CN108220908B - 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法 - Google Patents

一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法 Download PDF

Info

Publication number
CN108220908B
CN108220908B CN201711360852.1A CN201711360852A CN108220908B CN 108220908 B CN108220908 B CN 108220908B CN 201711360852 A CN201711360852 A CN 201711360852A CN 108220908 B CN108220908 B CN 108220908B
Authority
CN
China
Prior art keywords
onion
graphene
frictional interface
film
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711360852.1A
Other languages
English (en)
Other versions
CN108220908A (zh
Inventor
张俊彦
王永富
高凯雄
张斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201711360852.1A priority Critical patent/CN108220908B/zh
Publication of CN108220908A publication Critical patent/CN108220908A/zh
Application granted granted Critical
Publication of CN108220908B publication Critical patent/CN108220908B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Abstract

本发明涉及一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法,该方法将类富勒烯碳和类石墨碳纳米结构薄膜沉积在金属、陶瓷和聚合物等材质表面,组成摩擦副,在摩擦界面形成石墨烯和洋葱;其原因在于摩擦界面上形成的石墨烯和洋葱能通过球面接触或者非公度面面接触有效降低摩擦副接触面积或减少摩擦界面作用力,从而显著降低摩擦系数和磨损率,以达到提高服役寿命、灵敏度和可靠性;其目的在于解决现有的高端装备、航空航天部件等服役寿命、灵敏度和可靠性不能满足10‑15年的要求。

Description

一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法
技术领域
本发明属于真空镀膜、表面处理、运动部件延寿等领域,涉及一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法。
背景技术
我国制造业规模已跃居世界首位,但是大而不强、不精,关键零部件及核心技术与高端装备因缺乏稳定性和可靠性,从而对外依存度高,这些成为制约高新技术产业发展的瓶颈。减少机械运动部件摩擦磨损已被视为有效延长其工作寿命并提高其运行的可靠性、稳定性途径之一。对于实际工况条件下有相对运动的接触界面,超滑将从根本上解决摩擦磨损导致的能量耗散和机械损伤问题。发展具有工程应用价值的超滑薄膜从而延长运动部件的工作寿命并提高其运行的可靠性,对工业技术的发展和节能减排的实现具有重要意义。
在固体超滑研究方面,主要集中于以二维石墨烯为代表的非公度结构超滑和以碳膜为主的无定形界面超滑。
目前,以二维石墨烯为代表的非公度结构超滑主要集中在微纳尺度,要实现宏观结构超滑,则必须构筑复杂的微纳机械***,通过形成石墨烯包裹卷轴或球体以有效减少在微纳尺度下接触面积呈现非公度性,从而突破湿度敏感性和尺度效应的制约瓶颈。
具有工程应用价值的超滑材料,必须实现大尺寸、高承载等特性,即要求具有可大面积制备、高硬度性能。含氢碳基固体润滑薄膜是最有希望在实际工况条件下(大气环境和工程尺度)实现超滑特性。
发明内容
本发明的目的在于提供一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法。
一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法,其特征在于具体步骤为:
1)类富勒烯碳纳米结构由甲烷或乙炔经等离子体化学气相沉积技术获得;通入纯度大于99.99%的CH4或C2H2气体,调整脉冲偏压至800-1200 V,导通比0.5-0.7,频率30-80KHz,甲烷气体气压保持在14-18 Pa,甲烷与氢气压比1:1-1:3可调,制备类富勒烯碳薄膜;薄膜硬度18-32GPa,厚度1-5微米,表面光洁度0.1-0.5nm;
2)类石墨碳纳米结构由甲烷或乙炔经等离子体化学气相沉积技术获得;采用辅助电源加热是基底温度控制在150-350℃,通入纯度大于99.99%的CH4或C2H2气体,调整脉冲偏压至800-1000 V,导通比0.5-0.8,频率30-50 KHz,甲烷气体气压保持在15-18 Pa,甲烷与氢气压比1:0-1:1可调,制备类石墨碳薄膜;测试结果薄膜硬度7-14GPa,厚度1-5微米,表面光洁度0.05-0.5nm。
等离子体化学气相沉积包括直流、直流脉冲、高功率脉冲电源、交流或射频电源。
本发明两种碳结构薄膜配对,组成摩擦副,在摩擦界面形成石墨烯和洋葱。在大气或氮气条件下内摩擦系数0.005-0.01之间调整。类富勒烯碳和类石墨碳薄膜可用于金属、陶瓷和聚合物材质表面的耐磨损和降低摩擦系数。
本发明将类富勒烯碳和类石墨碳纳米结构薄膜沉积在金属、陶瓷和聚合物等材质表面,组成摩擦副,在摩擦界面形成石墨烯和洋葱。摩擦界面上形成的石墨烯和洋葱能通过球面接触或者非公度面面接触有效降低摩擦副接触面积或减少摩擦界面作用力,从而显著降低摩擦系数和磨损率,以达到提高服役寿命、灵敏度和可靠性,解决现有的高端装备、航空航天部件等服役寿命、灵敏度和可靠性不能满足10-15年的要求。
本发明结合了非公度结构超滑和无定形界面超滑的优势,既保证实现大尺寸、高承载等特性,又通过原位摩擦诱导形成石墨烯包裹卷轴或球体以有效减少在微纳尺度下接触面积呈现非公度性。
附图说明
图1为无定形碳、类石墨碳薄膜与类富勒烯碳薄膜的拉曼光谱图。
图2为类石墨碳薄膜与类富勒烯碳薄膜对摩后形成洋葱的高分辨透射电镜图。
图3为类石墨碳薄膜与类富勒烯碳薄膜对摩后形成石墨烯的高分辨透射电镜图。
图4为不同载荷条件下摩擦副的摩擦系数变化图。
图5为类石墨碳薄膜与类富勒烯碳薄膜对摩后形成石墨烯与洋葱导致超滑的示意图。
具体实施方式
实施例1 在硅片上制备沉积类富勒烯碳薄膜
(1)常规的清洗;
(2)当腔室内真空达到1×10-4时开始镀膜,氩气控制在5 Pa,偏压800 V,导通比0.8,频率50 KHz,清洗30分钟;
(3)脉冲偏压设置为-1000V,导通比0.4,频率70 Hz;,甲烷17Pa;沉积薄膜120分钟后关机冷却;
(4)待样品冷却至室温后取出测试,测试结果薄膜硬度30GPa,厚度1.5微米,表面光洁度0.1nm,薄膜颜色呈黑色。
(5)如图1所示,类富勒烯碳薄膜典型Raman谱图包括一个馒头峰(峰位在1527cm-1)和一个肩峰(大约在1200cm-1)。
实施例2 在GCr15球上制备原位渗氮及沉积类石墨碳薄膜
具体实施如下:
(1)常规的清洗:除油、除锈、烘干放进真空室;
(2)当腔室内真空达到1×10-4时开始镀膜,氩气控制在5 Pa,偏压900 V,导通比0.8,频率50 KHz,清洗30分钟;
(3)脉冲偏压设置为-800V,导通比0.6,频率80 Hz;,氮气8Pa;渗氮30分钟;
(4)脉冲偏压设置为-850V,导通比0.5,频率50Hz;,甲烷15Pa;并加热到230℃,沉积薄膜120分钟后关机冷却;
(5)待样品冷却至室温后取出测试,测试结果薄膜硬度27GPa,厚度1.3微米,表面光洁度0.07nm,薄膜颜色呈蓝黑色。
如图1所示,类石墨碳薄膜典型Raman谱图包括一个馒头峰(峰位在以上1550cm-1)和一个肩峰(大约在1380cm-1)。
实施例3
两种薄膜组成摩擦副,在摩擦界面形成洋葱(图2)和石墨烯(图3)。在不同载荷条件下摩擦系数在0.005±0.002可调(图4)。其降低摩擦机制可以理解为摩擦界面上形成的石墨烯和洋葱能通过球面接触或者非公度面面接触有效降低摩擦副接触面积或减少摩擦界面作用力,如图5所示。

Claims (2)

1.一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法,其特征在于将类富勒烯碳和类石墨碳纳米结构薄膜配对组成摩擦副,在摩擦界面形成石墨烯和洋葱;
类富勒烯碳纳米结构由甲烷或乙炔经等离子体化学气相沉积技术获得;通入纯度大于99.99%的CH4或C2H2气体,调整脉冲偏压至800-1200 V,导通比0.5-0.7,频率30-80 KHz,甲烷气体气压保持在14-18 Pa,甲烷与氢气的气压比为1:1-1:3,制备类富勒烯碳薄膜;薄膜硬度18-32GPa,厚度1-5微米,表面光洁度0.1-0.5nm;
类石墨碳纳米结构由甲烷或乙炔经等离子体化学气相沉积技术获得;采用辅助电源加热使基底温度控制在150-350℃,通入纯度大于99.99%的CH4或C2H2气体,调整脉冲偏压至800-1000 V,导通比0.5-0.8,频率30-50 KHz,甲烷气体气压保持在15-18 Pa,甲烷与氢气的气压比为1:0-1:1,制备类石墨碳薄膜;测试结果薄膜硬度7-14GPa,厚度1-5微米,表面光洁度0.05-0.5nm。
2.如权利要求1所述的方法,其特征在于所述等离子体化学气相沉积包括直流、直流脉冲、高功率脉冲电源、交流或射频电源。
CN201711360852.1A 2017-12-18 2017-12-18 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法 Active CN108220908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711360852.1A CN108220908B (zh) 2017-12-18 2017-12-18 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711360852.1A CN108220908B (zh) 2017-12-18 2017-12-18 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法

Publications (2)

Publication Number Publication Date
CN108220908A CN108220908A (zh) 2018-06-29
CN108220908B true CN108220908B (zh) 2019-11-05

Family

ID=62649687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711360852.1A Active CN108220908B (zh) 2017-12-18 2017-12-18 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法

Country Status (1)

Country Link
CN (1) CN108220908B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650380B (zh) * 2019-01-21 2022-04-19 中国科学院兰州化学物理研究所 一种真空环境下干摩擦制备碳纳米洋葱的方法
CN109867275B (zh) * 2019-03-11 2020-10-30 西安石油大学 一种真空球磨制备碳纳米洋葱的方法
CN110387524B (zh) * 2019-07-25 2021-07-20 中国科学院兰州化学物理研究所 一种掺硅碳薄膜的固液超滑方法
CN110894593B (zh) * 2019-11-29 2022-03-04 岭南师范学院 一种含有类石墨碳涂层的钢领及其制备方法
CN112375246B (zh) * 2020-11-27 2021-07-13 中国科学院兰州化学物理研究所 二氧化碳等离子体在大气压下放电修饰聚合物表面的方法
CN113880080B (zh) * 2021-11-15 2022-12-02 中国科学院兰州化学物理研究所 一种超滑石墨烯摩尔结构涂层的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243859B (en) * 2002-01-07 2005-11-21 Univ Nat Chiao Tung Nano carbon materials and process for producing the same
WO2010104200A1 (ja) * 2009-03-11 2010-09-16 国立大学法人 熊本大学 オニオンライクカーボンおよびその製造方法
CN105695953B (zh) * 2016-01-19 2018-06-12 中国科学院化学研究所 一种三维碳负极材料的制备方法及应用
CN106191805B (zh) * 2016-06-06 2020-12-08 重庆大学 一种磁性石墨烯复合薄膜的制备方法

Also Published As

Publication number Publication date
CN108220908A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN108220908B (zh) 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法
Shang et al. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods
CN105668555B (zh) 一种制备三维石墨烯的方法
JP2009231810A (ja) 半導体カーボン膜、半導体素子、及び半導体カーボン膜の製造方法
CN103374697B (zh) 类金刚石膜层的表面处理方法及制品
CN105506579A (zh) 一种石墨烯包覆碳化硅纳米线的制备方法
CN106011794B (zh) 大气环境下超滑纳米晶-非晶碳薄膜的制备方法
Ge et al. Effects of carbon-based impurities on graphene growth
CN103311104B (zh) 一种石墨烯的制备方法
CN103774230B (zh) 一种无氨化制备氮化镓纳米线的方法
CN106241755B (zh) 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法
CN106024586B (zh) 一种碳化硅表面清洁方法
Bu et al. Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process
CN104073834B (zh) 一种纳米类金刚石粉的制备方法
Liu et al. Diamond-like carbon thin films synthesis by low temperature atmospheric pressure plasma method
Park et al. Tribological behavior of nano-undulated surface of diamond-like carbon films
Cole et al. In-situ deposition of sparse vertically aligned carbon nanofibres on catalytically activated stainless steel mesh for field emission applications
Han et al. Effects of thickness of Ni layer deposited on glass substrate on the growth and emission properties of carbon nanotubes
Zhao et al. Micro/nano-texture design for improving tribological properties of DLC-IL composite films
JPWO2014192916A1 (ja) 炭素被覆部材及びその製造方法
Chen et al. Tribological thermostability of carbon film with vertically aligned graphene sheets
Rani et al. Synthesis, Properties, and Application of Ultrathin and Flexible Tellurium Nanorope Films: Beyond Conventional 2D Materials
Kai et al. Directly synthesizing CNT-TIM on aluminum alloy heat sink for HB-LED thermal management
KR20130071546A (ko) 그래핀 구조물의 제조 방법
CN111876754A (zh) 通过纳米金属镀膜钢球与含氢碳薄膜配副实现宏观超滑的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant