CN108277258A - 一种硫酸盐还原菌(srb)的可视化定性检测方法 - Google Patents

一种硫酸盐还原菌(srb)的可视化定性检测方法 Download PDF

Info

Publication number
CN108277258A
CN108277258A CN201810281718.0A CN201810281718A CN108277258A CN 108277258 A CN108277258 A CN 108277258A CN 201810281718 A CN201810281718 A CN 201810281718A CN 108277258 A CN108277258 A CN 108277258A
Authority
CN
China
Prior art keywords
srb
reducing bacteria
sulfate
sulfate reducing
checking method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810281718.0A
Other languages
English (en)
Inventor
杨治庆
张盾
王毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201810281718.0A priority Critical patent/CN108277258A/zh
Publication of CN108277258A publication Critical patent/CN108277258A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明为一种硫酸盐还原菌(SRB)的可视化定性检测方法。以硫酸盐还原菌作为目标检测细菌,将吸附有硫酸镉的(CdSO4)琼脂糖水凝胶浸入到培养一段时间的SRB培养基中,即可实现SRB的定性检测。本发明的制备方法工艺简单、易于操控、成本低廉,在海洋中腐蚀微生物的快速检测等研究领域有潜在的应用价值。

Description

一种硫酸盐还原菌(SRB)的可视化定性检测方法
技术领域
本发明属于分析化学领域,具体涉及一种硫酸盐还原菌(SRB)的可视化定性检测方法。
背景技术
硫酸盐还原菌(SRB)是最重要的腐蚀微生物之一,它可以通过新陈代谢将硫酸根离子或亚硫酸根离子转化为硫离子并对海洋中的钢铁形成腐蚀[1]。SRB能够通过生物腐蚀引起严重的工业和环境问题,例如石油管道泄露。因此对环境中SRB的检测和监控显得非常重要。
可视化检测是一种直接快速的检测方法,由于其具有简单,快速,直观的有点,广泛应用于分析领域。例如:细胞因子[2]和DNA检测[3]。本发明进一步将这种技术引入至SRB的检测上,对开发新型SRB检测技术具有重要意义。
1.Venzlaff,H.;Enning,D.;Srinivasan,J.;Mayrhofer,K.J.J.;Hassel,A.W.;Widdel,F.;Stratmann,M.,Accelerated cathodic reaction in microbial corrosionof iron due to direct electron uptake by sulfate-reducing bacteria.CorrosionScience 2013,66(1),88-96.
2.Zhou W.J.,Gong X.,Xiang Y.,Yuan R.,and Chai Y.Q.,Target-TriggeredQuadratic Amplification for Label-Free and Sensitive Visual Detection ofCytokines Based on Hairpin Aptamer DNAzyme Probes.Analytical chemical 2014,86,956-958.
3.Liu Y.H,Yao H.X,Zhu J.,Water-Enabled Visual Detection ofDNA.J.Am.Chem.Soc.2013,135,16268-16271.
发明内容
本发明的目的在于针对现有技术中存在的问题,提供一种硫酸盐还原菌(SRB)的可视化定性检测方法。
为实现上述目的,本发明采用的技术方案为:
一种硫酸盐还原菌(SRB)的可视化定性检测方法,向待检测样品中加入吸附有硫酸铬的(CdSO4)琼脂糖水凝胶,室温下浸泡反应30-60分钟,待吸附有硫酸铬的(CdSO4)琼脂糖水凝胶变色,实现对硫酸盐还原菌(SRB)的定性检测。
所述待吸附有硫酸铬的(CdSO4)琼脂糖水凝胶变为黄色,即样品中含有硫酸盐还原菌(SRB),未变色即为样品中无硫酸盐还原菌(SRB)。
所述琼脂糖水凝胶为将含质量分数为1%-5%琼脂糖的水溶液加热至80-120℃,趁热倒入模具中冷却定型。
所述吸附有硫酸镉的水凝胶为将所述琼脂糖水凝胶浸入到10-100mM CdSO4水溶液中浸泡24小时,而后经双蒸水清洗反复洗涤。
一种硫酸盐还原菌(SRB)的可视化定性检测方法的应用,所述可视化方法在定性分析检测SRB中的应用。
本发明所具有的优点:
本发明利用硫酸盐还原菌新陈代谢将硫酸根离子或亚硫酸根离子产生的H2S和S2-与Cd2+反应,合成肉眼可见的黄色CdS,进而进行定性分析SRB,本发明方法与其他定性分析方法相比,本发明具有简单,易于操作,成本低的优点,对开发新型SRB检测技术具有重要意义。
附图说明
图1为本发明实施案例提供的吸附有Cd2+的琼脂水凝胶宏观照片图;
图2为本发明实施案例进行定性分析SRB的宏观图;
图3为本发明试试案例对SRB定性分析特异性分析图。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1:
吸附Cd2+的琼脂糖水凝胶的制备:将质量分数为2%的琼脂糖水溶液加热至100℃,趁热倒入模具中冷却定型。之后将定性的琼脂糖水凝胶浸入至50mM的CdSO4溶液中12小时即可获得吸附有Cd2+的琼脂糖水凝胶(参见图1)。
由图1可知,所制备的吸附有Cd2+的琼脂糖水凝胶为白色透明。
实施例2:
定性分析SRB:
取含有硫酸盐还原菌的海水溶液加入到50mL Postgate培养基中,培养4天后将细菌用0.22μm滤器过滤,之后将实施例1中获得的吸附有Cd2+的琼脂糖水凝胶浸入上述过滤液中2小时,由于滤液中硫酸盐还原菌新陈代谢将硫酸根离子产生的H2S和S2-与Cd2+反应,合成肉眼可见的黄色CdS,即可对SRB进行定性检测(参见图2)。
由图2可知,浸入SRB培养后的过滤液后,吸附有Cd2+的琼脂糖水凝胶变为黄色合成CdS。
实施例3:
分别将大肠杆菌,金黄色葡萄球菌培养于LB培养基中培养4天后,分别对培养液用0.22μm滤器过滤,之后将实施例1中获得的吸附有Cd2+的琼脂糖水凝胶分别浸入过滤液中2小时,观察颜色变化(参见图3)。
由图3可知,吸附有Cd2+的琼脂糖水凝胶对大肠杆菌和金黄色葡萄球菌中硫酸盐还原菌新陈代谢不能产生的H2S和S2-,未能生成CdS,进而使得水凝胶没有颜色变化,而对SRB显现出黄色,这表明本发明具有很好的特异性。

Claims (5)

1.一种硫酸盐还原菌(SRB)的可视化定性检测方法,其特征在于:向待检测样品中加入吸附有硫酸铬的(CdSO4)琼脂糖水凝胶,室温下浸泡反应30-60分钟,待吸附有硫酸铬的(CdSO4)琼脂糖水凝胶变色,实现对硫酸盐还原菌(SRB)的定性检测。
2.按权利要求1所述的硫酸盐还原菌(SRB)的可视化定性检测方法,其特征在于:所述待吸附有硫酸铬的(CdSO4)琼脂糖水凝胶变为黄色,即样品中含有硫酸盐还原菌(SRB),未变色即为样品中无硫酸盐还原菌(SRB)。
3.按权利要求1所述的硫酸盐还原菌(SRB)的可视化定性检测方法,其特征在于:所述琼脂糖水凝胶为将含质量分数为1%-5%琼脂糖的水溶液加热至80-120℃,趁热倒入模具中冷却定型。
4.按权利要求1-3任意一项所述的硫酸盐还原菌(SRB)的可视化定性检测方法,其特征在于:所述吸附有硫酸镉的水凝胶为将所述琼脂糖水凝胶浸入到10-100mM CdSO4水溶液中浸泡24小时,而后经双蒸水清洗反复洗涤。
5.一种权利要求1所述的硫酸盐还原菌(SRB)的可视化定性检测方法的应用,其特征在于:所述可视化方法在定性分析检测SRB中的应用。
CN201810281718.0A 2018-04-02 2018-04-02 一种硫酸盐还原菌(srb)的可视化定性检测方法 Pending CN108277258A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810281718.0A CN108277258A (zh) 2018-04-02 2018-04-02 一种硫酸盐还原菌(srb)的可视化定性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810281718.0A CN108277258A (zh) 2018-04-02 2018-04-02 一种硫酸盐还原菌(srb)的可视化定性检测方法

Publications (1)

Publication Number Publication Date
CN108277258A true CN108277258A (zh) 2018-07-13

Family

ID=62810958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810281718.0A Pending CN108277258A (zh) 2018-04-02 2018-04-02 一种硫酸盐还原菌(srb)的可视化定性检测方法

Country Status (1)

Country Link
CN (1) CN108277258A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193316A (zh) * 2013-04-15 2013-07-10 北京工业大学 一种生物处理含镉废水的方法
CN107488620A (zh) * 2017-10-08 2017-12-19 中国科学院成都生物研究所 一种镉污染稻田土壤微生物钝化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193316A (zh) * 2013-04-15 2013-07-10 北京工业大学 一种生物处理含镉废水的方法
CN107488620A (zh) * 2017-10-08 2017-12-19 中国科学院成都生物研究所 一种镉污染稻田土壤微生物钝化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG QI等: "Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection", 《TALANTA》 *
胡汉祥等: "固定化SRB 污泥处理含镉离子废水", 《应用化工》 *

Similar Documents

Publication Publication Date Title
Clark et al. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments
Kretzschmar et al. A microbial biosensor platform for inline quantification of acetate in anaerobic digestion: potential and challenges
RU2015135359A (ru) Быстрый способ детекции патогенов
CN108300758A (zh) 一种Hemin杂化纳米花及其制备方法和应用
Zarabadi et al. Flow‐Based Deacidification of Geobacter sulfurreducens Biofilms Depends on Nutrient Conditions: a Microfluidic Bioelectrochemical Study
Gothwal et al. Preparation of electrochemical biosensor for detection of organophosphorus pesticides
Ducret et al. A microscope automated fluidic system to study bacterial processes in real time
Moyo et al. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu (II)
CN108918864A (zh) 一种MnO2杂化纳米花及其制备方法和应用
Fiello et al. Variability in the characterization of total coliforms, fecal coliforms and Escherichia coli in recreational water supplies of north Mississippi, USA
CN108277258A (zh) 一种硫酸盐还原菌(srb)的可视化定性检测方法
CN108593610B (zh) 一种基于纳米mv-mof的荧光增强型试纸的制备方法
Wang et al. An indirect detection strategy-assisted self-cleaning electrochemical platform for in-situ and pretreatment-free detection of endogenous H2S from sulfate-reducing bacteria (SRB)
Naik et al. Boron/calcium ratios in Globigerinoides ruber from the Arabian Sea: Implications for controls on boron incorporation
CN103412020A (zh) 一种乙酰胆碱酯酶电化学生物传感器的制备方法及其应用
Wagner et al. Initial phases of microbial biofilm formation on opaque, innovative anti‐adhesive surfaces using a modular microfluidic system
Okabe et al. A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms
Egetenmeyer et al. Investigations for the detection of genotoxic substances on TLC plates
Ashrafi Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: A comprehensive critical review
Pujar et al. Microbiologically influenced corrosion in UNS S31653: detection and analysis using electrochemical noise technique
Cleaver et al. How to study biofilms: technological advancements in clinical biofilm research
Solesio et al. Methods of inorganic polyphosphate (PolyP) assay in higher eukaryotic cells
Recoules et al. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters
Han et al. An overview of various methods for in vitro biofilm formation: a review
Chrouda et al. An Immunosensor for Pathogenic Staphylococcus aureus Based on Antibody Modified Aminophenyl‐Au Electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180713