CN108229371B - 基于冰形建模的输电导线横截面覆冰形状识别方法 - Google Patents

基于冰形建模的输电导线横截面覆冰形状识别方法 Download PDF

Info

Publication number
CN108229371B
CN108229371B CN201711470765.1A CN201711470765A CN108229371B CN 108229371 B CN108229371 B CN 108229371B CN 201711470765 A CN201711470765 A CN 201711470765A CN 108229371 B CN108229371 B CN 108229371B
Authority
CN
China
Prior art keywords
point
ice
cross
section
icing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711470765.1A
Other languages
English (en)
Other versions
CN108229371A (zh
Inventor
张烨
黄新波
刘新慧
张慧莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN201711470765.1A priority Critical patent/CN108229371B/zh
Publication of CN108229371A publication Critical patent/CN108229371A/zh
Application granted granted Critical
Publication of CN108229371B publication Critical patent/CN108229371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

本发明公开了一种基于冰形建模的输电导线横截面覆冰形状识别方法,该方法以两台摄像机采集的输电导线覆冰前后的数字图像为研究对象,通过图像预处理、图像分割、边缘提取等图像处理方法进行覆冰导线边缘特诊量提取,然后通过分析决定导线覆冰最大厚度和最大直径的四个关键点在横截面的分布位置,结合数学函数建模方法对导线横截面不规则覆冰形状进行拟合,最后通过计算不同覆冰形状下的横截面覆冰净面积,进一步还可求出固定长度内导线覆冰体积和覆冰重量,从而量化输电导线覆冰情况。本发明的基于冰形建模的输电导线横截面覆冰形状识别方法,原理简单、直观易行,通过图像处理技术和数学建模知识智能化检测识别输电导线覆冰情况。

Description

基于冰形建模的输电导线横截面覆冰形状识别方法
技术领域
本发明属于输电线路在线监测技术领域,涉及一种基于冰形建模的输电导线横截面覆冰形状识别方法。
背景技术
输电线路是电力***最重要的部件之一,大多架设在野外,线路覆盖面广,所处的地理环境和气候条件极其恶劣。输电线路覆冰对其电气和机械性能影响极大,极易引起过绝缘子冰闪、线路跳闸、大面积停电、过载荷、覆冰舞动和脱冰跳跃等,造成导线断股、金具和绝缘子损坏,甚至杆塔变形、倒塔等严重电力事故。因此,电网大气覆冰成为电力***所面临的难题,我国是世界上覆冰严重的国家之一,自2008年南方电网冰灾事故之后,输电线路覆冰与融冰已成为电力***在线监测领域的重要课题,准确识别输电线路覆冰程度是指导线路融冰的重要依据,因此,如何有效预测或识别测量输电线路覆冰情况对于电网安全运行具有十分重要的意义。
目前,工程应用中大多采用间接方法来估测覆冰情况,国内外常采用的导线覆冰厚度测量方法主要有:量器具检测,冰样称重检测,传感器建模检测以及可视化检测。随着可见光设备分辨率的提高以及视频图像处理技术的发展,结合图像处理技术与数学建模进行导线覆冰厚度测量已成为输电线路在线监测领域的一大热点。前期的基于图像处理的导线覆冰厚度测量均是针对导线均匀覆冰,即假设导线的覆冰形状具有一个近似圆形或椭圆形的规则横截面。但实际现场导线覆冰多呈不规则形状,单纯将覆冰导线横截面近似为圆形或椭圆形,将会导线覆冰厚度测量造成一定的误差,并且影响融冰时间的估算。导线不规则覆冰的测量到现在为止仍然是一个开放性的问题,国内外对于采用视频图像处理技术进行导线不规则覆冰测量的方法鲜有提及。
发明内容
本发明的目的是提供一种基于冰形建模的输电导线横截面覆冰形状识别方法,能够更准确、合理地计算识别出导线不规则覆冰时的覆冰冰形、冰厚以及覆冰重量。
本发明所采用的技术方案是,一种基于冰形建模的输电导线横截面覆冰形状识别方法,其特征在于,具体按照以下步骤实施:
步骤1,依据导线与铁塔的位置安装摄像机,一个摄像机安装在导线的上方,另一个安装在平行于导线的位置,校准摄像机位置,进行未覆冰时的导线的图像采集;
步骤2,利用步骤1中设置的两台摄像机对已经覆冰的导线图像进行采集,进行正上方和正前方位置的覆冰导线进行图像采集;
步骤3,对步骤2中两台摄像机采集到的覆冰导线图像分别进行图像预处理、图像分割,进而提取覆冰导线的边缘轮廓;并绘制出导线横截面外轮廓形状,
步骤4,根据步骤3得到的lk和hk,计算k点处覆冰导线横截面的长短轴之比αk
步骤5,根据步骤4计算得到的αk,求其均值
Figure BDA0001531968030000021
步骤6、将αk与α′进行比较,根据不同的结果选择后续处理步骤;
步骤7,根据步骤6的结果,对覆冰横截面近似为椭圆的点,对该点处决定hk和lk的四个关键点在覆冰导线横截面的位置分布进行分析(如附图3所示),进而求出该情况下覆冰导线的横截面覆冰净面积Si
步骤8,根据步骤6的结果,对覆冰横截面不能简单近似为椭圆的点,计算出该点处椭圆面积,以及椭圆曲线和与其相切的高斯曲线围成的封闭区域的面积,从而即可计算出该情况下覆冰导线的横截面覆冰净面积Si
步骤9,在步骤7或步骤8计算出椭圆横截面的覆冰净面积Si后,可进一步通过积分运算,求得整段导线覆冰的重量。
本发明的特点还在于,
所述的步骤1具体为:具体在进行图像采集时,通过多次调整摄像机的安装位置来进行摄像机校准,确定两台摄像机所采集到的输电导线的轮廓一致,从而正前方和正上方的得到一致的未覆冰导线直径为d,进而可知原始未覆冰导线的横截面面积为πd2以及固定长度内导线自身体积。
所述的步骤3具体为,通过导线正上方摄像机拍摄的图像,可获得覆冰导线在水平平面的覆冰边缘轮廓,在该边缘轮廓上等间隔地选取n个点,即可得到其中任意的点k对应位置的覆冰导线横截面的宽度lk,其中,(k=0,1,2...,n);通过导线正前方摄像机拍摄的图像,可获得覆冰导线在垂直平面的覆冰边缘轮廓,进而得到对应n个位置点处覆冰导线横截面的高度,定义为厚度hk(k=0,1,2...,n)。
所述的步骤4的具体计算公式为:αk=hk/lk,其中,(k=0,1,2...,n);αk为k点处覆冰导线横截面的长短轴之比。
所述的步骤6中,αk与α′的比较结果分为两种情况,如果αk≤α′,则k点位置的覆冰导线横截面的形状可以拟合为一个分别以hk和lk为长短轴的椭圆;这种情况下,则转至步骤7计算此种情况下的覆冰净面积Si;如果αk>α′,说明此时k点处的截面形状无法直接拟合为椭圆,则转至步骤8,采用椭圆曲线与高斯曲线相结合拟合覆冰导线截面形状,从而计算覆冰净面积。
所述的步骤7中的四个点的代表性的几种位置分布及面积求解过程如下:
步骤7.1、将决定导线上某点处覆冰直径l的两个关键点设为横截面中的O和Q两点,决定覆冰厚度h的两个关键点为横截面中的P和R两个点。其中,O、Q两点分布在横截面的长轴的位置,P、R两点分布在横截面的短轴的位置;这4个关键点在横截面上有四种组合分布,对应决定了四种典型的覆冰横截面形状模型;
步骤7.2,第一种情况,O点位置较Q点位置低,且P点在R点左侧。若设O点到P点垂直距离为a,R点到O点垂直距离为b,Q点到R点垂直距离为c,P点到Q点距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000041
步骤7.3、第二种情况,O点较Q点位置高,且P点在R点右侧。若设O点到R点垂直距离为a,R点到Q点垂直距离为b,Q点到P点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000042
第三种情况,O点较Q点位置高,且P点在R点左侧。若设O点到P点垂直距离为a,R点到Q点垂直距离为b,Q点到R点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000043
步骤7.5,第四种情况,O点较Q点位置低,且P点在R点右侧。若设O点到R点垂直距离为a,R点到O点垂直距离为b,Q点到P点垂直距离为c,P点到Q点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000051
步骤7.6、以上四种情况中的x和y分别表示覆冰形状厚度最大两点及直径最大的两点的移动距离,当P、R在一条直线上时y=0,当O、Q在一条直线上时x=0,当P、R共线,且O、Q共线时,x=0,y=0。这三种情况属于特殊情况,此时覆冰导线横截面总面积为标准的椭圆面积
Figure BDA0001531968030000052
步骤7.7、步骤7.2到步骤7.5的四种情况中的覆冰导线横截面总面积中
Figure BDA0001531968030000053
属于微小量,且由于同根导线相同时期不同位置点的横截面覆冰形状存在差异,四种情况出现的几率随机,面积可相互抵消;因此,对步骤7中的覆冰导线横截面可以等效为椭圆的点,该点处的横截面覆冰净面积为
Figure BDA0001531968030000054
所述的步骤8的具体步骤为,
步骤8.1、对于αk>α′的点,该点处覆冰导线横截面形状为椭圆和高斯曲线的组合,其中椭圆部分的短轴为lk,长轴为lkα′,则椭圆部分的面积为
Figure BDA0001531968030000055
椭圆方程可表示为:
Figure BDA0001531968030000056
步骤8.2、设与步骤8.1中的椭圆相切的高斯函数表达式为
Figure BDA0001531968030000057
其中A、B和c为高斯函数的常系数,函数曲线过点
Figure BDA0001531968030000058
Figure BDA0001531968030000059
将两点代入高斯函数表达式中可求得,
Figure BDA00015319680300000510
Figure BDA0001531968030000061
因椭圆与高斯函数曲线相切,根据椭圆与高斯曲线的形状特征,椭圆曲线与高斯曲线有且仅有两个交点,即方程组
Figure BDA0001531968030000062
有且仅有两个解,求取|c|的唯一解,即可获取与椭圆相切的高斯函数曲线;高斯函数表达式如下:
Figure BDA0001531968030000063
步骤8.4、设高斯函数(3)与椭圆曲线的两切点为:M(-x0,y0)和N(x0,y0)。
椭圆上弧线MN的表达式为:
Figure BDA0001531968030000064
椭圆方程及高斯函数已知,高斯曲线与弧线MN所形成的封闭区域的面积Sc为:
Figure BDA0001531968030000065
则这种情况下覆冰导线横截面的总面积S为:
St=Se+Sc (6)
覆冰净面积为:
Figure BDA0001531968030000066
所述的步骤9具体为:在步骤7或步骤8计算出椭圆横截面的覆冰净面积Si后,可进一步通过积分运算,求出固定长度[a,b]之间覆冰导线上的覆冰体积Vi,设导线上覆冰的密度为ρ,整段导线覆冰的重量mi为:mi=ρVi
本发明的有益效果是,(1)与现有的力传感器监测方法、电容传感器监测方法相比,本发明的基于冰形建模的输电导线横截面覆冰形状识别方法,提出采用两台摄像机分别从正前方和正上方采集覆冰导线图像,通过图像处理技术和数学建模识别输电导线不规则覆冰形状,可以更直观准确识别导线不规则覆冰,为现代输电导线状态检修提供一种有效方式;
(2)本发明的基于冰形建模的输电导线横截面覆冰形状识别方法,是通过两个特定位置的摄像机采集导线可见光图像,分别提取两个位置图像中的导线边缘,结合数学建模可直观准确模拟出导线上不同位置处的横截面覆冰形状,进一步可求取导线横截面覆冰净面积以及固定长度内的覆冰体积和覆冰重量,为覆冰输电导线不规则覆冰形状的识别检测提供了一种直观有效且可行的新方法。
附图说明
图1是本发明方法的流程图;
图2(a)是本发明方法中步骤7中四个点的第一种位置关系的示意图;
图2(b)是本发明方法中步骤7中四个点的第二种位置关系的示意图;
图2(c)是本发明方法中步骤7中四个点的第三种位置关系的示意图;
图2(d)是本发明方法中步骤7中四个点的第四种位置关系的示意图;
图3是本发明方法中覆冰导线横截面形状为椭圆与高斯曲线的组合的情况示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种基于冰形建模的输电导线横截面覆冰形状识别方法,如图1所示,具体按照以下步骤实施:
步骤1,依据导线与铁塔的位置安装摄像机,一个摄像机安装在导线的上方,另一个安装在平行于导线的位置,校准摄像机位置,进行未覆冰时的导线的图像采集;
具体在进行图像采集时,通过多次调整摄像机的安装位置来进行摄像机校准,确定两台摄像机所采集到的输电导线的轮廓一致,从而正前方和正上方的得到一致的未覆冰导线直径为d,进而可知原始未覆冰导线的横截面面积为πd2以及固定长度内导线自身体积。
步骤2,利用步骤1中设置的两台摄像机对已经覆冰的导线图像进行采集,进行正上方和正前方位置的覆冰导线进行图像采集。
步骤3、对步骤2中两台摄像机采集到的覆冰导线图像分别进行图像预处理、图像分割,进而提取覆冰导线的边缘轮廓;并绘制出导线横截面外轮廓形状,具体方法是:
通过导线正上方摄像机拍摄的图像,可获得覆冰导线在水平平面的覆冰边缘轮廓,在该边缘轮廓上等间隔地选取n个点,即可得到其中任意的点k对应位置的覆冰导线横截面的宽度lk,其中,(k=0,1,2...,n);
通过导线正前方摄像机拍摄的图像,可获得覆冰导线在垂直平面的覆冰边缘轮廓,进而得到对应n个位置点处覆冰导线横截面的高度,定义为厚度hk(k=0,1,2...,n);
步骤4、根据步骤3得到的lk和hk,计算k点处覆冰导线横截面的长短轴之比αk
具体计算公式为:αk=hk/lk,其中,(k=0,1,2...,n);
αk为k点处覆冰导线横截面的长短轴之比。
步骤5、根据步骤4计算得到的αk,求其均值
Figure BDA0001531968030000091
步骤6、将αk与α′进行比较,根据不同的结果选择后续处理步骤;
αk与α′的比较结果分为两种情况,如果αk≤α′,则k点位置的覆冰导线横截面的形状可以拟合为一个分别以hk和lk为长短轴的椭圆;这种情况下,则转至步骤7计算此种情况下的覆冰净面积Si
如果αk>α′,说明此时k点处的截面形状无法直接拟合为椭圆,则转至步骤8,采用椭圆曲线与高斯曲线相结合拟合覆冰导线截面形状,从而计算覆冰净面积。
步骤7、根据步骤6的结果,对覆冰横截面近似为椭圆的点,对该点处决定hk和lk的四个关键点在覆冰导线横截面的位置分布进行分析(如附图3所示),进而求出该情况下覆冰导线的横截面覆冰净面积Si;所述的四个关键点,是指该覆冰导线的图形上,表示的截面轮廓最外面的4个点;这四个点的代表性的几种位置分布及面积求解过程如下:
步骤7.1、将决定导线上某点处覆冰直径l的两个关键点设为横截面中的O和Q两点,决定覆冰厚度h的两个关键点为横截面中的P和R两个点。其中,O、Q两点分布在横截面的长轴的位置,P、R两点分布在横截面的短轴的位置;这4个关键点在横截面上有四种组合分布,对应决定了四种典型的覆冰横截面形状模型。
步骤7.2、第一种情况,如图2(a)所示,O点位置较Q点位置低,且P点在R点左侧。若设O点到P点垂直距离为a,R点到O点垂直距离为b,Q点到R点垂直距离为c,P点到Q点距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000101
步骤7.3、第二种情况,如图2(b)所示,O点较Q点位置高,且P点在R点右侧。若设O点到R点垂直距离为a,R点到Q点垂直距离为b,Q点到P点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000102
步骤7.4、第三种情况,如图2(c)所示,O点较Q点位置高,且P点在R点左侧。若设O点到P点垂直距离为a,R点到Q点垂直距离为b,Q点到R点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000103
步骤7.5、第四种情况,如图2(d)所示,O点较Q点位置低,且P点在R点右侧。若设O点到R点垂直距离为a,R点到O点垂直距离为b,Q点到P点垂直距离为c,P点到Q点垂直距离为d,中间围成的微小矩形边长为x,y。则覆冰导线横截面总面积经推导可得
Figure BDA0001531968030000104
步骤7.6、以上四种情况中的x和y分别表示覆冰形状厚度最大两点及直径最大的两点的移动距离,当P、R在一条直线上时y=0,当O、Q在一条直线上时x=0,当P、R共线,且O、Q共线时,x=0,y=0。这三种情况属于特殊情况,此时覆冰导线横截面总面积为标准的椭圆面积
Figure BDA0001531968030000105
步骤7.7、步骤7.2到步骤7.5的四种情况中的覆冰导线横截面总面积中
Figure BDA0001531968030000106
属于微小量,且由于同根导线相同时期不同位置点的横截面覆冰形状存在差异,四种情况的模型(a)、(b)和(c)、(d)出现的几率随机,面积可相互抵消。因此,对步骤7中的覆冰导线横截面可以等效为椭圆的点,该点处的横截面覆冰净面积为
Figure BDA0001531968030000111
步骤8、根据步骤6的结果,对覆冰横截面不能简单近似为椭圆的点,计算出该点处椭圆面积,以及椭圆曲线和与其相切的高斯曲线围成的封闭区域的面积,从而即可计算出该情况下覆冰导线的横截面覆冰净面积Si
具体步骤为:
步骤8.1、对于αk>α′的点,该点处覆冰导线横截面形状为椭圆和高斯曲线的组合,其中椭圆部分的短轴为lk,长轴为lkα′,则椭圆部分的面积为
Figure BDA0001531968030000112
椭圆方程可表示为:
Figure BDA0001531968030000113
步骤8.2、设与步骤8.1中的椭圆相切的高斯函数表达式为
Figure BDA0001531968030000114
其中A、B和c为高斯函数的常系数,函数曲线过点
Figure BDA0001531968030000115
Figure BDA0001531968030000116
将两点代入高斯函数表达式中可求得,
Figure BDA0001531968030000117
Figure BDA0001531968030000118
因椭圆与高斯函数曲线相切,根据椭圆与高斯曲线的形状特征,椭圆曲线与高斯曲线有且仅有两个交点,即方程组
Figure BDA0001531968030000119
有且仅有两个解,求取|c|的唯一解,即可获取与椭圆相切的高斯函数曲线。高斯函数表达式如下:
Figure BDA0001531968030000121
步骤8.4、设高斯函数(3)与椭圆曲线的两切点为:M(-x0,y0)和N(x0,y0)。
椭圆上弧线MN的表达式为:
Figure BDA0001531968030000122
椭圆方程及高斯函数已知,高斯曲线与弧线MN所形成的封闭区域的面积Sc为:
Figure BDA0001531968030000123
则这种情况下覆冰导线横截面的总面积S为:
St=Se+Sc (6)
覆冰净面积为:
Figure BDA0001531968030000124
步骤9、在步骤7或步骤8计算出椭圆横截面的覆冰净面积Si后,可进一步通过积分运算,求出固定长度[a,b]之间覆冰导线上的覆冰体积Vi,设导线上覆冰的密度为ρ,整段导线覆冰的重量mi为:mi=ρVi

Claims (4)

1.一种基于冰形建模的输电导线横截面覆冰形状识别方法,其特征在于,具体按照以下步骤实施:
步骤1,依据导线与铁塔的位置安装摄像机,一个摄像机安装在导线的上方,另一个安装在平行于导线的位置,校准摄像机位置,进行未覆冰时的导线的图像采集;
所述的步骤1具体为:
具体在进行图像采集时,通过多次调整摄像机的安装位置来进行摄像机校准,确定两台摄像机所采集到的输电导线的轮廓一致,从而正前方和正上方的得到一致的未覆冰导线直径为d1,进而可知原始未覆冰导线的横截面面积为
Figure FDA0003231084760000011
以及固定长度内导线自身体积;
步骤2,利用步骤1中设置的两台摄像机对已经覆冰的导线图像进行采集,进行正上方和正前方位置的覆冰导线进行图像采集;
步骤3,对步骤2中两台摄像机采集到的覆冰导线图像分别进行图像预处理、图像分割,进而提取覆冰导线的边缘轮廓;并绘制出导线横截面外轮廓形状,所述的步骤3具体为,
通过导线正上方摄像机拍摄的图像,可获得覆冰导线在水平平面的覆冰边缘轮廓,在该边缘轮廓上等间隔地选取n个点,即可得到其中任意的点k对应位置的覆冰导线横截面的宽度lk,其中,k=0,1,2...,n;
通过导线正前方摄像机拍摄的图像,可获得覆冰导线在垂直平面的覆冰边缘轮廓,进而得到对应n个位置点处覆冰导线横截面的高度,定义为厚度hk,k=0,1,2...,n;
步骤4,根据步骤3得到的lk和hk,计算k点处覆冰导线横截面的长短轴之比αk
所述的步骤4的具体计算公式为:αk=hk/lk,其中,k=0,1,2...,n;αk为k点处覆冰导线横截面的长短轴之比;
步骤5,根据步骤4计算得到的αk,求其均值
Figure FDA0003231084760000021
步骤6、将αk与α′进行比较,根据不同的结果选择后续处理步骤;
步骤7,根据步骤6的结果,对覆冰横截面近似为椭圆的点,对该点处决定hk和lk的四个关键点在覆冰导线横截面的位置分布进行分析,进而求出该情况下覆冰导线的横截面覆冰净面积Si
所述的步骤7中的四个点的代表性的几种位置分布及面积求解过程如下:
步骤7.1、将决定导线上某点处覆冰直径l的两个关键点设为横截面中的O和Q两点,决定覆冰厚度h的两个关键点为横截面中的P和R两个点;其中,O、Q两点分布在横截面的长轴的位置,P、R两点分布在横截面的短轴的位置;这4个关键点在横截面上有四种组合分布,对应决定了四种典型的覆冰横截面形状模型;
步骤7.2,第一种情况,O点位置较Q点位置低,且P点在R点左侧;若设O点到P点垂直距离为a,R点到O点垂直距离为b,Q点到R点垂直距离为c,P点到Q点距离为d,中间围成的微小矩形边长为x,y;则覆冰导线横截面总面积经推导可得
Figure FDA0003231084760000022
步骤7.3、第二种情况,O点较Q点位置高,且P点在R点右侧;若设O点到R点垂直距离为a,R点到Q点垂直距离为b,Q点到P点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y;则覆冰导线横截面总面积经推导可得
Figure FDA0003231084760000031
步骤7.4,第三种情况,O点较Q点位置高,且P点在R点左侧;若设O点到P点垂直距离为a,R点到Q点垂直距离为b,Q点到R点垂直距离为c,P点到O点垂直距离为d,中间围成的微小矩形边长为x,y;则覆冰导线横截面总面积经推导可得
Figure FDA0003231084760000032
步骤7.5,第四种情况,O点较Q点位置低,且P点在R点右侧;若设O点到R点垂直距离为a,R点到O点垂直距离为b,Q点到P点垂直距离为c,P点到Q点垂直距离为d,中间围成的微小矩形边长为x,y;则覆冰导线横截面总面积经推导可得
Figure FDA0003231084760000033
步骤7.6、以上四种情况中的x和y分别表示覆冰形状厚度最大两点及直径最大的两点的移动距离,当P、R在一条直线上时y=0,当O、Q在一条直线上时x=0,当P、R共线,且O、Q共线时,x=0,y=0;这三种情况属于特殊情况,此时覆冰导线横截面总面积为标准的椭圆面积
Figure FDA0003231084760000034
步骤7.7、步骤7.2到步骤7.5的四种情况中的覆冰导线横截面总面积中
Figure FDA0003231084760000035
属于微小量,且由于同根导线相同时期不同位置点的横截面覆冰形状存在差异,四种情况出现的几率随机,面积可相互抵消;因此,对步骤7中的覆冰导线横截面可以等效为椭圆的点,该点处的横截面覆冰净面积为
Figure FDA0003231084760000036
步骤8,根据步骤6的结果,对覆冰横截面不能简单近似为椭圆的点,计算出该点处椭圆面积,以及椭圆曲线和与其相切的高斯曲线围成的封闭区域的面积,从而即可计算出该情况下覆冰导线的横截面覆冰净面积Si
步骤9,在步骤7或步骤8计算出椭圆横截面的覆冰净面积Si后,可进一步通过积分运算,求得整段导线覆冰的重量。
2.根据权利要求1所述的基于冰形建模的输电导线横截面覆冰形状识别方法,其特征在于,所述的步骤6中,αk与α′的比较结果分为两种情况,如果αk≤α′,则k点位置的覆冰导线横截面的形状可以拟合为一个分别以hk和lk为长短轴的椭圆;这种情况下,则转至步骤7计算此种情况下的覆冰净面积Si;如果αk>α′,说明此时k点处的截面形状无法直接拟合为椭圆,则转至步骤8,采用椭圆曲线与高斯曲线相结合拟合覆冰导线截面形状,从而计算覆冰净面积。
3.根据权利要求1所述的基于冰形建模的输电导线横截面覆冰形状识别方法,其特征在于,所述的步骤8的具体步骤为,
步骤8.1、对于αk>α′的点,该点处覆冰导线横截面形状为椭圆和高斯曲线的组合,其中椭圆部分的短轴为lk,长轴为lkα′,则椭圆部分的面积为
Figure FDA0003231084760000041
椭圆方程可表示为:
Figure FDA0003231084760000042
步骤8.2、设与步骤8.1中的椭圆相切的高斯函数表达式为
Figure FDA0003231084760000043
其中A、B和c为高斯函数的常系数,函数曲线过点
Figure FDA0003231084760000044
Figure FDA0003231084760000045
将两点代入高斯函数表达式中可求得,
Figure FDA0003231084760000046
Figure FDA0003231084760000047
因椭圆与高斯函数曲线相切,根据椭圆与高斯曲线的形状特征,椭圆曲线与高斯曲线有且仅有两个交点,即方程组
Figure FDA0003231084760000051
有且仅有两个解,求取|c|的唯一解,即可获取与椭圆相切的高斯函数曲线;高斯函数表达式如下:
Figure FDA0003231084760000052
步骤8.4、设高斯函数(3)与椭圆曲线的两切点为:M(-x0,y0)和N(x0,y0);
椭圆上弧线MN的表达式为:
Figure FDA0003231084760000053
椭圆方程及高斯函数已知,高斯曲线与弧线MN所形成的封闭区域的面积Sc为:
Figure FDA0003231084760000054
则这种情况下覆冰导线横截面的总面积S为:
St=Se+Sc (6)
覆冰净面积为:
Figure FDA0003231084760000055
4.根据权利要求1所述的基于冰形建模的输电导线横截面覆冰形状识别方法,其特征在于,所述的步骤9具体为:在步骤7或步骤8计算出椭圆横截面的覆冰净面积Si后,可进一步通过积分运算,求出固定长度[a,b]之间覆冰导线上的覆冰体积Vi,设导线上覆冰的密度为ρ,整段导线覆冰的重量mi为:mi=ρVi
CN201711470765.1A 2017-12-29 2017-12-29 基于冰形建模的输电导线横截面覆冰形状识别方法 Active CN108229371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711470765.1A CN108229371B (zh) 2017-12-29 2017-12-29 基于冰形建模的输电导线横截面覆冰形状识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711470765.1A CN108229371B (zh) 2017-12-29 2017-12-29 基于冰形建模的输电导线横截面覆冰形状识别方法

Publications (2)

Publication Number Publication Date
CN108229371A CN108229371A (zh) 2018-06-29
CN108229371B true CN108229371B (zh) 2021-10-15

Family

ID=62645914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711470765.1A Active CN108229371B (zh) 2017-12-29 2017-12-29 基于冰形建模的输电导线横截面覆冰形状识别方法

Country Status (1)

Country Link
CN (1) CN108229371B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109325956A (zh) * 2018-08-15 2019-02-12 国网河南省电力公司电力科学研究院 一种基于图像处理的输电导线覆冰截面特征提取方法
CN110146008B (zh) * 2019-05-16 2021-02-12 西安工程大学 基于叉指电容传感器的覆冰参量和状态的监测方法
CN111637839A (zh) * 2020-06-01 2020-09-08 中国南方电网有限责任公司超高压输电公司昆明局 数字化覆冰厚度测量装置及测量方法
CN112508913B (zh) * 2020-12-10 2024-07-05 国网江西省电力有限公司电力科学研究院 基于图像检测的电缆截面边沿检测方法
CN115330787B (zh) * 2022-10-13 2023-01-24 国网山西省电力公司电力科学研究院 一种基于图像识别的光伏组件覆冰面积检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793501A (zh) * 2010-04-14 2010-08-04 华中科技大学 一种基于图像的输电线覆冰状态检测方法
CN102252623A (zh) * 2011-06-24 2011-11-23 西安工程大学 基于视频差异分析的输电线路导/地线覆冰厚度测量方法
CN104809727A (zh) * 2015-04-24 2015-07-29 西安工程大学 一种输电导线覆冰形状的自动识别方法
CN106407994A (zh) * 2016-09-29 2017-02-15 武汉大学 一种利用Hough变换与函数拟合的导线覆冰厚度图像识别方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101626B (zh) * 2012-12-04 2015-09-02 中国商用飞机有限责任公司 结冰探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793501A (zh) * 2010-04-14 2010-08-04 华中科技大学 一种基于图像的输电线覆冰状态检测方法
CN102252623A (zh) * 2011-06-24 2011-11-23 西安工程大学 基于视频差异分析的输电线路导/地线覆冰厚度测量方法
CN104809727A (zh) * 2015-04-24 2015-07-29 西安工程大学 一种输电导线覆冰形状的自动识别方法
CN106407994A (zh) * 2016-09-29 2017-02-15 武汉大学 一种利用Hough变换与函数拟合的导线覆冰厚度图像识别方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Online Technology for Measuring Icing Shape on Conductor Based on Vision and Force Sensors;Xinbo Huang et al;《LFFF TRANSACTLONS ON LNSTRLJMFNTATLON ANO MFASLJRFMFNT》;20170926;第3180-3189页 *
复杂环境下覆冰绝缘子识别检测技术;黄新波等;《高电压技术》;20170331;第43卷(第3期);第891-899页 *
自然覆冰条件下的输电线路覆冰形状特征;范松海;《四川电力技术》;20140831;第37卷(第4期);第14-75页 *
输电线路绝缘子覆冰厚度图像识别算法;张烨等;《电力***自动化》;20161110;第40卷(第21期);第195-202页 *

Also Published As

Publication number Publication date
CN108229371A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN108229371B (zh) 基于冰形建模的输电导线横截面覆冰形状识别方法
Huang et al. An online technology for measuring icing shape on conductor based on vision and force sensors
CN113313005B (zh) 基于目标识别与重建的输电导线在线监测方法及***
CN109870108B (zh) 输电线路覆冰检测方法及装置
CN101556142B (zh) 架空线路覆冰厚度的视觉检测方法
WO2015135485A1 (zh) 一种光纤复合架空地线雷击辨别与定位方法
CN106709905B (zh) 一种基于双目视觉图像的防振锤故障在线检测识别方法
CN109284938A (zh) 一种电力电缆线路状态的综合评估方法与装置
CN106776480B (zh) 一种无线电干扰现场测量异常值的剔除方法
CN104809727B (zh) 一种输电导线覆冰形状的自动识别方法
CN103698001B (zh) 一种基于单目视觉分析方法的输电线路舞动监测方法
CN103438848A (zh) 输电线路弧垂监测方法
CN116839682A (zh) 一种基于物联网的电缆加工制造实时监控***
CN111398339B (zh) 一种现场架空线路复合绝缘子发热缺陷分析判断方法及***
CN109579774B (zh) 一种基于深度实例分割网络的天线下倾角测量方法
CN117274818B (zh) 一种输电线路弧垂监测及覆冰判断方法及装置
CN115528810A (zh) 一种基于电力设备的测温数据运检分析管理***
CN108008237A (zh) 一种输电线路绝缘子污闪自动可视化观测***及方法
CN112991432A (zh) 基于图像处理的覆冰冰形识别方法
Zhang et al. Detection and condition assessment of icicle bridging for suspension glass insulator by image analysis
CN116538924A (zh) 一种覆冰状态下输电线路弧垂实时监测方法
CN111062933A (zh) 一种基于视场自适应调节的输电线路覆冰图像检测方法
CN111562467B (zh) 一种基于地面合成电场测量数据的起晕判定方法及***
CN105203024A (zh) 一种多传感器集成的输电线路覆冰摄影测量方法
CN115808129B (zh) 一种机器视觉识别发电机母线位移和形变的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant