CN108315771A - 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法 - Google Patents

一种亚纳米尺寸铜粒子电催化剂的电化学制备方法 Download PDF

Info

Publication number
CN108315771A
CN108315771A CN201810141113.1A CN201810141113A CN108315771A CN 108315771 A CN108315771 A CN 108315771A CN 201810141113 A CN201810141113 A CN 201810141113A CN 108315771 A CN108315771 A CN 108315771A
Authority
CN
China
Prior art keywords
sub
foil
graphite
copper particle
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810141113.1A
Other languages
English (en)
Other versions
CN108315771B (zh
Inventor
徐劲松
陈钧
李�瑞
钟航
陶然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materials of CAEP
Original Assignee
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materials of CAEP filed Critical Institute of Materials of CAEP
Priority to CN201810141113.1A priority Critical patent/CN108315771B/zh
Publication of CN108315771A publication Critical patent/CN108315771A/zh
Application granted granted Critical
Publication of CN108315771B publication Critical patent/CN108315771B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/33
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

本发明公开了一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,该方法包括将石墨箔片置于硫酸和硝酸体积比为3:1的混合溶剂中,在室温下保存4‑12h后取出并置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;将氧化石墨箔置于水热釜中,并在120‑180℃条件下加入硫脲溶液,水热反应4‑12h,取出置于去离子水中透析出残留的小分子,得到掺杂有氮硫的石墨箔;将掺杂有氮硫的石墨箔作为工作电极,铂片作为对电极,银/氯化银作为参比电极,置于电解质溶液中,并接入恒电位进行相应时间的沉积,得到不同尺寸的亚纳米铜粒子。通过上述方案,本发明达到了可获得不同尺寸的亚纳米粒子的目的,具有很高的实用价值和推广价值。

Description

一种亚纳米尺寸铜粒子电催化剂的电化学制备方法
技术领域
本发明涉及纳米催化剂制备技术领域,尤其涉及一种亚纳米尺寸铜粒子电催化剂的电化学制备方法。
背景技术
铜纳米粒子在有机反应、光催化反应、电催化反应和气相反应等反应中取得了广泛的应用。由于铜催化剂的催化活性和稳定性与铜粒子尺寸形貌有关,制备超小铜纳米粒子具有重要的意义。常用的制备超小金属纳米粒子的方法主要有湿法化学方法、反胶束法、溅射法、原子层沉积等方法,然而这些方法要求精确的控制,存在操作复杂或价格昂贵的问题,电沉积技术具备价格低廉、常温常压操作、产物纯度高、可控性强和环境友好的特点,广泛应用于纳米结构或纳米粒子的制备中,并且适合直接在电极上制备纳米粒子,并进一步用于电催化反应;然而,电沉积技术通常适合制备较大纳米尺寸的粒子,如几十到几百纳米,而难以制备1纳米左右的亚纳米尺寸粒子或更小的原子簇,这样则限制了电沉积技术在催化领域的应用。
发明内容
本发明的目的在于提供一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,主要解决现有技术中存在的电沉积技术不能制备亚纳米尺寸大小粒子的问题。
为了实现上述目的,本发明采用的技术方案如下:
一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,包括如下步骤:
(S1)将所需尺寸的石墨箔置于硫酸和硝酸体积比为3:1的混合溶剂中,在室温下保持4-12h后取出,并置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;
(S2)将氧化石墨箔置于水热釜中,加入硫脲溶液,并在120-180℃条件下水热反应4-12h,取出置于去离子水中透析出残留的小分子,得到氮硫掺杂的石墨箔;
(S3)将氮硫掺杂的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,置于可溶性二价铜盐和浓度为0.05-1mol/L硫酸的电解质混合溶液中,并在工作电位为0.1-0.2V的状态下进行恒电位沉积,沉积时间为5-60s;
(S4)根据不同的工作电位和沉积时间,得到0.5-2nm大小的亚纳米铜粒子。
进一步地,所述步骤(S2)中硫脲溶液的浓度为0.05-0.5mol/L。
进一步地,所述步骤(S3)中二价铜盐溶液为硫酸铜或氯化铜。
具体地,所述步骤(S3)中二价铜盐溶液为浓度1-10mmol/L。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过将石墨箔在硫酸和硝酸体积比为3:1的溶液中反应得到氧化石墨箔,并将氧化石墨箔置于热水中且加入硫脲溶液反应数小时,得到氮硫掺杂的石墨箔,,并在工作电位为0.1-0.2V的状态下进行一定时间的恒电位沉积,根据工作电位和沉积时间的不同,可得到0.5-2nm大小的亚纳米铜粒子,解决了现有技术中存在的不能制备亚纳米粒子的问题,有利于电沉积技术在催化领域的应用。
(2)本发明通过将石墨箔置于硫酸和硝酸体积比为3:1的混合溶液中得到膨胀疏松多孔的氧化石墨箔,使得在水热釜中氧化石墨箔与硫脲溶液反应更为充分,得到氮硫分布均匀的掺杂的石墨箔。
(3)本发明的反应条件是常温常压,不需要特殊的反应设备,相对于现有技术,本发明的反应条件低且易于控制电化学沉积,操作简单,并且反应物的价格相对便宜,成本低廉可实现大批量生产。
附图说明
图1为本发明的流程结构示意图。
图2为本发明制备的氮硫掺杂石墨箔/亚纳米尺寸铜粒子复合结构的扫描电子显微镜照片。
图3为本发明制备的亚纳米尺寸铜粒子透射电子显微镜照片。
图4为本发明制备的氮硫掺杂石墨箔/亚纳米尺寸铜粒子复合结构的XPS总谱及各元素谱图。
图5为本发明制备的亚纳米尺寸铜粒子、氮硫掺杂石墨箔基底以及铜片电催化二氧化碳还原反应的线性扫描伏安曲线。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
如图1至图5所示,一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,包括如下步骤:
(S1)将所需尺寸的石墨箔置于硫酸和硝酸体积比为3:1的混合溶剂中,在室温下保持4-12h后取出,并置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;
(S2)将氧化石墨箔置于水热釜中,加入浓度为0.05-0.5mol/L硫脲溶液,并在120-180℃条件下水热反应4-12h,取出置于去离子水中透析出残留的小分子,得到氮硫掺杂的石墨箔;
(S3)将氮硫掺杂的石墨箔作为工作电极,铂片作为对电极,银/氯化银作为参比电极,置于电解质溶液为浓度1-10mmol/L硫酸铜或氯化铜的可溶性二价铜盐与浓度为0.05-1mol/L硫酸的电解质混合溶液中,并在工作电位为0.1-0.2V的状态下进行恒电位沉积,沉积时间为5-60s;
(S4)根据不同的工作电位和沉积时间,得到0.5-2nm大小的亚纳米铜粒子。
具体实施案例如下:
实施例1
将石墨箔剪切成1×2cm2大小,置于硫酸和硝酸体积比为3:1的混酸体系中,温度保持在室温,12h后取出,置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;将氧化石墨箔置于水热釜中,加入0.2mol/L硫脲溶液,在180℃条件下水热反应12h,取出后,置于去离子水中透析出去残留小分子,得到氮硫掺杂的石墨箔;将掺杂氮硫的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,电解质溶液为0.1mol/L硫酸和5mmol/L硫酸铜的混合溶液,工作电位为0.2V并进行恒电位沉积,沉积时间30s,即得到0.5-2nm大小的亚纳米尺寸铜粒子。
并且由图2可知,氮硫掺杂石墨箔结构在电沉积铜粒子后没有发生变化,仍保持石墨表面的褶皱结构,且表面没有大尺寸金属颗粒;由图3可知,亚纳米尺寸铜粒子均匀分布在氮硫杂石墨箔表面,尺寸主要分布于0.5-2nm之间,且主要为1nm大小;由图4可知,该复合结构含有C、N、O、S和Cu元素,亚纳米尺寸铜粒子中铜为0价,未被氧化;由图5可知,氮硫掺杂石墨箔基底不具备二氧化碳电化学还原反应催化活性;0.5-2nm大小亚纳米尺寸铜粒子催化活性明显优于铜片。
实施例2
将石墨箔剪切成5×5cm2大小,置于硫酸和硝酸体积比为3:1的混酸体系中,温度保持在室温,12h后取出,置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;将氧化石墨箔置于水热釜中,加入0.5mol/L硫脲溶液,在180℃条件下水热反应12h,取出后,置于去离子水中透析出去残留小分子,得到氮硫掺杂的石墨箔;将掺杂氮硫的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,电解质溶液含0.5mol/L硫酸和10mmol/L硫酸铜,工作电位为0.15V并进行恒电位沉积,沉积时间20s,即得到0.5-2nm大小的亚纳米尺寸铜粒子。
实施例3
将石墨箔剪切成4×2cm2大小,置于硫酸和硝酸体积比为3:1的混酸体系中,温度保持在室温,6h后取出,置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;将氧化石墨箔置于水热釜中,加入0.4mol/L硫脲溶液,在120℃条件下水热反应6h,取出后,置于去离子水中透析出去残留小分子,得到氮硫掺杂的石墨箔;将掺杂氮硫的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,电解质溶液含1mol/L硫酸和5mmol/L氯化铜,工作电位为0.2V并进行恒电位沉积,沉积时间60s,即得到0.5-2nm大小的亚纳米尺寸铜粒子。
实施例4
将石墨箔剪切成1×0.5cm2大小,置于硫酸和硝酸体积比为3:1的混酸体系中,温度保持在室温,4h后取出,置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;将氧化石墨箔置于水热釜中,加入0.1mol/L硫脲溶液,在150℃条件下水热反应12h,取出后,置于去离子水中透析出去残留小分子,得到氮硫掺杂的石墨箔;将掺杂氮硫的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,电解质溶液含0.1mol/L硫酸和1mmol/L硫酸铜,工作电位为0.2V并进行恒电位沉积,沉积时间60s,即得到0.5-2nm大小的亚纳米尺寸铜粒子。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而做出的变化,均应属于本发明的保护范围之内。

Claims (4)

1.一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,其特征在于,包括如下步骤:
(S1)将所需尺寸的石墨箔置于硫酸和硝酸体积比为3:1的混合溶剂中,在室温下保持4-12h后取出,并置于去离子水中透析去除残留的酸,得到膨胀的氧化石墨箔;
(S2)将氧化石墨箔置于水热釜中,加入硫脲溶液,并在120-180℃条件下水热反应4-12h,取出置于去离子水中透析出残留的小分子,得到氮硫掺杂的石墨箔;
(S3)将氮硫掺杂的石墨箔作为工作电极,铂片作为对电极,银/氯化银电极作为参比电极,置于可溶性二价铜盐和浓度为0.05-1mol/L硫酸的电解质混合溶液中,并在工作电位为0.1-0.2V的状态下进行恒电位沉积,沉积时间为5-60s;
(S4)根据不同的工作电位和沉积时间,得到0.5-2nm大小的亚纳米铜粒子。
2.根据权利要求1所述的一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,其特征在于,所述步骤(S2)中硫脲溶液的浓度为0.05-0.5mol/L。
3.根据权利要求2所述的一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,其特征在于,所述步骤(S3)中二价铜盐溶液为硫酸铜或氯化铜。
4.根据权利要求3所述的一种亚纳米尺寸铜粒子电催化剂的电化学制备方法,其特征在于,所述步骤(S3)中二价铜盐溶液为浓度1-10mmol/L。
CN201810141113.1A 2018-02-11 2018-02-11 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法 Expired - Fee Related CN108315771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810141113.1A CN108315771B (zh) 2018-02-11 2018-02-11 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810141113.1A CN108315771B (zh) 2018-02-11 2018-02-11 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法

Publications (2)

Publication Number Publication Date
CN108315771A true CN108315771A (zh) 2018-07-24
CN108315771B CN108315771B (zh) 2019-09-13

Family

ID=62903963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810141113.1A Expired - Fee Related CN108315771B (zh) 2018-02-11 2018-02-11 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法

Country Status (1)

Country Link
CN (1) CN108315771B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126793A (zh) * 2018-09-10 2019-01-04 中国工程物理研究院材料研究所 一种单原子铜电催化剂的电化学制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686645A (zh) * 2005-04-26 2005-10-26 黄德欢 电沉积制备纳米铜粉的方法
CN102371358A (zh) * 2011-11-18 2012-03-14 复旦大学 一种可再分散的纳米铜粒子的水相制备方法
CN102978667A (zh) * 2012-10-25 2013-03-20 烟台大学 一种电沉积制备纳米铜粉的方法
CN103046088A (zh) * 2012-12-20 2013-04-17 华南理工大学 一种微纳米复合多孔铜表面结构及其制备方法与装置
CN103785856A (zh) * 2014-02-26 2014-05-14 北京科技大学 一种铜纳米颗粒负载碳球复合材料及其制备方法
CN105568328A (zh) * 2016-01-05 2016-05-11 大连理工大学 一种纳米铜沉积膜及其制备方法和应用
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用
CN107460503A (zh) * 2017-09-14 2017-12-12 西南科技大学 从废旧印刷线路板中回收微纳米铜粉的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686645A (zh) * 2005-04-26 2005-10-26 黄德欢 电沉积制备纳米铜粉的方法
CN102371358A (zh) * 2011-11-18 2012-03-14 复旦大学 一种可再分散的纳米铜粒子的水相制备方法
CN102978667A (zh) * 2012-10-25 2013-03-20 烟台大学 一种电沉积制备纳米铜粉的方法
CN103046088A (zh) * 2012-12-20 2013-04-17 华南理工大学 一种微纳米复合多孔铜表面结构及其制备方法与装置
CN103785856A (zh) * 2014-02-26 2014-05-14 北京科技大学 一种铜纳米颗粒负载碳球复合材料及其制备方法
CN105568328A (zh) * 2016-01-05 2016-05-11 大连理工大学 一种纳米铜沉积膜及其制备方法和应用
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用
CN107460503A (zh) * 2017-09-14 2017-12-12 西南科技大学 从废旧印刷线路板中回收微纳米铜粉的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126793A (zh) * 2018-09-10 2019-01-04 中国工程物理研究院材料研究所 一种单原子铜电催化剂的电化学制备方法
CN109126793B (zh) * 2018-09-10 2020-10-16 中国工程物理研究院材料研究所 一种单原子铜电催化剂的电化学制备方法

Also Published As

Publication number Publication date
CN108315771B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
Zhang et al. Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts
Lu et al. Syntheses and energy storage applications of MxSy (M= Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors
Kumar NiCo 2 O 4 nano-/microstructures as high-performance biosensors: a review
Yuan et al. Regulating intrinsic electronic structures of transition-metal-based catalysts and the potential applications for electrocatalytic water splitting
Zhang et al. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates
Li et al. Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures
Yang et al. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide
Xu et al. 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting
Zhang et al. High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting
Xiong et al. Silicon nanowire array/Cu2O crystalline core–shell nanosystem for solar-driven photocatalytic water splitting
CN105797758B (zh) 一种石墨烯负载的MoO2-Mo2C的合成方法
CN106967997B (zh) 一种高效自支撑催化电极及其制备方法和应用
CN108660473A (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
Cao et al. Electrochemically controlled synthesis of ultrathin nickel hydroxide nanosheets for electrocatalytic oxygen evolution
Gao et al. Electrochemical synthesis of catalytic materials for energy catalysis
Wang et al. Newly found photoactivated Pt anchored on three-dimensional layered WS2/carbon cloth for highly efficient ethylene glycol electro-oxidation
Moon et al. Effect of bismuth sulfate coated on acidified CNT on performance of vanadium redox flow battery
Xu et al. BiOCl-based photocatalysts: Synthesis methods, structure, property, application, and perspective
CN106410245A (zh) 一种固体氧化物燃料电池阴极催化剂及催化阴极的制备方法
Niu et al. Incorporating Ag into Pd/Ni foam via cascade galvanic replacement to promote the methanol electro-oxidation reaction
CN110408953B (zh) 一种磷掺杂硫化钨@氧化钨多孔核壳纳米线柔性阵列电极及其制备方法
Tan et al. Retrospective insights into recent MXene-based catalysts for CO 2 electro/photoreduction: how far have we gone?
CN110760874B (zh) 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法
Sharma et al. Pt/C electrocatalyst synthesis from recycling of the spent PEMFC membrane electrode assembly: A closed loop circular economy
Sharma et al. Recovery of Pt and Ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of Pt by direct redeposition of the dissolved precursor on carbon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190913

Termination date: 20220211