CN108199052A - 基于金属有机凝胶的Fe-N-C复合材料及其制备方法 - Google Patents

基于金属有机凝胶的Fe-N-C复合材料及其制备方法 Download PDF

Info

Publication number
CN108199052A
CN108199052A CN201711466959.4A CN201711466959A CN108199052A CN 108199052 A CN108199052 A CN 108199052A CN 201711466959 A CN201711466959 A CN 201711466959A CN 108199052 A CN108199052 A CN 108199052A
Authority
CN
China
Prior art keywords
composite materials
preparation
materials based
metal organogel
tpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711466959.4A
Other languages
English (en)
Other versions
CN108199052B (zh
Inventor
张超
李倩倩
刘天西
郭和乐
封其春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201711466959.4A priority Critical patent/CN108199052B/zh
Publication of CN108199052A publication Critical patent/CN108199052A/zh
Application granted granted Critical
Publication of CN108199052B publication Critical patent/CN108199052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0069Post treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种基于金属有机凝胶的Fe‑N‑C复合材料及其制备方法。所述Fe‑N‑C复合材料的原料包括对苯二甲酸,邻苯二胺及硝酸铁。制备方法为:将对苯二甲酸与邻苯二胺混合后,溶解于N,N‑2甲基甲酰胺中;将硝酸铁溶解于乙醇中;将两种溶液混合后超声,得到凝胶;凝胶经高温碳化制备Fe‑N‑C复合材料。本发明利用金属有机配位制备凝胶,再通过高温碳化技术得到具有高催化活性的过渡金属氮掺杂的碳材料。所制备的Fe‑N‑C复合材料具有较高的电催化活性以及电化学稳定性,是理想的氧还原催化剂。

Description

基于金属有机凝胶的Fe-N-C复合材料及其制备方法
技术领域
本发明涉及一种基于金属有机凝胶的Fe-N-C复合材料及其制备方法,属于纳米材料技术领域。
背景技术
目前低温燃料电池阴极所使用的Pt基催化剂,由于价格昂贵、储量稀缺、CO中毒、阳极燃料渗透中毒、动力学缓慢和稳定性差等特点,阻碍了燃料电池商业化。因此,需要研究开发价格低廉、高活性、高稳定性的的非贵金属氧还原反应催化剂来取代目前所使用的铂基催化剂。设计制备高比表面积和结构稳定的先进碳纳米材料到非贵金属氧还原反应催化剂不仅可以为电子转移提供最大化的电催化比表面积,而且可以提高长时间运行的电催化稳定性。因此,制备非金属杂原子掺杂碳、过渡金属氮掺杂碳和碳载过渡金属纳米颗粒催化剂非常有必要。
金属有机凝胶碳化后的Fe-N-C复合材料,具有较高的孔隙率和比表面积,以及暴露了更多的活性位点。
发明内容
本发明所要解决的问题是:提供一种制备过程简单、清洁、环保、制备成本低、电化学性能优异的一种基于金属有机凝胶的Fe-N-C复合材料及其制备方法。
为了解决上述问题,本发明提供了一种基于金属有机凝胶的Fe-N-C复合材料,其特征在于,原料包括对苯二甲酸,邻苯二胺及硝酸铁。
优选地,所述对苯二甲酸与邻苯二胺的重量比为1∶1~2;对苯二甲酸与硝酸铁的重量比为1∶1。
本发明还提供了一种上述基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,包括以下步骤:
步骤1):将对苯二甲酸与邻苯二胺混合后,溶解于N,N-2甲基甲酰胺中;
步骤2):将硝酸铁溶解于乙醇中;
步骤3):将步骤1)、2)得到的溶液混合后超声,得到凝胶;
步骤4):凝胶经高温碳化制备Fe-N-C复合材料。
优选地,所述步骤4)中凝胶高温碳化前在60℃、真空条件下干燥处理。
优选地,所述步骤5)中的高温碳化的工艺参数为:惰性气体气氛下,碳化温度为800~1000℃,升温速率为5℃/min,保温2h。
更优选地,所述惰性气体为氩气。
优选地,所述步骤4)制得的Fe-N-C复合材料依次经酸洗、干燥后处理。
更优选地,所述酸洗过程为:在浓度为1mol/L的盐酸中搅拌8h。
本发明利用金属有机配位制备凝胶,再通过高温碳化技术得到具有高催化活性的过渡金属氮掺杂的碳材料。所制备的Fe-N-C复合材料具有较高的电催化活性以及电化学稳定性,是理想的氧还原催化剂。
与现有技术相比,本发明的有益效果在于:
(1)制备过程简单、清洁、易于操作,是一种绿色化学合成方法;
(2)实验设计巧妙。通过高温碳化技术,简单有效地利用了金属有机化合物的配位制备凝胶,再经过简单的高温碳化制备得到Fe-N-C复合材料。
附图说明
图1为实施例1-5制得的Fe-N-C复合材料的线性伏安曲线;
图2为实施例1制得的Fe-N-C复合材料不同转速下的线性伏安曲线。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种基于金属有机凝胶的Fe-N-C复合材料的制备方法:
(1)将对苯二甲酸和邻苯二胺混合,溶解于N,N-2甲基甲酰胺中,对苯二甲酸与邻苯二胺的质量比为:2∶3;
(2)将硝酸铁溶解于乙醇中,对苯二甲酸与硝酸铁的质量比为:2∶3;
(3)将所得到的两种溶液混合,后超声,得到凝胶;
(4)将得到的凝胶干燥,60℃下抽真空;
(5)高温碳化制备Fe-N-C复合材料,惰性气体为高纯度的氩气,碳化温度为900℃,升温速率为5℃/min,升到目标温度后,保温2h;
(6)将制备的Fe-N-C复合材料酸洗,干燥,所用的酸为浓度为1mol/L的盐酸,搅拌8h进行酸洗。
实施例2
与实施例1的不同之处在于对苯二甲酸与邻苯二胺的质量比为1∶1,最终所获得的复合材料记为Fe-N-C-1。
实施例3
与实施例1的不同之处在于对苯二甲酸与邻苯二胺的质量比为1∶2,最终所获得的复合材料记为Fe-N-C-2。
实施例4
与实施例1的不同之处在于碳化温度为800℃,最终所获得的复合材料记为Fe-N-C-3。
实施例5
与实施例1的不同之处在于碳化温度为1000℃,最终所获得的复合材料记为Fe-N-C-4。
将实施例1-5制得的Fe-N-C复合材料经电化学测试。结果表明,Fe-N-C复合材料具有较高的电催化活性,在饱和氧气下和0.1M的氢氧化钾溶液中,以0.05V s-l扫速时获得的循环伏安图,出现了明显的氧还原峰,起始电位约为0.94V,如图1所示。在800、1200、1600、2000、2400rpm/s的转速下,测试得到的线性伏安曲线中,半波电位达到0.78V,如图2所示。

Claims (8)

1.一种基于金属有机凝胶的Fe-N-C复合材料,其特征在于,原料包括对苯二甲酸,邻苯二胺及硝酸铁。
2.如权利要求1所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述对苯二甲酸与邻苯二胺的重量比为1∶1~2;对苯二甲酸与硝酸铁的重量比为1∶1。
3.一种权利要求1或2所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,包括以下步骤:
步骤1):将对苯二甲酸与邻苯二胺混合后,溶解于N,N-2甲基甲酰胺中;
步骤2):将硝酸铁溶解于乙醇中;
步骤3):将步骤1)、2)得到的溶液混合后超声,得到凝胶;
步骤4):凝胶经高温碳化制备Fe-N-C复合材料。
4.如权利要求3所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述步骤4)中凝胶高温碳化前在60℃、真空条件下干燥处理。
5.如权利要求3所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述步骤5)中的高温碳化的工艺参数为:惰性气体气氛下,碳化温度为800~1000℃,升温速率为5℃/min,保温2h。
6.如权利要求5所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述惰性气体为氩气。
7.如权利要求3所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述步骤4)制得的Fe-N-C复合材料依次经酸洗、干燥后处理。
8.如权利要求7所述的基于金属有机凝胶的Fe-N-C复合材料的制备方法,其特征在于,所述酸洗过程为:在浓度为1mol/L的盐酸中搅拌8h。
CN201711466959.4A 2017-12-28 2017-12-28 基于金属有机凝胶的Fe-N-C复合材料及其制备方法 Active CN108199052B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711466959.4A CN108199052B (zh) 2017-12-28 2017-12-28 基于金属有机凝胶的Fe-N-C复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711466959.4A CN108199052B (zh) 2017-12-28 2017-12-28 基于金属有机凝胶的Fe-N-C复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108199052A true CN108199052A (zh) 2018-06-22
CN108199052B CN108199052B (zh) 2021-09-07

Family

ID=62585938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711466959.4A Active CN108199052B (zh) 2017-12-28 2017-12-28 基于金属有机凝胶的Fe-N-C复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108199052B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647164A (zh) * 2020-06-23 2020-09-11 河南工业大学 鸟苷超分子金属有机凝胶/mof复合材料及其制备方法与应用
CN112582628A (zh) * 2020-12-21 2021-03-30 华南理工大学 一种FeMn双金属单原子氧还原催化剂及其制备方法与应用
CN113644259A (zh) * 2021-06-17 2021-11-12 上海工程技术大学 一种高活性金属有机凝胶电极材料、其制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837967A (zh) * 2009-03-19 2010-09-22 清华大学 碳复合材料的制备方法
CN103143378A (zh) * 2013-03-04 2013-06-12 太原理工大学 一种燃料电池阴极非贵金属氧还原电催化剂的制备方法
CN104174424A (zh) * 2014-08-19 2014-12-03 中南大学 一种氮掺杂石墨烯气凝胶负载非贵金属氧还原催化剂的制备
KR20160110649A (ko) * 2015-03-10 2016-09-22 한국과학기술원 질소와 금속이 도핑된 다공성 탄소 소재 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837967A (zh) * 2009-03-19 2010-09-22 清华大学 碳复合材料的制备方法
CN103143378A (zh) * 2013-03-04 2013-06-12 太原理工大学 一种燃料电池阴极非贵金属氧还原电催化剂的制备方法
CN104174424A (zh) * 2014-08-19 2014-12-03 中南大学 一种氮掺杂石墨烯气凝胶负载非贵金属氧还原催化剂的制备
KR20160110649A (ko) * 2015-03-10 2016-09-22 한국과학기술원 질소와 금속이 도핑된 다공성 탄소 소재 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647164A (zh) * 2020-06-23 2020-09-11 河南工业大学 鸟苷超分子金属有机凝胶/mof复合材料及其制备方法与应用
CN112582628A (zh) * 2020-12-21 2021-03-30 华南理工大学 一种FeMn双金属单原子氧还原催化剂及其制备方法与应用
CN113644259A (zh) * 2021-06-17 2021-11-12 上海工程技术大学 一种高活性金属有机凝胶电极材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN108199052B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
Liu et al. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery
Niu et al. One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction
Zhou et al. High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts
Zhao et al. A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation
Xu et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea
Bai et al. Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction
Kakaei et al. Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell
Liu et al. Three-dimensional carbon foam supported NiO nanosheets as non-enzymatic electrochemical H2O2 sensors
Chen et al. Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles
Wu et al. Template-free synthesis of hollow nitrogen-doped carbon as efficient electrocatalysts for oxygen reduction reaction
Zhang et al. Non-precious Ir–V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction
Cheng et al. A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells
An et al. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells
Gavrilov et al. Enhancement of electrocatalytic properties of carbonized polyaniline nanoparticles upon a hydrothermal treatment in alkaline medium
Cheng et al. Ag nanoparticles on boron doped multi-walled carbon nanotubes as a synergistic catalysts for oxygen reduction reaction in alkaline media
Yang et al. A linear molecule functionalized multi-walled carbon nanotubes with well dispersed PtRu nanoparticles for ethanol electro-oxidation
CN102687320A (zh) 用于燃料电池的电极催化剂
Shi et al. Mixed ionic liquids/graphene-supported platinum nanoparticles as an electrocatalyst for methanol oxidation
CN108199052A (zh) 基于金属有机凝胶的Fe-N-C复合材料及其制备方法
US11978912B2 (en) Atomically dispersed platinum-group metal-free catalysts and method for synthesis of the same
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
Dong et al. Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction
Kübler et al. Impact of surface functionalization on the intrinsic properties of the resulting Fe–N–C catalysts for fuel cell applications
Shi et al. ZIF‐67 Derived Porous Carbon from Calcination and Acid Etching Process as an Enzyme Immobilization Platform for Glucose Sensing
Wang et al. In situ derived Bi nanoparticles confined in carbon rods as an efficient electrocatalyst for ambient N2 reduction to NH3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant