CN108205259B - 基于线性扩张状态观测器的复合控制***及其设计方法 - Google Patents

基于线性扩张状态观测器的复合控制***及其设计方法 Download PDF

Info

Publication number
CN108205259B
CN108205259B CN201611175280.5A CN201611175280A CN108205259B CN 108205259 B CN108205259 B CN 108205259B CN 201611175280 A CN201611175280 A CN 201611175280A CN 108205259 B CN108205259 B CN 108205259B
Authority
CN
China
Prior art keywords
compensation
feedback
disturbance
state
extended state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611175280.5A
Other languages
English (en)
Other versions
CN108205259A (zh
Inventor
侯营东
黄屹
王文娟
孙晓旭
孟祥瑞
谢勇
巩轶男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Technology Research Institute Of China Aerospace Science & Industry Corp
Original Assignee
Aerospace Technology Research Institute Of China Aerospace Science & Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Technology Research Institute Of China Aerospace Science & Industry Corp filed Critical Aerospace Technology Research Institute Of China Aerospace Science & Industry Corp
Priority to CN201611175280.5A priority Critical patent/CN108205259B/zh
Publication of CN108205259A publication Critical patent/CN108205259A/zh
Application granted granted Critical
Publication of CN108205259B publication Critical patent/CN108205259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供了一种基于线性扩张状态观测器的复合控制***及其设计方法,包括建立被控对象标称设计模型,设计期望配置的闭环极点,设计反馈测量通道低通滤波器GLP,设计线性扩张状态观测器,设计状态补偿反馈控制律,设计指令前馈控制律和复合控制输出。本发明各设计环节均不需要进行复杂的参数整定,设计过程物理意义明确,通过基于扩张状态观测器的复合控制可以同时实现对闭环***鲁棒性能和鲁棒稳定的双重要求。

Description

基于线性扩张状态观测器的复合控制***及其设计方法
技术领域
本发明涉及一种基于线性扩张状态观测器的复合控制***及其设计方法,适用于存在强环境干扰及对象特性不确定性的控制***设计,属于控制技术领域。
背景技术
由于外界环境的复杂不确定性(外部干扰)以及被控对象在全工作区域内所表现出的非线性特性(内部干扰),控制***设计过程中需要通过有效地反馈调节实现对控制指令的稳定跟踪,并使***在受到干扰情况下保持一定鲁棒性。对于被控特性已知的确定性***,通过引入前馈回路可以在不损失稳定性的前提下提高***的响应速度。
线性扩张状态观测器(Linear Extended State Observer,LESO)是一种在非线性自抗扰控制基础上发展出的新型状态观测器,设计时将扰动作为***之外的一个单独状态,通过引入合适的观测误差反馈可以保证观测器的稳定性、时效性,实现将***中的内部扰动和外部扰动进行实时估计的目的。当***扰动被准确估计出来后就可以在控制回路中施加扰动补偿策略,进而通过反馈线性化手段将***补偿为确定性***。为了使观测误差快速收敛,传统扩张状态观测器中引入了非线性函数,随着***阶次的增加,观测器可调参数个数也快速增加。另外,采用非线性函数使***难以使用现有成熟的分析设计工具对观测器的性能进行有效评估。通过采用线性观测误差反馈设计的线性扩张状态观测器,可以简化参数整定的难度,也便于观测器性能的分析与优化。
发明内容
本发明的目的在于克服现有技术不足,本发明提供了一种基于线性扩张状态观测器状态反馈与指令前馈相结合的复合控制***设计方法及其***。在扰动实时补偿基础上,根据所要求的闭环***动态特性,通过组合状态反馈自由配置极点位置,简化控制参数整定过程,并通过指令前馈进行增益补偿并优化***响应快速性。
对于在全工作区域内存在复杂不确定性扰动的非线性被控对象,根据工作包线选取可以大致表述被控对象传输特性的标称模型作为复合控制***设计的初始条件。由于观测器频带宽度直接决定扰动状态估计的快速性,进而影响状态补偿后***相位特性,考虑高带宽观测器对测量噪声的放大效应,对于含有测量噪声的控制输出设计低通滤波器提升观测器输入信号品质。基于LESO的复合控制***在获取包含扰动信息的状态估计值后,根据所期望的闭环响应特征所确定极点分布位置进行状态反馈补偿,将不确定性***补偿为确定性形式。在状态补偿基础上,进一步设计前馈增益补偿回路,通过指令前馈进行回路增益补偿及闭环响应特性优化。
本发明的技术解决方案:
本发明提供一种基于线性扩张状态观测器的复合控制***设计方法,包括以下步骤:
步骤1:建立被控对象标称设计模型,以常用二阶***作为对象,获取的标称设计模型如下:
Figure BSA0000137744540000021
k0∈[k0min,k0max]
k1∈[k1min,k1max]
K∈[Kmin,Kmax]
Figure BSA0000137744540000031
式中,GP0(s)为综合被控对象不确定性给定的标称设计对象传递函数;k0、k1、K分别为标称对象传递函数系数;[k0min,k0max]、[k1min,k1max]、[Kmin,Kmax]表示被控对象在全工作范围内系数k0、k1、K的摄动范围,表征了被控对象的不确定特性;ωn、ξ为标称二阶被控对象对应的自然频率与阻尼比特征参数;s为拉普拉斯算子;
步骤2:根据***期望动态特性确定闭环极点分布位置,在此假定两极点分别为(p1、p2):
ΔΦ(s)=(s+p1)(s+p2)=s2+(p1+p2)s+p1p2
Figure BSA0000137744540000032
式中,ΔΦ(s)为由极点(p1、p2)确定的***闭环特征方程,ωnc、ξc为由极点(p1、p2)决定的二阶***自然频率与阻尼比特征参数,表征了期望***的频域与时域特性;
步骤3:根据***环境噪声特性与测量通道配置性能,设计反馈测量通道低通滤波器GLP
步骤4:设计线性扩张状态观测器:
选取线性扩张状态观测器观测带宽为ωo,将步骤1选取的标称设计模型描述为状态空间描述形式,如下所示:
Figure BSA0000137744540000041
式中,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量,设计线性扩张状态观测器如下所示:
Figure BSA0000137744540000042
式中,Z1、Z2、Z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,取值如下:
Figure BSA0000137744540000043
步骤5:状态补偿反馈控制律设计:
根据步骤4中扩张状态观测器建模状态及扰动变量输出,结合步骤2中自由配置的闭环极点位置,设计补偿反馈控制律如下:
Figure BSA0000137744540000044
上式中,反馈补偿控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项;
步骤6:设计指令前馈控制律
设计指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure BSA0000137744540000051
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为指令调理环节;T为一阶超前惯性时间常数、α为校正系数;
步骤7:复合控制输出
复合控制***最终输出u由指令前馈调节量ub与状态补偿反馈量ud两部分组成:
u=ub+ud
本发明还提供一种基于线性扩张状态观测器的复合控制***,包括低通滤波器GLP,线性扩张状态观测器、状态补偿反馈模块、指令前馈控制模块和复合控制输出模块,其中:所述低通滤波器GLP与被控对象输出相连,用于去除***输出信号中掺杂的传感器高频测量噪声,为观测器提供观测参考;
线性扩张状态观测器与低通滤波器GLP、复合控制输出相连,通过综合两种输入信号的动态变换关系对***状态和不确定扰动信息进行实时估计,用于扰动补偿反馈模块的计算输入;
所述线性扩张状态观测器观测带宽为ωo,将标称设计模型描述为状态空间描述形式,如下所示:
Figure BSA0000137744540000061
式中,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量,设计线性扩张状态观测器如下所示:
Figure BSA0000137744540000062
式中,Z1、Z2、Z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,取值如下:
Figure BSA0000137744540000063
所述状态反馈补偿模块与线性扩张状态观测器输出相连,结合所期望闭环特性,用于实现对***期望闭环极点的配置和由于被控对象特性偏离标称设计状态进行扰动补偿控制量计算,所述所述状态反馈补偿模块的补偿反馈控制律如下:
Figure BSA0000137744540000064
上式中,反馈补偿控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项;
指令前馈控制模块与***外部指令相连,用于计算给定控制目标对应的前馈控制量,所述指令前馈控制模块的指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure BSA0000137744540000071
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为指令调理环节;T为一阶超前惯性时间常数、α为校正系数;
复合控制输出模块与指令前馈控制模块、扰动补偿反馈模块,用于计算复合控制***的最终输出,所述复合控制***最终输出u由指令前馈调节量ub与状态补偿反馈量ud两部分组成:u=ub+ud
本发明与现有技术相比的有益效果:
(1)本发明设计的复合控制***通过在反馈测量通道嵌入低通滤波器提升观测变量信号品质,使可以在强测量噪声的下通过提高观测器带宽提高实现对模型状态及扰动信息快速估计,避免状态反馈补偿后由于观测带宽不足引起估计扰动、状态相位滞后对***稳定性产生的不利影响。
(2)本发明通过指定期望闭环极点位置可以较为直观的对控制***设计性能进行描述,在扩张状态观测器基础上通过设计状态反馈补偿控制回路,可以实现对不确定性***的扰动补偿与闭环极点自由配置,将控制参数整定过程映射简化为对期望闭环特性,即对期望闭环极点位置的调整过程。
(3)本发明通过扩张状态观测器线性状态反馈补偿可将原不确定性***转化为确定已知***,在此基础上通过设计控制指令前馈回路实现对闭环***回路增益补偿及闭环动态特性优化的目的,达到指令前馈与状态反馈补偿最优结合的2DOF复合控制。
(4)本发明以上各设计环节均不需要进行复杂的参数整定,设计过程物理意义明确,通过基于扩张状态观测器的复合控制可以同时实现对闭环***鲁棒性能和鲁棒稳定的双重要求。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施例,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明结构图;
图2为极点位置对***响应特性的影响图。
具体实施方式
下面将结合附图对本发明的具体实施例进行详细说明。在下面的描述中,出于解释而非限制性的目的,阐述了具体细节,以帮助全面地理解本发明。然而,对本领域技术人员来说显而易见的是,也可以在脱离了这些具体细节的其它实施例中实践本发明。
在此需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
下面参照附图对本发明的实施例进行说明。
一种基于线性扩张状态观测器的复合控制***设计方法,包括以下步骤:
步骤1:建立被控对象标称设计模型,以常用二阶***作为对象,获取的标称设计模型如下。
Figure BSA0000137744540000091
k0∈[k0min,k0max]
k1∈[k1min,k1max]
K∈[Kmin,Kmax]
Figure BSA0000137744540000092
式中,GP0(s)为综合被控对象不确定性给定的标称设计对象传递函数;k0、k1、K分别为标称对象传递函数系数;[k0min,k0max]、[k1min,k1max]、[Kmin,Kmax]表示被控对象在全工作范围内系数k0、k1、K的摄动范围,表征了被控对象的不确定特性;ωn、ξ为标称二阶被控对象对应的自然频率与阻尼比特征参数,s为拉普拉斯算子。
步骤2:根据***期望动态特性确定闭环极点分布位置,在此假定两极点分别为(p1、p2)。
ΔΦ(s)=(s+p1)(s+p2)=s2+(p1+p2)s+p1p2
Figure BSA0000137744540000093
式中,ΔΦ(s)为由极点(p1、p2)确定的***闭环特征方程,ωnc、ξc为由极点(p1、p2)决定的二阶***自然频率与阻尼比特征参数,表征了期望***的频域与时域特性。
由于线性***的稳定性完全取决于***传递函数的极点在复平面上的分布。不仅如此,***的其他特征和品质指标也在很大程度上由极点在左半平面上的位置所决定。对于设计的二阶***,***阻尼的大小取决于极点负实部的大小,而振荡频率的高低则决定于虚部的大小。因此,在极点配置时,为了增大***的阻尼可以使极点远离虚轴,为了减小振荡频率可使极点配置在实轴附近或直接配置在实轴上。极点位置对***响应特性的影响如图2所示:
步骤3:根据***环境噪声特性与测量通道配置性能,设计反馈测量通道低通滤波器GLP
低通滤波器的设计指标主要包含以下三个方面:通带的平坦度、阻带的陡峭程度、相位延迟。考虑常见的低通滤波器结构,对于同样阶次的滤波器,巴特沃斯型具有最好的平坦度,能够在通带保持精确的信号传输,在此选用巴特沃斯低通滤波。选取低通滤波器带宽为ωc、阶次为N,定义归一化频率S=s/ωc,设计滤波器GLP(s)形式如下:
Figure BSA0000137744540000101
表5.1巴特沃斯多项式
Figure BSA0000137744540000102
步骤4:设计线性扩张状态观测器
选取线性扩张状态观测器观测带宽为ωo,将步骤1选取的标称设计模型描述为状态空间描述形式,如下所示:
Figure BSA0000137744540000111
式中,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量。
设计线性扩张状态观测器如下所示:
Figure BSA0000137744540000112
式中,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,Z1、Z2、Z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,取值如下:
Figure BSA0000137744540000113
步骤5:状态补偿反馈控制律设计
根据步骤4中扩张状态观测器建模状态及扰动变量输出,结合步骤2中自由配置的闭环极点位置,设计补偿反馈控制律如下:
Figure BSA0000137744540000114
上式中,反馈补偿控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项。
步骤6:设计指令前馈控制律
设计指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure BSA0000137744540000121
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为进一步改善闭环响应特性增加的指令调理环节。T为一阶超前惯性时间常数、α为校正系数。
式中给出了Gpc典型的一阶线性超前(α>1)或滞后(0<α<1)校正网络,超前网络一般用于加快指令跟踪响应速度,滞后网络一般用于指令噪声抑制与过渡平滑,参数选取根据响应特性需求而定,为简化设计过程亦可取Gpc=1。
步骤7:复合控制输出
本发明设计的基于线性扩张状态观测器的复合控制***最终输出u由指令前馈调节量ub与状态补偿反馈量ud两部分组成:
u=ub+ud
本发明还提供了一种基于线性扩张状态观测器的复合控制***,如图1所示,包括低通滤波器GLP,线性扩张状态观测器、状态补偿反馈模块、指令前馈控制模块和复合控制输出模块。
首先建立被控对象标称设计模型,以常用二阶***作为对象,获取的标称设计模型如下。
Figure BSA0000137744540000131
k0∈[k0min,k0max]
k1∈[k1min,k1max]
K∈[Kmin,Kmax]
Figure BSA0000137744540000132
式中,GP0(s)为综合被控对象不确定性给定的标称设计对象传递函数;k0、k1、K分别为标称对象传递函数系数;[k0min,k0max]、[k1min,k1max]、[Kmin,Kmax]表示被控对象在全工作范围内系数k0、k1、K的摄动范围,表征了被控对象的不确定特性;ωn、ξ为标称二阶被控对象对应的自然频率与阻尼比特征参数。
根据***期望动态特性确定闭环极点分布位置,在此假定两极点分别为(p1、p2)。
ΔΦ(s)=(s+p1)(s+p2)=s2+(p1+p2)s+p1p2
Figure BSA0000137744540000133
式中,ΔΦ(s)为由极点(p1、p2)确定的***闭环特征方程,ωnc、ξc为由极点(p1、p2)决定的二阶***自然频率与阻尼比特征参数,表征了期望***的频域与时域特性。
由于线性***的稳定性完全取决于***传递函数的极点在复平面上的分布。不仅如此,***的其他特征和品质指标也在很大程度上由极点在左半平面上的位置所决定。对于设计的二阶***,***阻尼的大小取决于极点负实部的大小,而振荡频率的高低则决定于虚部的大小。因此,在极点配置时,为了增大***的阻尼可以使极点远离虚轴,为了减小振荡频率可使极点配置在实轴附近或直接配置在实轴上。极点位置对***响应特性的影响如图2所示。
所述低通滤波器的设计指标主要包含以下三个方面:通带的平坦度、阻带的陡峭程度、相位延迟。考虑常见的低通滤波器结构,对于同样阶次的滤波器,巴特沃斯型具有最好的平坦度,能够在通带保持精确的信号传输,在此选用巴特沃斯低通滤波。选取低通滤波器带宽为ωc、阶次为N,定义归一化频率S=s/ωc,设计滤波器GLP(s)形式如下:
Figure BSA0000137744540000141
表5.1巴特沃斯多项式
Figure BSA0000137744540000142
低通滤波器GLP与被控对象输出相连,用于去除***输出信号中掺杂的传感器高频测量噪声,为观测器提供品质良好的观测参考;
线性扩张状态观测器与低通滤波器GLP、复合控制输出相连,通过综合两种输入信号的动态变换关系对***状态和不确定扰动信息进行实时估计,用于扰动补偿反馈模块的计算输入;选取线性扩张状态观测器观测带宽为ωo,将标称设计模型描述为状态空间描述形式,如下所示:
Figure BSA0000137744540000151
式中,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量。
设计线性扩张状态观测器如下所示:
Figure BSA0000137744540000152
式中,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,Z1、Z2、Z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,取值如下:
Figure BSA0000137744540000153
状态反馈补偿模块与线性扩张状态观测器输出相连,结合所期望闭环特性,用于实现对***期望闭环极点的配置和由于被控对象特性偏离标称设计状态进行扰动补偿控制量计算;
根据扩张状态观测器建模状态及扰动变量输出,结合自由配置的闭环极点位置,设计补偿反馈控制律如下:
Figure BSA0000137744540000161
上式中,反馈补偿控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项。
指令前馈控制模块与***外部指令相连,用于计算给定控制目标对应的前馈控制量;所述指令前馈控制模块的指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure BSA0000137744540000162
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为进一步改善闭环响应特性增加的指令调理环节。T为一阶超前惯性时间常数、α为校正系数。
式中给出了Gpc典型的一阶线性超前(α>1)或滞后(0<α<1)校正网络,超前网络一般用于加快指令跟踪响应速度,滞后网络一般用于指令噪声抑制与过渡平滑,参数选取根据响应特性需求而定,为简化设计过程亦可取Gpc=1。
复合控制输出模块与指令前馈控制模块、扰动补偿反馈模块,用于计算复合控制***的最终输出。所述复合控制***最终输出u由指令前馈调节量ub与状态补偿反馈量ud两部分组成:u=ub+ud
本发明设计的基于线性扩张状态观测器的复合控制***,首先由低通滤波器对被控对象输出信号进行处理,用于后续扩张状态观测器计算;扩张状态观测器综合低通滤波器与复合控制当前输出对***状态和扰动信息进行实时估计,并将估计参数传送至扰动补偿反馈模块;由扰动补偿反馈模块根据估计参数计算出状态补偿反馈量,作为复合控制输出模块的其中一路输入;指令前馈控制模块根据外部给定的***目标指令计算前馈控制量,作为控制输出模块的另外一路输入;复合控制输出模块综合输入的两路信号给出复合控制***最终输出。
本发明的实施例的许多特征和优点根据该详细描述是清楚的,因此所附权利要求旨在覆盖这些实施例的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本发明的实施例限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (2)

1.一种基于线性扩张状态观测器的复合控制***,其特征在于:包括低通滤波器GLP,线性扩张状态观测器、扰动补偿反馈模块、指令前馈控制模块和复合控制输出模块,其中:所述低通滤波器GLP与被控对象输出相连,用于去除***输出信号中掺杂的传感器高频测量噪声,为观测器提供观测参考;
线性扩张状态观测器与低通滤波器GLP、复合控制输出相连,通过综合两种输入信号的动态变换关系对***状态和不确定扰动信息进行实时估计,用于扰动补偿反馈模块的计算输入;
所述线性扩张状态观测器观测带宽为ωo,将标称设计模型描述为状态空间描述形式,如下所示:
Figure FSB0000193980920000011
式中,k0、k1、K分别为标称对象传递函数系数,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量,设计线性扩张状态观测器如下所示:
Figure FSB0000193980920000012
式中,z1、z2、z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,取值如下:
Figure FSB0000193980920000013
所述扰动补偿反馈模块与线性扩张状态观测器输出相连,结合所期望闭环特性,用于实现对***期望闭环极点的配置和由于被控对象特性偏离标称设计状态进行扰动补偿控制量计算,所述扰动补偿反馈模块的补偿反馈控制律如下:
Figure FSB0000193980920000021
上式中,补偿反馈控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项;
指令前馈控制模块与***外部指令相连,用于计算给定控制目标对应的前馈控制量,所述指令前馈控制模块的指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure FSB0000193980920000022
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为指令调理环节;T为一阶超前惯性时间常数、α为校正系数;复合控制输出模块与指令前馈控制模块、扰动补偿反馈模块,用于计算复合控制***的最终输出,所述复合控制***最终输出u由指令前馈调节量ub与扰动补偿反馈量ud两部分组成:u=ub+ud
2.一种权利要求1所述的基于线性扩张状态观测器的复合控制***的设计方法,其特征在于,包括以下步骤:
步骤1:建立被控对象标称设计模型,以常用二阶***作为对象,获取的标称设计模型如下:
Figure FSB0000193980920000031
k0∈[k0 min,k0 max]
k1∈[k1 min,k1 max]
K∈[Kmin,Kmax]
Figure FSB0000193980920000032
式中,GP0(s)为综合被控对象不确定性给定的标称设计对象传递函数;k0、k1、K分别为标称对象传递函数系数;[k0 min,k0 max]、[k1 min,k1 max]、[Kmin,Kmax]表示被控对象在全工作范围内系数k0、k1、K的摄动范围,表征了被控对象的不确定特性;ωn、ξ为标称二阶被控对象对应的自然频率与阻尼比特征参数;s为拉普拉斯算子;
步骤2:根据***期望动态特性确定闭环极点分布位置,在此假定两极点分别为(p1、p2):
ΔΦ(s)=(s+p1)(s+p2)=s2+(p1+p2)s+p1p2
Figure FSB0000193980920000033
式中,ΔΦ(s)为由极点(p1、p2)确定的***闭环特征方程,ωnc、ξc为由极点(p1、p2)决定的二阶***自然频率与阻尼比特征参数,表征了期望***的频域与时域特性;
步骤3:根据***环境噪声特性与测量通道配置性能,设计反馈测量通道低通滤波器GLP
步骤4:设计线性扩张状态观测器:
选取线性扩张状态观测器观测带宽为ωo,将步骤1选取的标称设计模型描述为状态空间描述形式,如下所示:
Figure FSB0000193980920000041
式中,f(Δ)为***扰动,将其定义为扩张状态变量x3=f(Δ),x1、x2二阶***对应的状态变量,设计线性扩张状态观测器如下所示:
Figure FSB0000193980920000042
式中,z1、z2、z3为与二阶***对应的扩张状态器状态变量,yf为低通滤波器输出,β01、β02、β03为扩张状态观测器误差反馈增益,根据选定的观测带宽ωo,取值如下:
Figure FSB0000193980920000043
步骤5:扰动补偿反馈控制律设计:
根据步骤4中扩张状态观测器建模状态及扰动变量输出,结合步骤2中自由配置的闭环极点位置,设计补偿反馈控制律如下:
Figure FSB0000193980920000044
上式中,补偿反馈控制律第一项为极点配置对应的状态反馈,第二项为针对环境扰动及被控对象特性偏离标称设计模型产生的扰动补偿项;
步骤6:设计指令前馈控制律
设计指令前馈控制律形式如下所示:
ub=GA·Gpc(s)
Figure FSB0000193980920000051
前馈控制律中ub中第一项GA为回路增益补偿项,用于实现对扩张状态观测器反馈补偿后确定性***稳态增益的补偿;第二项Gpc为在不损失***稳定鲁棒性的前提下,为指令调理环节;T为一阶超前惯性时间常数、α为校正系数;
步骤7:复合控制输出
复合控制***最终输出u由指令前馈调节量ub与扰动补偿反馈量ud两部分组成:
u=ub+ud
CN201611175280.5A 2016-12-19 2016-12-19 基于线性扩张状态观测器的复合控制***及其设计方法 Active CN108205259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611175280.5A CN108205259B (zh) 2016-12-19 2016-12-19 基于线性扩张状态观测器的复合控制***及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611175280.5A CN108205259B (zh) 2016-12-19 2016-12-19 基于线性扩张状态观测器的复合控制***及其设计方法

Publications (2)

Publication Number Publication Date
CN108205259A CN108205259A (zh) 2018-06-26
CN108205259B true CN108205259B (zh) 2021-09-14

Family

ID=62602964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611175280.5A Active CN108205259B (zh) 2016-12-19 2016-12-19 基于线性扩张状态观测器的复合控制***及其设计方法

Country Status (1)

Country Link
CN (1) CN108205259B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116721B (zh) * 2018-08-23 2021-10-19 广东工业大学 一种将时变***转变为定常***的控制方法
CN109327181B (zh) * 2018-09-17 2022-02-15 江西洪都航空工业集团有限责任公司 一种基于扰动观测器的伺服控制律生成方法
CN108925013B (zh) * 2018-10-12 2020-06-02 北京无线电计量测试研究所 一种基于干扰观测器的led路灯调光控制方法和***
CN109491245B (zh) * 2018-10-30 2021-09-10 江苏大学 一种cstr***的扰动补偿控制方法
CN110955143B (zh) * 2019-11-27 2021-11-05 清华大学 一种一阶惯性纯滞后过程的复合控制方法
CN111045324A (zh) * 2019-12-06 2020-04-21 北京工商大学 一种基于超前校正的自抗扰控制方法
CN111142376B (zh) * 2019-12-06 2022-09-02 中国航空工业集团公司洛阳电光设备研究所 基于状态观测复合反馈控制的通道切换***及控制方法
CN111007721B (zh) * 2019-12-11 2022-11-25 南通大学 一种线性定常***中采样周期动态选择方法
CN111251288B (zh) * 2020-04-01 2022-08-02 重庆邮电大学 一种基于时变干扰补偿的柔性机器人串级控制***及方法
CN113655711B (zh) * 2020-12-11 2024-06-25 华北电力大学 基于模糊控制的线性自抗扰控制器
CN113655718A (zh) * 2021-08-25 2021-11-16 的卢技术有限公司 基于滑模控制的自动驾驶车辆间距自适应控制方法
CN114326750B (zh) * 2022-01-12 2023-12-19 江苏科技大学 一种基于自抗扰控制的水面无人艇路径跟踪控制***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166372A (zh) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 一种进给***双位置环反馈的抗扰控制器
CN104238357A (zh) * 2014-08-21 2014-12-24 南京航空航天大学 一种近空间飞行器的容错滑模控制方法
CN104317198A (zh) * 2014-10-21 2015-01-28 南京理工大学 具有时变输出约束的电液伺服***非线性鲁棒位置控制方法
CN104460344A (zh) * 2014-11-13 2015-03-25 北京工业大学 一种基于pd控制的扰动观测器控制方法
CN104865968A (zh) * 2015-04-22 2015-08-26 浙江工业大学 一种采用串级自抗扰控制技术的四旋翼飞行器悬停控制方法
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN104932266A (zh) * 2015-06-05 2015-09-23 北京航空航天大学 一种基于前馈补偿的着陆器进入段精确控制方法
EP2641134B1 (fr) * 2010-11-16 2016-06-01 Ixblue Procédé et dispositif de controle le actif de vibrations mécaniques par mise en oeuvre d'une loi de controle constituée d'un correcteur central et d'un paramètre de youla
CN105867134A (zh) * 2016-04-27 2016-08-17 南京航空航天大学 双框架飞机蒙皮检测机器人连续切换运动的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180464B2 (en) * 2002-04-18 2012-05-15 Cleveland State University Extended active disturbance rejection controller
US8041436B2 (en) * 2002-04-18 2011-10-18 Cleveland State University Scaling and parameterizing a controller
US8145329B2 (en) * 2009-06-02 2012-03-27 Honeywell International Inc. Method and system for combining feedback and feedforward in model predictive control
US9389631B2 (en) * 2012-05-30 2016-07-12 General Electric Company System and method for reactive power compensation
JP2014034101A (ja) * 2012-08-10 2014-02-24 Toshiba Corp ロボット制御装置
CN103558857B (zh) * 2013-11-14 2016-05-25 东南大学 一种btt飞行器的分布式复合抗干扰姿态控制方法
CN104135003B (zh) * 2014-08-04 2017-05-17 国家电网公司 一种基于自抗扰和重复控制的有源电力滤波器控制方法
CN104345638B (zh) * 2014-10-09 2017-06-27 南京理工大学 一种液压马达位置伺服***的自抗扰自适应控制方法
CN104898550B (zh) * 2015-05-05 2018-03-02 北京航空航天大学 动态伺服***基于滑模扩张状态观测器的复合控制方法
CN104898071B (zh) * 2015-06-12 2018-02-02 东南大学 基于状态观测的模块化多电平逆变器故障诊断方法
CN105305913B (zh) * 2015-10-30 2018-06-29 西安交通大学苏州研究院 一种用于滚珠丝杠进给***的抗扰跟随控制器
CN105305448A (zh) * 2015-11-20 2016-02-03 河海大学常州校区 基于模糊pi复合控制的有源滤波器自抗扰控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641134B1 (fr) * 2010-11-16 2016-06-01 Ixblue Procédé et dispositif de controle le actif de vibrations mécaniques par mise en oeuvre d'une loi de controle constituée d'un correcteur central et d'un paramètre de youla
CN104166372A (zh) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 一种进给***双位置环反馈的抗扰控制器
CN104238357A (zh) * 2014-08-21 2014-12-24 南京航空航天大学 一种近空间飞行器的容错滑模控制方法
CN104317198A (zh) * 2014-10-21 2015-01-28 南京理工大学 具有时变输出约束的电液伺服***非线性鲁棒位置控制方法
CN104460344A (zh) * 2014-11-13 2015-03-25 北京工业大学 一种基于pd控制的扰动观测器控制方法
CN104865968A (zh) * 2015-04-22 2015-08-26 浙江工业大学 一种采用串级自抗扰控制技术的四旋翼飞行器悬停控制方法
CN104932262A (zh) * 2015-05-29 2015-09-23 武汉大学 基于mpc和pi控制方法的带电动汽车的微网调频方法
CN104932266A (zh) * 2015-06-05 2015-09-23 北京航空航天大学 一种基于前馈补偿的着陆器进入段精确控制方法
CN105867134A (zh) * 2016-04-27 2016-08-17 南京航空航天大学 双框架飞机蒙皮检测机器人连续切换运动的控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Optimum Design for Fault Detection Filter with Sensor Location;Tao Peng等;《2009 WRI Global Congress on Intelligent Systems》;20091231;第3卷;207-210 *
State-feedback controller and observer design for grid-connected voltage source power converters with LCL-filter;Dirscherl, C等;《2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS》;20151231;215-222 *
扩张状态观测器的内模控制分析与设计;徐琦等;《第三十二届中国控制会议》;20121231;5408-5412 *
无人直升机飞行传感器仿真及其故障诊断与容错技术研究;谢勇;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20110615(第06期);C031-129 *

Also Published As

Publication number Publication date
CN108205259A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
CN108205259B (zh) 基于线性扩张状态观测器的复合控制***及其设计方法
CN105680750B (zh) 基于改进模型补偿adrc的pmsm伺服***控制方法
CN108919643B (zh) 一种用于线性自抗扰控制器ladrc参数的鲁棒整定方法
CN107577147B (zh) 一种基于自适应Smith预估器的遥操作双边PID控制方法
CN109669356B (zh) 基于分数阶扩张状态观测器的自抗扰控制方法及控制器
CN108489015B (zh) 基于极点配置和帕德近似的空调***温度控制方法
CN107168072B (zh) 一种基于干扰观测器的非匹配干扰***自抗扰控制方法
CN108762083B (zh) 一种基于加速度观测器的自动控制***
CN113703313B (zh) 一种基于改进预设性能的无模型自适应滑模约束控制方法
CN109459934A (zh) 一种基于pid控制器整定降阶自抗扰控制器参数的方法
Zhang et al. Low-computation adaptive fuzzy tracking control of unknown nonlinear systems with unmatched disturbances
CN105911869A (zh) 一种基于干扰观测的快速反射镜扰动抑制方法
CN109557810A (zh) 一种基于新型二自由度内模pid的加热炉温度控制方法
CN109324512A (zh) 一种利用已知模型信息整定降阶自抗扰控制器参数的方法
CN111708276A (zh) 基于线性状态观测器观测误差补偿的自适应鲁棒控制方法
CN115981162A (zh) 一种基于新型扰动观测器的机器人***滑模控制轨迹跟踪方法
CN114114928A (zh) 一种压电微定位平台的固定时间自适应事件触发控制方法
CN110032071B (zh) 一种降阶自抗扰控制器及其建立方法
Shao et al. Leakage-type adaptive state and disturbance observers for uncertain nonlinear systems
CN113671833B (zh) 不确定重复控制***协调设计方法及***
CN105549385B (zh) 多变量时滞非最小相位非方***的解耦内模控制器、控制***和控制方法
CN113268072A (zh) 一种基于特征模型的四旋翼无人机抗扰控制方法
CN112334845A (zh) 反馈控制方法和反馈控制装置
CN117192726B (zh) 一种基于改进自抗扰控制的快速反射镜控制方法及设备
WO2019087554A1 (ja) フィードバック制御方法、及びモータ制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant