻挡层。然而由于这些难熔金属具有多晶结构,多晶结构为Cu原子提供快速的扩散通道—晶界,Cu原子与Si原子能沿着晶界进行相互扩散。当集成电路技术节点发展到22nm时,一些三元甚至四元组分的涂层,以及叠层结构被研究以减少Cu互连延迟问题,比如Ta-Si-N、Ti-Si-N、Ru-Ta-N等,均已取得很好的阻挡效果,一些叠层结构Mo/W-N、Ru/TaN、TiN/Al/TiN等使多层结构晶界或界面失谐,晶界延长,使Cu原子扩散的距离增加,失效温度比前者提高近100℃。虽然已有的过渡族难熔金属、三元氮化物涂层以及叠层结构取得了良好的效果,然而,随着集成电路尺寸的进一步缩小,要求阻挡层尽可能减薄,同时又可保持较好的阻挡性能,较低的电阻率及高的热稳定性。
申请号为201410186108.4公开了一种双层高熵合金扩散阻挡层的制备方法以提高扩散层的整体热稳定性。
发明内容
本发明的目的是提供一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法。本发明目的在于提供Cu互连集成电路高熵合金扩散阻挡层,具有优异的热稳定性和扩散阻挡性能,较低的电阻率,且与基体结合强度高。
本发明为解决其技术问题所采用的技术方案是:
一种Cu互连集成电路高熵合金扩散阻挡层,自下而上依次包括Si基体层、高熵合金中间涂层和Cu膜,所述高熵合金中间涂层自下而上依次包括第三涂层、第二涂层以及第一涂层,所述第一涂层为AlCrTaTiZrMo高熵合金涂层,所述第二涂层为纯Ti涂层,所述第三涂层为AlCrTaTiZrMoNx高熵合金涂层。
所述的AlCrTaTiZrMo高熵合金涂层的厚度为2~4nm,所述纯Ti涂层的厚度为2~4nm,所述的AlCrTaTiZrMoNx高熵合金涂层为2~4nm,所述的Cu膜的后湖为200~250nm。
一种制备Cu互连集成电路高熵合金扩散阻挡层的方法包括如下步骤:
S1:将Al、Cr、Ta、Ti、Zr、Mo以等摩尔比配置,采用热等静压成型工艺制备AlCrTaTiZrMo高熵合金靶材;
S2:将纯Ti通过热等静压成型工艺制备Ti靶材;
S3:将S1制备的AlCrTaTiZrMo高熵合金靶材在Ar和N2气氛下通过直流磁控溅射工艺溅镀于所述Si基体层上,形成AlCrTaTiZrMoNx高熵合金涂层;
S4:将S2制备的Ti靶材在Ar气氛下通过直流磁控溅射溅镀于S3形成的AlCrTaTiZrMoNx高熵合金涂层上方形成纯Ti涂层;
S5:将S1制备的AlCrTaTiZrMo高熵合金靶材在Ar气氛下通过直流磁控溅射工艺溅镀于纯Ti涂层获得AlCrTaTiZrMo高熵合金涂层;
S6:在不打破真空状态下,将S5制备的AlCrTaTiZrMo高熵合金涂层上方通过直流磁控溅射溅镀一层Cu膜获得Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu体系结构;
S7:将S6获得的Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu体系结构在温度为400℃~900℃下进行真空退火,保温时间为1-2h。
进一步的,所述S3中Ar的流量为20~25sccm、N2的流量为5~8sccm,所述x为N2流量占总流量的比重;所述直流磁控溅射工艺为溅射电流为1~1.2A,基板偏压为-90~-110V,靶基间距为100~120mm,溅射时间为2~4min。
进一步的,所述S4中所述直流磁控溅射工艺为溅射电流为0.8~1A,基板偏压为-40~-60V,靶基间距为100~120mm,溅镀时间为1~2min。
进一步的,所述的S5中所述直流磁控溅射工艺为溅射电流为1~1.2A,基板偏压为-90~-110V,靶基间距为100~120mm,溅射时间为3~5min。
进一步的,所述的S1与S2中热等静压成型工艺为热压的温度为1000~1100℃,压力为150~200Mpa,热压时间为10~12h。
本发明带来的有益效果:
(1)AlCrTaTiZrMo高熵合金是由原子半径不同的多主元素配制而成,有利于提高原子的堆积密度,减少空位等缺陷的产生,减少了原子的扩散通道,提高了高熵合金涂层的扩散阻挡性能和热稳定性。
(2)本发明所得的Cu互连集成电路高熵合金扩散阻挡层很薄,成分均匀,内部结构致密,表面粗糙度小且电阻率低,与基体结合牢固,三层膜的叠加有利于延长扩散的路径,比两层高熵合金涂层的扩散路径要长,提高阻挡层的阻挡性能;中间Ti膜的结构是多晶体,AlCrTaTiZrMo及其氮化物是非晶层,晶体层与非晶层的配合,改变了原子的扩散方式,进而增加了原子的扩散难度。
附图说明
图1为对比例1中Cu互连集成电路高熵合金两层扩散阻挡层的结构示意图;
图2为实施例1中Cu互连集成电路高熵合金三层扩散阻挡层的结构示意图;
图3为实施例1中3层阻挡层退火前后的表面形貌图,(a)沉积态,(b)700℃,(c)800℃,(d)900℃
图4为实施例1中3层阻挡层900℃退火后的黑色虚线框内的EDS图谱;
图5为实施例1中3层阻挡层退火前后的表面三维AFM图片,(a)沉积态,(b)700℃,(c)800℃,(d)900℃
图6为实施例1中3层阻挡层退火前后的XRD衍射图谱;
其中,1—Si基体,2—AlCrTaTiZrMoN0.2高熵合金涂层,3—Cu膜,4—AlCrTaTiZrMo高熵合金涂层,5—Ti膜
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合图示与具体实施例,进一步阐述本发明。
对比例1
将Al、Cr、Ta、Ti、Zr、Mo以等摩尔比配置,混合均匀,通过热等静压成型工艺制得AlCrTaTiZrMo高熵合金靶材;在溅镀高熵合金中间涂层之前,采用丙酮、酒精、去离子水依次对Si基体层进行超声波清洗,除去表面氧化物或杂质;再对上述Si基体层预溅射15min,以清除基体表面残留的杂质,增加涂层与基体的结合强度;然后,以上述AlCrTaTiZrMo高熵合金靶材,采用直流磁控溅射工艺溅镀两层涂层,构成叠层扩散阻挡层。其中,第一层溅射时的工艺参数为:Ar的流量为24sccm、N2的流量为6sccm的气氛下,即x=0.2,溅射电流为1A,基板偏压为-100V,靶基间距为100mm,溅射时间为3min;第二层的溅射工艺参数为:Ar的流量为30sccm,溅射电流为1A,基板偏压为-100V,靶基间距为100mm,溅射时间为3min;然后在不打破真空状态的条件下,在此基础上再溅镀一层200nm厚的Cu膜,Cu膜的溅射工艺参数为:Ar的流量为20sccm,溅射电流为0.8A,基板偏压为-60V,靶基间距为100mm,溅射时间为30min。构成Si/AlCrTaTiZrMoNx/AlCrTaTiZrMo/Cu扩散阻挡复合结构体系。在本实例中,AlCrTaTiZrMoNx高熵合金涂层的厚度为3nm,AlCrTaTiZrMo高熵合金涂层的厚度为3nm,Cu膜的厚度为200nm。
最后,把所制得的复合结构样品放入真空退火炉中,在温度为400℃~900℃下退火,保温时间为1h,如附图1所示。
实施例1
首先,将Al、Cr、Ta、Ti、Zr、Mo以等摩尔比配置,混合均匀,通过热等静压成型工艺制得AlCrTaTiZrMo高熵合金靶材;在溅镀高熵合金中间涂层之前,采用丙酮、酒精、去离子水依次对Si基体层进行超声波清洗,除去表面氧化物或杂质;再对上述Si基体层预溅射15min,以清除基体表面残留的杂质,增加涂层与基体的结合强度,然后,以上述AlCrTaTiZrMo高熵合金靶材,采用直流磁控溅射工艺溅镀三层涂层,构成叠层扩散阻挡层,其中,第一层溅射时的工艺参数为:Ar的流量为24sccm、N2的流量为6sccm的气氛下,即x=0.2,溅射电流为1A,基板偏压为-100V,靶基间距为100mm,溅射时间为2min;然后,在此基础上再溅镀一层纯Ti层,溅射电流为0.8A,基板偏压为-50V,靶基间距为100mm,溅镀时间为1min;通过溅镀工艺参数:Ar的流量为30sccm,溅射电流为1A,基板偏压为-100V,靶基间距为100mm,溅射时间为3min,在Ti层上再溅镀一层AlCrTaTiZrMo高熵合金涂层;在不打破真空状态的情况下,在上述扩散阻挡体系结构上再溅镀一层Cu膜,Cu膜的溅射工艺参数为:Ar的流量为20sccm,溅射电流为0.8A,基板偏压为-60V,靶基间距为100mm,溅射时间为30min,所获得的复合结构为Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu复合结构。在本实例中,AlCrTaTiZrMo高熵合金涂层的厚度为5nm2nm,AlCrTaTiZrMoNx高熵合金涂层的厚度为2nm,Ti膜的厚度为2nm,Cu膜的厚度为200nm。
最后,把所制得的复合结构样品放入真空退火炉中,在温度为400℃~900℃下退火,保温时间为1h,如附图2-6所示。
图3和图5都说明随着退火温度的增加,表面Cu膜先发生长大,表面变得更加致密;当退火温度大于800℃,由于界面的内应力以及Cu原子的扩散,导致表面Cu膜发生凝聚和剥落,从图6XRD衍射图谱可以发现,900℃时出现了Cu3Si相,以及图4孤岛状Cu膜的化学成分分析可知,孤岛状化学成分主要为Cu和Si,有以上结果可知,900℃3层扩散阻挡层失效,Cu原子与Si原子发生了相互扩散,效果明显优于对比例1。
综上所述,本发明以AlCrTaTiZrMo高熵合金为靶材和Ti金属为靶材,采用直流磁控溅射的方法,在Si基体层上溅镀涂层得到Si/AlCrTaTiZrMoNx/AlCrTaTiZrMo/Cu和Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu复合结构的高熵合金扩散阻挡层。所得的Cu互连集成电路高熵合金扩散阻挡层在400℃~900℃下高温退火1h后仍能保持优异的热稳定性和扩散阻挡性能,在Cu互连集成电路上有广泛的应用前景。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (7)

1.一种Cu互连集成电路高熵合金扩散阻挡层,其特征在于,自下而上依次包括Si基体层、高熵合金中间涂层和Cu膜,所述高熵合金中间涂层自下而上依次包括第三涂层、第二涂层以及第一涂层,所述第一涂层为AlCrTaTiZrMo高熵合金涂层,所述第二涂层为纯Ti涂层,所述第三涂层为AlCrTaTiZrMoNx高熵合金涂层。
2.根据权利要求1所述的Cu互连集成电路高熵合金扩散阻挡层,其特征在于:所述的AlCrTaTiZrMo高熵合金涂层的厚度为2~4nm,所述纯Ti涂层的厚度为2~4nm,所述的AlCrTaTiZrMoNx高熵合金涂层为2~4nm,所述的Cu膜的厚度为200~250nm。
3.一种制备权利要求1所述的Cu互连集成电路高熵合金扩散阻挡层的方法包括如下步骤:
S1:将Al、Cr、Ta、Ti、Zr、Mo以等摩尔比配置,采用热等静压成型工艺制备AlCrTaTiZrMo高熵合金靶材;
S2:将纯Ti通过热等静压成型工艺制备Ti靶材;
S3:将S1制备的AlCrTaTiZrMo高熵合金靶材在Ar和N2气氛下通过直流磁控溅射工艺溅镀于所述Si基体层上,形成AlCrTaTiZrMoNx高熵合金涂层;
S4:将S2制备的Ti靶材在Ar气氛下通过直流磁控溅射溅镀于S3形成的AlCrTaTiZrMoNx高熵合金涂层上方形成纯Ti涂层;
S5:将S1制备的AlCrTaTiZrMo高熵合金靶材在Ar气氛下通过直流磁控溅射工艺溅镀于纯Ti涂层获得AlCrTaTiZrMo高熵合金涂层;
S6:在不打破真空状态下,将S5制备的AlCrTaTiZrMo高熵合金涂层上方通过直流磁控溅射溅镀一层Cu膜获得Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu体系结构;
S7:将S6获得的Si/AlCrTaTiZrMoNx/Ti/AlCrTaTiZrMo/Cu体系结构在温度为400℃~900℃下进行真空退火,保温时间为1-2h。
4.根据权利要求2所述的方法,其特征在于:所述S3中Ar的流量为20~25sccm、N2的流量为5~8sccm,所述x为N2流量占总流量的比重;所述直流磁控溅射工艺为溅射电流为1~1.2A,基板偏压为-90~-110V,靶基间距为100~120mm,溅射时间为2~4min。
5.根据权利要求2所述的方法,其特征在于:所述S4中所述直流磁控溅射工艺为溅射电流为0.8~1A,基板偏压为-40~-60V,靶基间距为100~120mm,溅镀时间为1~2min。
6.根据权利要求2所述的方法,其特征在于:所述的S5中所述直流磁控溅射工艺为Ar的流量为28~30sccm、溅射电流为1~1.2A,基板偏压为-90~-110V,靶基间距为100~120mm,溅射时间为3~5min。
7.根据权利要求2所述的方法,其特征在于:所述的S1与S2中热等静压成型工艺为热压的温度为1000~1100℃,压力为150~200Mpa,热压时间为10~12h。
CN201810086772.XA 2018-01-30 2018-01-30 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法 Active CN108336062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810086772.XA CN108336062B (zh) 2018-01-30 2018-01-30 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810086772.XA CN108336062B (zh) 2018-01-30 2018-01-30 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法

Publications (2)

Publication Number Publication Date
CN108336062A true CN108336062A (zh) 2018-07-27
CN108336062B CN108336062B (zh) 2020-04-14

Family

ID=62926106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810086772.XA Active CN108336062B (zh) 2018-01-30 2018-01-30 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法

Country Status (1)

Country Link
CN (1) CN108336062B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889869A (zh) * 2020-07-21 2020-11-06 有研亿金新材料有限公司 一种高纯稀土及合金靶材的焊接方法
CN112064024A (zh) * 2020-09-23 2020-12-11 广东省科学院新材料研究所 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
US20210388481A1 (en) * 2018-10-26 2021-12-16 Oerlikon Surface Solutions Ag, Pfäffikon PVD Coatings with a HEA Ceramic Matrix with Controlled Precipitate Structure
CN114783980A (zh) * 2022-06-21 2022-07-22 亚芯半导体材料(江苏)有限公司 Cu互连集成电路用多层合金扩散阻挡层及其制备方法
CN114875371A (zh) * 2022-04-11 2022-08-09 南京工业大学 一种纳米结构高熵超合金及其制备方法
CN115939035A (zh) * 2023-02-06 2023-04-07 广州粤芯半导体技术有限公司 扩散阻挡层及其制备方法、集成电路Cu互连结构
US11978702B2 (en) 2021-04-01 2024-05-07 Sien (qingdao) Integrated Circuits Co., Ltd. Simultaneous self-forming hea barrier and Cu seeding layers for Cu interconnect

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173716A (zh) * 2013-04-15 2013-06-26 上海电机学院 工模具的高熵合金涂层制备工艺
CN104789847A (zh) * 2015-04-22 2015-07-22 上海电机学院 高熵合金、高熵合金涂层及其在轴承滚动面的镀制方法
US20170218480A1 (en) * 2016-01-29 2017-08-03 Seoul National University R&Db Foundation High-entropy alloy foam and manufacturing method for the foam
CN107523740A (zh) * 2017-09-20 2017-12-29 湘潭大学 CuCrFeNiTi高熵合金材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173716A (zh) * 2013-04-15 2013-06-26 上海电机学院 工模具的高熵合金涂层制备工艺
CN104789847A (zh) * 2015-04-22 2015-07-22 上海电机学院 高熵合金、高熵合金涂层及其在轴承滚动面的镀制方法
US20170218480A1 (en) * 2016-01-29 2017-08-03 Seoul National University R&Db Foundation High-entropy alloy foam and manufacturing method for the foam
CN107523740A (zh) * 2017-09-20 2017-12-29 湘潭大学 CuCrFeNiTi高熵合金材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张立东: "AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备方法", 《金属学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388481A1 (en) * 2018-10-26 2021-12-16 Oerlikon Surface Solutions Ag, Pfäffikon PVD Coatings with a HEA Ceramic Matrix with Controlled Precipitate Structure
US11649541B2 (en) * 2018-10-26 2023-05-16 Oerlikon Surface Solutions Ag, Pfäffikon PVD coatings with a HEA ceramic matrix with controlled precipitate structure
CN111889869A (zh) * 2020-07-21 2020-11-06 有研亿金新材料有限公司 一种高纯稀土及合金靶材的焊接方法
CN111889869B (zh) * 2020-07-21 2022-02-15 有研亿金新材料有限公司 一种高纯稀土及合金靶材的焊接方法
CN112064024A (zh) * 2020-09-23 2020-12-11 广东省科学院新材料研究所 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
CN112064024B (zh) * 2020-09-23 2021-08-31 广东省科学院新材料研究所 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
US11978702B2 (en) 2021-04-01 2024-05-07 Sien (qingdao) Integrated Circuits Co., Ltd. Simultaneous self-forming hea barrier and Cu seeding layers for Cu interconnect
CN114875371A (zh) * 2022-04-11 2022-08-09 南京工业大学 一种纳米结构高熵超合金及其制备方法
CN114875371B (zh) * 2022-04-11 2023-09-26 南京工业大学 一种纳米结构高熵超合金及其制备方法
CN114783980A (zh) * 2022-06-21 2022-07-22 亚芯半导体材料(江苏)有限公司 Cu互连集成电路用多层合金扩散阻挡层及其制备方法
CN115939035A (zh) * 2023-02-06 2023-04-07 广州粤芯半导体技术有限公司 扩散阻挡层及其制备方法、集成电路Cu互连结构

Also Published As

Publication number Publication date
CN108336062B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
CN108336062A (zh) 一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法
JP6511424B2 (ja) 積層体及び、その製造方法
Li et al. Thermal stability of AlCrTaTiZrMo-nitride high entropy film as a diffusion barrier for Cu metallization
WO1995016797A1 (en) Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film
JP2010502841A (ja) 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法
TW201042065A (en) Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
Chang et al. Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers
CN103966566A (zh) 双层高熵合金扩散阻挡层的制备方法
TW201006938A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
CN101748373B (zh) 高热稳定性和低电阻率C掺杂Cu薄膜的制备方法
Li et al. Applications of high diffusion resistance multi‐component AlCrTaTiZrRu/(AlCrTaTiZrRu) N0. 7 film in Cu interconnects
Chang et al. (AlCrTaTiZr) N/(AlCrTaTiZr) N0. 7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900° C
Tsai et al. Characteristics of a 10 nm-thick (TiVCr) N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects
CN102569042A (zh) 超薄、高热稳定性ZrGeN/CuGe复合梯度阻挡层制备工艺
CN114783980B (zh) Cu互连集成电路用多层合金扩散阻挡层及其制备方法
Chang et al. High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization
CN100592508C (zh) 用于铜互连的Ta-Al-N扩散阻挡层薄膜及其制备工艺
WO2001081650A1 (fr) Cible de pulverisation, film barriere et composant electronique
TWI515321B (zh) 多元合金濺鍍靶材、其製法及多元合金層
CN102437145A (zh) 一种自形成梯度Zr/ZrN双层扩散阻挡层及其制备方法
Lingwal et al. Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices
CN206022118U (zh) 薄膜电容器
CN100521188C (zh) 一种集成电路或半导体器件铜金属化阻挡层结构及其制备方法
CN206697449U (zh) 一种显示用电子器件高导电联耦合电极
TW201529862A (zh) 銦膜、供形成銦膜之銦濺鍍靶及其製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant