CN108253996B - 拉线编码测量装置、拉线编码空间位置测量方法及*** - Google Patents

拉线编码测量装置、拉线编码空间位置测量方法及*** Download PDF

Info

Publication number
CN108253996B
CN108253996B CN201611234876.8A CN201611234876A CN108253996B CN 108253996 B CN108253996 B CN 108253996B CN 201611234876 A CN201611234876 A CN 201611234876A CN 108253996 B CN108253996 B CN 108253996B
Authority
CN
China
Prior art keywords
measuring
point
wire
centripetal
pull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611234876.8A
Other languages
English (en)
Other versions
CN108253996A (zh
Inventor
蒋琼艳
周虎
汤海舰
欧阳德运
谢卫
陈慧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201611234876.8A priority Critical patent/CN108253996B/zh
Publication of CN108253996A publication Critical patent/CN108253996A/zh
Application granted granted Critical
Publication of CN108253996B publication Critical patent/CN108253996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本发明适用于测量技术领域,提供了一种拉线编码空间位置测量方法,包括如下步骤:第一位置测量:将向心机构定位在被测量点,在第一位置使用的测量框进行测量;第二位置测量:在第二位置使用的测量框进行测量;建立平面模型;建立空间模型;计算测量点的空间位置。通过将向心机构定位在被测量点,使用测量框在两个位置分别进行测量,并分别建立向心机构与两个位置测量框的平面模型及立体空间模型,并通过数学变换计算出被测量点的空间位置,使用方便,且无需两个位置的测量框平行,对测量设备的精度需要低,进而方便对测量设备进行保存,同时可以精确测量出被测点的空间位置。

Description

拉线编码测量装置、拉线编码空间位置测量方法及***
技术领域
本发明属于测量技术领域,尤其涉及一种拉线编码测量装置、使用该拉线编码测量装置的拉线编码空间位置测量方法及使用该拉线编码空间位置测量方法的测量***。
背景技术
当前的测量空间坐标,常见的主要有两种方式,一是用三坐标测量仪进行测量;另一种是用激光跟踪仪。然而三坐标测量仪体积很大,价格昂贵且通常固定位置测量,如需移动的话必须重新校准***;激光跟踪仪动态测量速度有限,价格非常昂贵。除以上两种常用测量方法外,还存在一种相对便宜的测量机构,即基于拉线编码器的空间位置测量。现有技术的这种基于拉线编码器进行空间位置测量的方法,主要使用拉线编码器,请参阅图1,该装置900主要包括平行设置的两个测量框91、一个向心机构93和支撑两个测量框91的固定条92,每个测量框91包括一个基座911;各基座911上对称安装有:两个拉线编码器912、分别对两个拉线编码器912的拉线9121进行导向的两个偏转滑轮913、分别支撑各偏转滑轮913的两个支撑架915、分别支撑各支撑架915的两个支架916和分别定位各拉线9121初始位置的两个定位块916,各支撑架915与相应支架914枢接相连,且各支撑架915可以绕该支撑架915与对应支架914枢接的枢轴转动,而各拉线9121与相应偏转滑轮913的下切点位于该支撑架915与对应支架914枢接的枢轴上。各向心机构93包括连接头931和安装在连接头上的四个向心腿932,四个向心腿932用于连接四个拉线编码器912的拉线9121,且四根拉线9121的延长线相交于一点。各拉线9121在初始时固定在定位块916,以确定拉线编码器912的初始零位。固定条92用于将两个测量框91固定相连,以使两个测量框91平行设置。然而此方便对两个测量框91的平行度要求较高,同时必须保证两个测量框91稳定,对框架的精度要求非常高,同时,使用与保存需要极为小心,极不方便。
发明内容
本发明的目的在于提供一种拉线编码空间位置测量方法,旨在解决现有拉线编码式空间测量方法对测量设备的框架精度要求高,保存与使用不方便的问题。
本发明是这样实现的,一种拉线编码测量装置,包括一个向心机构和至少一个测量框,所述向心机构包括连接头和安装在连接头上的至少两个向心腿;所述测量框包括基座,所述基座上对称安装有:两个拉线编码器、分别对各所述拉线编码器的拉线进行导向的两个偏转滑轮、分别支撑两个所述偏转滑轮的支撑架、分别与各所述支撑架枢接相连的支架和分别定位各所述拉线编码器的拉线的初始位置的定位块,各所述拉线与相应所述偏转滑轮的下切点位于该支撑架与对应所述支架枢接的枢轴上。
本发明另一目的在于提供一种拉线编码空间位置测量方法,使用如上所述的拉线编码测量装置测量,所述方法还包括如下步骤:
S1第一位置测量:将向心机构的连接头定位在被测量点,将测量框的两根拉线分别与向心机构的两个向心腿相连,并记录该测量框的两个拉线编码器读数值L01和L04;
S2第二位置测量:将所述测量框移动至另一位置,将该测量框的两根拉线分别与所述向心机构的两个向心腿相连,并记录该测量框的两个拉线编码器读数值L02和L03;
S3建立平面模型:所述S1第一位置测量步骤中测量框与所述向心机构位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框的两根所述拉线与该测量框的两个所述偏转滑轮下切点间长度L1和L4;同理,所述S2第二位置测量步骤中测量框与所述向心机构位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框的两根所述拉线与该测量框的两个所述偏转滑轮下切点间长度L2和L3;
S4建立空间模型:以所述S1第一位置测量步骤中的测量框、所述S2第二位置测量步骤中的测量框及所述向心机构建立立体空间模型;
S5计算测量点的空间位置:对所述S4建立空间模型步骤中的空间模型,经数学变换求得被测量点的空间位置。
本发明又一目的在于提供一种拉线编码空间位置测量***,包括如上所述的拉线编码测量装置和对如上所述的拉线编码空间位置测量方法进行数据处理以得出测量点位置的服务器。
本发明通过将向心机构定位在被测量点,使用测量框在两个位置分别进行测量,并分别建立向心机构与两个位置测量框的平面模型及立体空间模型,并通过数学变换计算出被测量点的空间位置,使用方便,且无需两个位置的测量框平行,对测量设备的精度需要低,进而方便对测量设备进行保存,同时可以精确测量出被测点的空间位置。
附图说明
图1是现有技术提供的拉线编码空间位置测量方法的结构示意图;
图2是本发明实施例一提供的拉线编码空间位置测量方法流程示意图;
图3是图2的拉线编码空间位置测量方法的结构示意图;
图4是图3中测量框的部分结构示意图;
图5是对图3中第一位置测量框的建立平面模型的结构示意图;
图6是对图3中一对测量框的建立空间模型的结构示意图;
图7是本发明实施例二提供的拉线编码空间位置测量方法中第一步的结构示意图;
图8是本发明实施例二提供的拉线编码空间位置测量方法中第二步的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一:
请参阅图2至图6,本发明实施例一提供的一种拉线编码空间位置测量方法,该方法使用拉线编码测量装置100进行测量。
本实施例中,该拉线编码测量装置100包括一个向心机构20和两个测量框10。所述向心机构20包括连接头21和安装在连接头21上的四个向心腿22。各所述测量框10包括基座11,所述基座11上对称安装有:两个拉线编码器12、分别对各所述拉线编码器12的拉线111进行导向的两个偏转滑轮13、分别支撑两个所述偏转滑轮13的支撑架16、分别与各所述支撑架16枢接相连的支架17和分别定位各所述拉线编码器12的拉线111的初始位置的定位块15,各所述拉线111与相应所述偏转滑轮13的下切点位于该支撑架16与对应所述支架17枢接的枢轴上。拉线编码器12用于测量拉线111伸出的长度,偏转滑轮13用于对相应的拉线111进行导向。设置定位块15,在初始位置,可以将拉线111的端部固定在定位块15上,而此时可以将拉线编码器12的读数设置为零位,以便将拉线编码器12进行归零。各支撑架16与相应支架17枢接相连,且各支撑架16可以绕该支撑架16与对应支架17枢接的枢轴转动,而各拉线111与相应偏转滑轮13的下切点位于该支撑架16与对应支架17枢接的枢轴上。四个向心腿22用于连接四个拉线编码器12的拉线111,且四根拉线111的延长线相交于一点。
所述方法包括如下步骤:
S1第一位置测量:将向心机构20的连接头21定位在被测量点,将测量框10的两根拉线111分别与向心机构20的两个向心腿22相连,并记录该测量框10的两个拉线编码器12读数值L01和L04;
S2第二位置测量:将所述测量框10移动至另一位置,将该测量框10的两根拉线111分别与所述向心机构20的两个向心腿22相连,并记录该测量框10的两个拉线编码器12读数值L02和L03;
S3建立平面模型:所述S1第一位置测量步骤中测量框10与所述向心机构20位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框10的两根所述拉线111与该测量框10的两个所述偏转滑轮13下切点间长度L1和L4;同理,所述S2第二位置测量步骤中测量框10与所述向心机构20位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框10的两根所述拉线111与该测量框10的两个所述偏转滑轮13下切点间长度L2和L3;
S4建立空间模型:以所述S1第一位置测量步骤中的测量框10、所述S2第二位置测量步骤中的测量框10及所述向心机构20建立立体空间模型;
S5计算测量点的空间位置:对所述S4建立空间模型步骤中的空间模型,经数学变换求得被测量点的空间位置。
通过将向心机构20定位在被测量点,使用测量框10在两个位置分别进行测量,并分别建立向心机构20与两个位置测量框10的平面模型及立体空间模型,并通过数学变换计算出被测量点的空间位置,使用方便,且无需两个位置的测量框10平行,对测量设备的精度需要低,进而方便对测量设备进行保存,同时可以精确测量出被测点的空间位置。
请参阅图2和图5,所述S3建立平面模型步骤中,对所述S1第一位置测量步骤中测量框10与所述向心机构20建立平面模型为:
该测量框10的两个偏转滑轮13的圆心分别为O1点和O2点,两个拉线111与两个偏转滑轮13的下切点分别为O点和B点,两个拉线111与两个偏转滑轮13的上切点分别为Q点和S点,被测量点为A点,AQ的延长线与OB的延长线交于I点,AS的延长线与OB的延长线交于K点,A至OB的垂足为T点,则可以建立位于同一平面中的三角形:△AOB、△AIK、△AOI、△AKB,且AO长度等于L1,AB长度等于L4。
进一步地,本实施例中,请一并参阅图4,所述S3建立平面模型步骤中,对所述S1第一位置测量步骤中测量框10与所述向心机构20建立平面模型进行数学变换需满足以下公式求得:
Figure BDA0001195108020000061
IO=QI=r*cos(∠QIO1);
Figure BDA0001195108020000062
Figure BDA0001195108020000063
BK=SK=r*cos(∠SKO2);
Figure BDA0001195108020000064
∠QIO=2*∠QIO1
∠SKB=2*∠SKO2
AI*cos(∠QIO)=AK*cos(∠SKB);
OB=e0=IT+KT-IO-KB;
Figure BDA0001195108020000065
Figure BDA0001195108020000066
其中,OB为设计参数,令OB=e0,
Figure BDA0001195108020000067
为一根所述拉线111绕于对应的偏转滑轮13上的长度,
Figure BDA0001195108020000068
为另一根所述拉线111绕于对应的偏转滑轮13上的长度,R为向心机构20的向心距,L0为拉线111的初始位置的长度且拉线111的初始位置时相应拉线编码器12读数设置为零位,r为各所述偏转滑轮13的半径。
如图4所示,当拉线111位于初始位置时,拉线111的端部固定在定位块15上,并与定位块15相交于M点,拉线111与偏转滑轮13的下切点为点O,O点到M点之间的拉线111长度为L0;支撑架16与对应支架17枢接的枢轴为N轴,支撑架16可以绕N轴转动,点O位于N轴的延长线上。
而根据图5中的平面模型及上述各方程可以求得AO长度L1和AB长度L4。按照同样的方式,可以对S2第二位置测量步骤中,另一位置的测量框10与向心机构20建立平面模型,并通过数学变换计算出被测量点A至该另一位置的测量框10的两个偏转滑轮13的两下切点间的距离L2和L3。
请参阅图2和图6,所述S4建立空间模型步骤中,建立立体空间模型为:
被测量点为A点;对所述S1第一位置测量步骤中测量框10中:两个拉线111与两个偏转滑轮13的下切点分别为O点和B点;对所述S2第二位置测量步骤中测量框10中:两个拉线111与两个偏转滑轮13的下切点分别为C点和F点;则,AO=L1,AB=L4,AC=L2,AF=L3,且O点、B点、C点及F点位于同一平面,并定义O点为原点,O点、B点、C点及F点位于XY平面上,A点位于XY平面上方向,A点到XY平面的投影为H点,A点到OB上的垂足为D点,A点到OC上的垂足为E点,A点到CF上的垂足为G点。
进一步地,所述S5计算测量点的空间位置步骤中,OB为设计参数,令OB=e0;CF为设计参数,令CF=e5;令OC=e1,CB=e2,OF=e3,BF=e4,A点坐标为(X,Y,Z);对所述空间模型进行数学变换过程如下:
用L1、L2、L4求解A点坐标(X1,Y1,Z1):
Figure BDA0001195108020000071
Figure BDA0001195108020000072
Figure BDA0001195108020000073
在△OEH和△ODH中,OH相等;在△ODA和OEA中,OA相等,得
Figure BDA0001195108020000074
Figure BDA0001195108020000075
由以上方程⑴至⑸求解出∠HOD的值,同时求得:
Figure BDA0001195108020000081
Figure BDA0001195108020000083
用L1、L2、L3求解A点坐标(X2,Y2,Z2):
Figure BDA0001195108020000084
Figure BDA0001195108020000085
Figure BDA0001195108020000086
在△GCH和△ECH中,OH相等;在△ACE和ACG中,AC相等,得
Figure BDA0001195108020000087
Figure BDA0001195108020000089
由以上方程⑹至⑾求解出∠FCH以及∠OCH的值,同时求得:
EH=CE*tan(∠OCH)=L2*cos(∠ACO)*tan(∠OCH)..............⑿
OE=OC-CE=e1-L2*cos(∠ACO).....................................⒀
Figure BDA00011951080200000811
X2=OH*cos(∠HOB)..................................................④
Y2=OH*sin(∠HOB)............................................⑤
Figure BDA00011951080200000812
由于被测量点A为同一点,则:
X1=X2..........⑦
Y1=Y2..........⑧
Z1=Z2............⑨
利用方程⑴至⒂及方程①至⑨计算出e1、e2、e3及e4的长度值,并将e1、e2、e3及e4的长度值回代X1、Y1、Z1或者X2、Y2、Z2对应的等式方程,求解出被测量点A的坐标值。
同理,在另一些实施例中,可以利用L2、L3、L4求解A点坐标(X3,Y3,Z3),用L1、L3、L4求解A点坐标(X4,Y4,Z4);由于被测量点A为同一点,可以利用等式:X3=X4,Y3=Y4,Z3=Z4,从而计算出e1、e2、e3及e4的长度值,并将e1、e2、e3及e4的长度值回代X3、Y3、Z3或者X4、Y4、Z4对应的等式方程,求解出被测量点A的坐标值。
利用L1、L2、L4求解A点坐标(X1,Y1,Z1),利用L1、L2、L3求解A点坐标(X2,Y2,Z2),利用L2、L3、L4求解A点坐标(X3,Y3,Z3),用L1、L3、L4求解A点坐标(X4,Y4,Z4);而由于被测量点A为同一点,则:
X1=X2=X3=X4,Y1=Y2=Y3=Y4,Z1=Z2=Z3=Z4则可以利用L1、L2、L3和L4中任三个线段的组合,经数学变换计算出e1、e2、e3及e4的长度值,并将e1、e2、e3及e4的长度值回代X1、Y1、Z1或者X2、Y2、Z2或者X3、Y3、Z3或者X4、Y4、Z4对应的等式方程,求解出被测量点A的坐标值。
进一步地,上述CF长度等于OB长度,则e0=e5,以方便进行计算。当然在另一些实施例中,CF长度与OB长度不相等,即e0≠e5,由于CF和OB均为设计参数,其长度值为已知,从而也可以计算出A点的坐标。
当CF长度等于OB长度时,本实施例中,使用的两个测量框10的结构可以完全相同。而当CF长度与OB长度不相等时,本实施例中,使用的两个测量框10的结构仅其基座11的长度不相等。
本实施例中,由于所述测量框10为两个,所述向心机构20包括四个所述向心腿22,所述S1第一位置测量步骤中使用一个所述测量框10,所述S2第二位置测量步骤中使用另一个所述测量框10。测量方便,效率高。同时,由于无需两个测量框10平行设备,因而在测量时,更为方便,同时测量装置也方便保存,精度更高。
进一步地,使用拉线编码器12测量时,为了提高测量的精度,上述S1第一位置测量步骤中,可以将测量框10固定住,通过拉动拉线111,在拉线111静止后记录两个拉线编码器12读数,从而可以得到多组L01的值及多级L04的值,在计算时,可以将多组L01的值取平均值,将多组L04的值取平均值,以减小测量误差,提高测量精度。
同理,上述S2第二位置测量步骤中,可以将测量框10固定住,通过拉动拉线111,在拉线111静止后记录两个拉线编码器12读数,从而可以得到多组L02的值及多级L03的值,在计算时,可以将多组L02的值取平均值,将多组L03的值取平均值,以减小测量误差,提高测量精度。
实施例二:
请参阅图7和图8,本发明实施例二提供的一种拉线编码空间位置测量方法。该方法使用拉线编码测量装置100b进行测量。该拉线编码测量装置100b包括一个向心机构20b及一个测量框10b,向心机构20b包括连接头21b和安装在连接头21b上的两个向心腿22b。各测量框10b包括基座11b,基座11b上对称安装有:两个拉线编码器12b、分别对各拉线编码器12b的拉线111b进行导向的两个偏转滑轮13b、分别支撑两个偏转滑轮13b的支撑架16b、分别与各支撑架16b枢接相连的支架17b和分别定位各拉线编码器12b的拉线111b的初始位置的定位块15b,各拉线111b与相应偏转滑轮13b的下切点位于该支撑架16b与对应支架17b枢接的枢轴上。拉线编码器12b用于测量拉线111b伸出的长度,偏转滑轮13b用于对相应的拉线111b进行导向。设置定位块15b,在初始位置,可以将拉线111b的端部固定在定位块15b上,而此时可以将拉线编码器12b的读数设置为零位,以便将拉线编码器12b进行归零。各支撑架16b与相应支架17b枢接相连,且各支撑架16b可以绕该支撑架16b与对应支架17b枢接的枢轴转动,而各拉线111b与相应偏转滑轮13b的下切点位于该支撑架16b与对应支架17b枢接的枢轴上。四个向心腿22b用于连接四个拉线编码器12b的拉线111b,且四根拉线111b的延长线相交于一点。
请一并参阅图2,使用该拉线编码测量装置100b进行测量时,在上述S1第一位置测量步骤中,可以将向心机构20b的连接头21b定位在被测量点,将测量框10b的两根拉线111b分别与向心机构20b的两个向心腿22b相连,并记录该测量框10b的两个拉线编码器12b读数值L01和L04。
然后再进行上述S2第二位置测量步骤,该步骤只需要移动上述测量框10b,将该测量框10b移动至另一位置,将该测量框10b的两根拉线111b分别与向心机构20b的两个向心腿22b相连,并记录该测量框10b的两个拉线编码器12b读数值L02和L03。之后与实施例一相同的方法进行S3建立平面模型步骤、进行S4建立空间模型步骤再进行S5计算测量点的空间位置步骤,以测量出被测量点的空间位置。
当然,在另一些实施例中,使的拉线编码测量装置100b的向心机构20b也可以包括三个及三个以上的向心腿22b。
由上述实施例一及实施例二可知,本发明的拉线编码空间位置测量方法可以使用的拉线编码测量装置100b使用一个或一个以上的测量框10b即可以进行测量,同样的该测量装置的向心机构20b只需要包括两个及两个以上的向心腿22b即可以满足测量要求。
本实施例的拉线编码空间位置测量方法的其它步骤与实施例一的拉线编码空间位置测量方法的其它步骤相同,在此不再赘述。
请参阅图3和图4,本发明实施例还公开了一种拉线编码测量装置100,该拉线编码测量装置100包括一个向心机构20和两个测量框10。所述向心机构20包括连接头21和安装在连接头21上的四个向心腿22。各所述测量框10包括基座11,所述基座11上对称安装有:两个拉线编码器12、分别对各所述拉线编码器12的拉线111进行导向的两个偏转滑轮13、分别支撑两个所述偏转滑轮13的支撑架16、分别与各所述支撑架16枢接相连的支架17和分别定位各所述拉线编码器12的拉线111的初始位置的定位块15,各所述拉线111与相应所述偏转滑轮13的下切点位于该支撑架16与对应所述支架17枢接的枢轴上。拉线编码器12用于测量拉线111伸出的长度,偏转滑轮13用于对相应的拉线111进行导向。设置定位块15,在初始位置,可以将拉线111的端部固定在定位块15上,而此时可以将拉线编码器12的读数设置为零位,以便将拉线编码器12进行归零。各支撑架16与相应支架17枢接相连,且各支撑架16可以绕该支撑架16与对应支架17枢接的枢轴转动,而各拉线111与相应偏转滑轮13的下切点位于该支撑架16与对应支架17枢接的枢轴上。四个向心腿22用于连接四个拉线编码器12的拉线111,且四根拉线111的延长线相交于一点。该拉线编码测量装置100可以使用上述拉线编码空间位置测量方法进行测量,使用方便,且无需两个位置的测量框10平行,对测量设备的精度需要低,进而方便对测量设备进行保存,同时可以精确测量出被测点的空间位置。
请参阅图7和图8,本发明实施例还公开了另一种拉线编码测量装置100b,该拉线编码测量装置100b包括一个向心机构20b及一个测量框10b,向心机构20b包括连接头21b和安装在连接头21b上的两个向心腿22b。各测量框10b包括基座11b,基座11b上对称安装有:两个拉线编码器12b、分别对各拉线编码器12b的拉线111b进行导向的两个偏转滑轮13b、分别支撑两个偏转滑轮13b的支撑架16b、分别与各支撑架16b枢接相连的支架17b和分别定位各拉线编码器12b的拉线111b的初始位置的定位块15b,各拉线111b与相应偏转滑轮13b的下切点位于该支撑架16b与对应支架17b枢接的枢轴上。拉线编码器12b用于测量拉线111b伸出的长度,偏转滑轮13b用于对相应的拉线111b进行导向。设置定位块15b,在初始位置,可以将拉线111b的端部固定在定位块15b上,而此时可以将拉线编码器12b的读数设置为零位,以便将拉线编码器12b进行归零。各支撑架16b与相应支架17b枢接相连,且各支撑架16b可以绕该支撑架16b与对应支架17b枢接的枢轴转动,而各拉线111b与相应偏转滑轮13b的下切点位于该支撑架16b与对应支架17b枢接的枢轴上。四个向心腿22b用于连接四个拉线编码器12b的拉线111b,且四根拉线111b的延长线相交于一点。该拉线编码测量装置100b可以使用上述拉线编码空间位置测量方法进行测量,使用方便,且只需一个测量框10b,同时无需使测量框10b的两个位置平行,对测量设备的精度需要低,进而方便对测量设备进行保存,同时可以精确测量出被测点的空间位置。
请参阅图2至图6,本发明实施例还提供的一种拉线编码空间位置测量***,包括如上所述的拉线编码测量装置100和对如上所述的拉线编码空间位置测量方法进行数据处理以得出测量点位置的服务器。该拉线编码空间位置测量***在使用上述拉线编码测量装置100进行测量时,可以使用上述拉线编码空间位置测量方法进行测量,而服务器可以自动进行上述拉线编码空间位置测量方法中的建立平面模型S3步骤和建立空间模型S4步骤,并自动计算出测量结果,得出测量点的空间位置,测量效率高、测量方便。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种拉线编码测量装置,其特征在于,包括一个向心机构和至少一个测量框,所述向心机构包括连接头和安装在连接头上的至少两个向心腿;所述测量框包括基座,所述基座上对称安装有:两个拉线编码器、分别对各所述拉线编码器的拉线进行导向的两个偏转滑轮、分别支撑两个所述偏转滑轮的支撑架、分别与各所述支撑架枢接相连的支架和分别定位各所述拉线编码器的拉线的初始位置的定位块,各所述拉线与相应所述偏转滑轮的下切点位于该支撑架与对应所述支架枢接的枢轴上。
2.如权利要求1所述的拉线编码测量装置,其特征在于,所述测量框为一个或两个。
3.如权利要求1所述的拉线编码测量装置,其特征在于,所述向心机构包括两个或四个所述向心腿。
4.一种拉线编码空间位置测量方法,其特征在于,使用如权利要求1-3任一项所述的拉线编码测量装置测量,所述方法还包括如下步骤:
S1第一位置测量:将向心机构的连接头定位在被测量点,将测量框的两根拉线分别与向心机构的两个向心腿相连,并记录该测量框的两个拉线编码器读数值L01和L04;
S2第二位置测量:将所述测量框移动至另一位置,将该测量框的两根拉线分别与所述向心机构的两个向心腿相连,并记录该测量框的两个拉线编码器读数值L02和L03;
S3建立平面模型:所述S1第一位置测量步骤中测量框与所述向心机构位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框的两根所述拉线与该测量框的两个所述偏转滑轮下切点间长度L1和L4;同理,所述S2第二位置测量步骤中测量框与所述向心机构位于同一平面,并建立平面模型,通过数学变换求得被测量点至该测量框的两根所述拉线与该测量框的两个所述偏转滑轮下切点间长度L2和L3;
S4建立空间模型:以所述S1第一位置测量步骤中的测量框、所述S2第二位置测量步骤中的测量框及所述向心机构建立立体空间模型;
S5计算测量点的空间位置:对所述S4建立空间模型步骤中的空间模型,经数学变换求得被测量点的空间位置。
5.如权利要求4所述的拉线编码空间位置测量方法,其特征在于,所述S3建立平面模型步骤中,对所述S1第一位置测量步骤中测量框与所述向心机构建立平面模型为:
该测量框的两个偏转滑轮的圆心分别为O1点和O2点,两个拉线与两个偏转滑轮的下切点分别为O点和B点,两个拉线与两个偏转滑轮的上切点分别为Q点和S点,被测量点为A点,AQ的延长线与OB的延长线交于I点,AS的延长线与OB的延长线交于K点,A至OB的垂足为T点,则可以建立位于同一平面中的三角形:△AOB、△AIK、△AOI、△AKB,且AO长度等于L1,AB长度等于L4。
6.如权利要求5所述的拉线编码空间位置测量方法,其特征在于,所述S3建立平面模型步骤中,对所述S1第一位置测量步骤中测量框与所述向心机构建立平面模型进行数学变换需满足以下公式求得:
IO=QI=r*cos(∠QIO1);
Figure FDA0001195108010000022
Figure FDA0001195108010000023
BK=SK=r*cos(∠SKO2);
Figure FDA0001195108010000024
∠QIO=2*∠QIO1
∠SKB=2*∠SKO2
AI*cos(∠QIO)=AK*cos(∠SKB);
OB=e0=IT+KT-IO-KB;
Figure FDA0001195108010000031
其中,OB为设计参数,令OB=e0,
Figure FDA0001195108010000033
为一根所述拉线绕于对应的偏转滑轮上的长度,为另一根所述拉线绕于对应的偏转滑轮上的长度,R为向心机构的向心距,L0为拉线的初始位置的长度且拉线的初始位置时相应拉线编码器读数设置为零位,r为各所述偏转滑轮的半径。
7.如权利要求4所述的拉线编码空间位置测量方法,其特征在于,所述S4建立空间模型步骤中,建立立体空间模型为:
被测量点为A点;对所述S1第一位置测量步骤中测量框中:两个拉线与两个偏转滑轮的下切点分别为O点和B点;对所述S2第二位置测量步骤中测量框中:两个拉线与两个偏转滑轮的下切点分别为C点和F点;则,AO=L1,AB=L4,AC=L2,AF=L3,且O点、B点、C点及F点位于同一平面,并定义O点为原点,O点、B点、C点及F点位于XY平面上,A点位于XY平面上方向,A点到XY平面的投影为H点,A点到OB上的垂足为D点,A点到OC上的垂足为E点,A点到CF上的垂足为G点。
8.如权利要求7所述的拉线编码空间位置测量方法,其特征在于,所述S5计算测量点的空间位置步骤中,OB为设计参数,令OB=e0;CF为设计参数,令CF=e5;令OC=e1,CB=e2,OF=e3,BF=e4,A点坐标为(X,Y,Z);对所述空间模型进行数学变换过程如下:
用L1、L2、L4求解A点坐标(X1,Y1,Z1):
Figure FDA0001195108010000036
Figure FDA0001195108010000037
在△OEH和△ODH中,OH相等;在△ODA和OEA中,OA相等,得
Figure FDA0001195108010000041
Figure FDA0001195108010000042
由以上方程⑴至⑸求解出∠HOD的值,同时求得:
Figure FDA0001195108010000043
用L1、L2、L3求解A点坐标(X2,Y2,Z2):
Figure FDA0001195108010000046
在△GCH和△ECH中,OH相等;在△ACE和ACG中,AC相等,得
Figure FDA0001195108010000047
Figure FDA0001195108010000048
Figure FDA0001195108010000049
由以上方程⑹至⑾求解出∠FCH以及∠OCH的值,同时求得:
EH=CE*tan(∠OCH)=L2*cos(∠ACO)*tan(∠OCH)..............⑿
OE=OC-CE=e1-L2*cos(∠ACO).....................................⒀
Figure FDA00011951080100000410
X2=OH*cos(∠HOB)......................................................④
Y2=OH*sin(∠HOB)......................................................⑤
Figure FDA0001195108010000051
由于被测量点A为同一点,则:
X1=X2..........⑦
Y1=Y2..........⑧
Z1=Z2...........⑨
利用方程⑴至⒂及方程①至⑨计算出e1、e2、e3及e4的长度值,并将e1、e2、e3及e4的长度值回代X1、Y1、Z1或者X2、Y2、Z2对应的等式方程,求解出被测量点A的坐标值。
9.如权利要求8所述的拉线编码空间位置测量方法,其特征在于,CF长度等于OB长度。
10.如权利要求8所述的拉线编码空间位置测量方法,其特征在于,CF长度与OB长度不相等。
11.如权利要求4-10任一项所述的拉线编码空间位置测量方法,其特征在于,所述测量框为两个,所述向心机构包括四个所述向心腿,所述S1第一位置测量步骤中使用一个所述测量框,所述S2第二位置测量步骤中使用另一个所述测量框。
12.一种拉线编码空间位置测量***,其特征在于,包括如权利要求1-3任一项所述的拉线编码测量装置和对如权利要求4-10任一项所述的拉线编码空间位置测量方法进行数据处理以得出测量点位置的服务器。
CN201611234876.8A 2016-12-28 2016-12-28 拉线编码测量装置、拉线编码空间位置测量方法及*** Active CN108253996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611234876.8A CN108253996B (zh) 2016-12-28 2016-12-28 拉线编码测量装置、拉线编码空间位置测量方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611234876.8A CN108253996B (zh) 2016-12-28 2016-12-28 拉线编码测量装置、拉线编码空间位置测量方法及***

Publications (2)

Publication Number Publication Date
CN108253996A CN108253996A (zh) 2018-07-06
CN108253996B true CN108253996B (zh) 2020-02-07

Family

ID=62719952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611234876.8A Active CN108253996B (zh) 2016-12-28 2016-12-28 拉线编码测量装置、拉线编码空间位置测量方法及***

Country Status (1)

Country Link
CN (1) CN108253996B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940257B (zh) * 2018-09-25 2021-09-24 国核电站运行服务技术有限公司 一种测量管道倾角变化的装置及方法
CN109894818A (zh) * 2019-03-20 2019-06-18 刘业飞 一种通用汽车外饰涂装挂具制作方法
CN112209603B (zh) * 2020-11-03 2023-07-25 索奥斯(广东)玻璃技术股份有限公司 带有弧度检测功能的弯风栅及其使用方法、玻璃成型设备
CN113829344B (zh) * 2021-09-24 2022-05-03 深圳群宾精密工业有限公司 适用于柔性产品的视觉引导轨迹生成方法、装置、设备及介质
CN117589210B (zh) * 2024-01-16 2024-04-23 科瑞工业自动化***(苏州)有限公司 一种拉绳编码器的测量装置和***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570556A (zh) * 2004-05-12 2005-01-26 清华大学 刚体空间位姿测量装置及其测量方法
CN102636139A (zh) * 2012-04-12 2012-08-15 中国工程物理研究院激光聚变研究中心 空间六自由度运动的六位移传感器动态测量法
CN103486989A (zh) * 2013-09-16 2014-01-01 南京航空航天大学 拉线式空间位置测量机构及测量方法
CN105258662A (zh) * 2015-10-15 2016-01-20 哈尔滨工程大学 一种基于拉线式位移传感器的轴系工程构件端面空间位移和角度变化量测量方法
CN205373670U (zh) * 2015-12-23 2016-07-06 比亚迪股份有限公司 空间位置测量装置
CN106092009A (zh) * 2016-06-29 2016-11-09 南京航空航天大学 一种基于拉线编码器的站点可动式测量机构的初始位置校准方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526741B1 (ko) * 2003-03-26 2005-11-08 김시학 와이어의 장력을 이용한 위치 추적 및 반력시스템과 이를이용한 최소 절개용 수술시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570556A (zh) * 2004-05-12 2005-01-26 清华大学 刚体空间位姿测量装置及其测量方法
CN102636139A (zh) * 2012-04-12 2012-08-15 中国工程物理研究院激光聚变研究中心 空间六自由度运动的六位移传感器动态测量法
CN103486989A (zh) * 2013-09-16 2014-01-01 南京航空航天大学 拉线式空间位置测量机构及测量方法
CN105258662A (zh) * 2015-10-15 2016-01-20 哈尔滨工程大学 一种基于拉线式位移传感器的轴系工程构件端面空间位移和角度变化量测量方法
CN205373670U (zh) * 2015-12-23 2016-07-06 比亚迪股份有限公司 空间位置测量装置
CN106092009A (zh) * 2016-06-29 2016-11-09 南京航空航天大学 一种基于拉线编码器的站点可动式测量机构的初始位置校准方法

Also Published As

Publication number Publication date
CN108253996A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
CN108253996B (zh) 拉线编码测量装置、拉线编码空间位置测量方法及***
CN103486989B (zh) 拉线式空间位置测量机构及测量方法
CN109458988B (zh) 基于uwb无线测距技术的抱杆倾角测量方法
CN104764424A (zh) 一种测量装置及其测量方法
CN102126162A (zh) 一种数控机床加工在线测量方法
CN203534423U (zh) 一种多功能角钢测量尺
CN103175487A (zh) 全站仪扩大应用方法
CN104359445A (zh) 基于拉绳编码器的串联运动机构参数误差测量装置及方法
CN112857315A (zh) 基于三维激光扫描的钢管柱垂直度测量方法
CN105300265A (zh) 一种基于卷尺的测量方法
CN108036763A (zh) 测距全站仪
CN208043029U (zh) 一种数控装置末端位置实时测量***
CN204924145U (zh) 一种便携式管道椭圆度测量卡尺
CN114509777A (zh) 一种基于Cesium平台的输电工程实体验收方法
CN204788349U (zh) 一种输电线路跳线弧垂测量装置
JP2007155377A (ja) 孔路計測方法
CN207215124U (zh) 垂直度检测工具
CN113696227B (zh) 一种机械臂水平方位角检测装置与方法
CN105004313A (zh) 一种管子弯曲延伸量的测量方法
CN204359241U (zh) 一种三角立体测量仪
CN205448966U (zh) 一种坐标测量机辅助测量装置
CN203299403U (zh) 管道轨迹仪的精度检验装置
CN204831107U (zh) 一种多功能线路档距测量车
CN104534956B (zh) 三角立体测量仪
CN109186471A (zh) 引线高度的检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant