CN108197643A - 一种基于无监督聚类和度量学习的迁移学习方法 - Google Patents

一种基于无监督聚类和度量学习的迁移学习方法 Download PDF

Info

Publication number
CN108197643A
CN108197643A CN201711447557.XA CN201711447557A CN108197643A CN 108197643 A CN108197643 A CN 108197643A CN 201711447557 A CN201711447557 A CN 201711447557A CN 108197643 A CN108197643 A CN 108197643A
Authority
CN
China
Prior art keywords
sample
metric
matrix
label
weight matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711447557.XA
Other languages
English (en)
Other versions
CN108197643B (zh
Inventor
易长安
顾艳春
王东
李晓东
胡小生
何志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201711447557.XA priority Critical patent/CN108197643B/zh
Publication of CN108197643A publication Critical patent/CN108197643A/zh
Application granted granted Critical
Publication of CN108197643B publication Critical patent/CN108197643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24143Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种基于无监督聚类和度量学习的迁移学习方法,先准备源域样本DS和目标域样本DT;再使用主成份分析方法降低全部样本的维度;然后对源域样本DS进行无监督聚类,将源域样本聚为多个类别;再为每个聚类学习一个度量矩阵G,通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0,并根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W,最后根据权重矩阵W预测未知标签的目标域样本DTU的标签。本发明使用主成份分析方法来降低样本的维度,降低后续计算的复杂度。使用无监督聚类方法将样本聚为多个类别,更能够反应样本的本质特性。使用带标签的目标域样本来学习权重矩阵,更符合目标域样本的实际情况。

Description

一种基于无监督聚类和度量学习的迁移学习方法
技术领域
本发明涉及迁移学习的技术领域,尤其涉及到一种基于无监督聚类和度量学习的迁移学习方法。
背景技术
迁移学习用于解决训练样本(源域)和测试样本(目标域)的分布不一致问题。知识迁移在现实生活中广泛存在,例如,学会打羽毛球之后要学习打网球,学会削苹果之后要学习削梨子,学会辨识猫之后要学习如何辨识狗,这些知识相似、但不相同。如何最大化地利用已有的知识,从而以最快、最有效的方式来学习新知识,是迁移学习的主要难点。人类需要有知识迁移的能力,机器人也是如此。RoboBrain是由来自于斯坦福大学、康奈儿大学等高校的教授主导的项目,其核心目标就是为机器人赋予知识迁移的能力。人类之所以能够不断掌握新知识,其主要原因就是能够举一反三、迁移知识,这种能力也是“机器换人、智能制造”要解决的难题之一。深度学习的优势是从复杂环境里提取特征,但是却不具备迁移能力。AlphaGo的核心是深度学习和强化学习,但是,如果比赛前突然改变围棋的盘面大小,AlphaGo就无法适应,而人类却可以自如地应对。近年来,迁移学习已经成为人工智能、机器人等领域的核心研究问题。
已有的迁移学习技术主要是基于特征、基于实例、或者基于度量。基于特征的方法尝试通过学习特征或子空间来匹配源域和目标域。基于实例的方法主要是调整源域实例的权重从而减少源域和目标域的数据分布之间的差异。这些技术以欧氏距离为基础,不能够获得样本维度之间的相关性。但是,样本的不同维度之间却存在关联,例如,人的身高和体重、人的性别和爱好之间可能存在某种关联,这种关联会影响到整体的特征。度量学习考虑了样本的维度之间的相关性。基于度量学习的迁移学习方法相对较少,已有的方法仅仅考虑样本的标签,忽视了样本特征所蕴含的本质属性。例如,动物的体重可以划分为多个档次,如small、medium、big等等。30~50公斤的猪(样本)可以算作small,但是,同样体重的狗(样本)却可以算作medium。所以,在这种情况下样本的特征更能够反应其本质属性。因此,将聚类与度量学习相结合,更有利于在迁移情况下预测样本的标签。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于无监督聚类和度量学习的迁移学习方法,其既考虑样本维度之间的相关性、又考虑样本特征所隐含的本质属性,使源域知识能更好地迁移到目标域。
为实现上述目的,本发明所提供的技术方案为:
包括以下步骤:
S1、准备源域样本DS和目标域样本DT
源域样本指过去的样本,目标域样本指当前要预测的样本。由于这两类样本的分布存在一定的区别,所以不可以仅仅使用源域样本来训练预测模型。另外,如果对全部的目标域样本DT都人工贴标签,其工作量太大。所以,本方案是先给一小部分的目标域样本贴标签,然后结合DS来为DT训练新的预测模型。
所述目标域样本DT分成两部分:DT={DTL∪DTU},就样本数量来说,DTL<<DTU。DTL的标签已知,该标签由人工赋予,DTU的标签未知。训练集为T,T={DS∪DTL}。
S2、使用主成份分析方法降低全部样本的维度;
在图像识别等领域,样本往往高达数万维甚至更多,计算度量矩阵也就变得十分复杂。如何既有效地降低样本的维度、又保留原始数据的本质特征,这是该步骤需要解决的问题。
S3、对源域样本DS进行无监督聚类,将源域样本聚为多个类别,本质相似的样本聚在一起;
S4、为每个聚类学习一个度量矩阵G;对于每个聚类,在学习度量矩阵之前都需要将样本的顺序打乱,其目的是让选中的样本更具有随机性。
S5、通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0
S6、根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W;
S7、根据权重矩阵W预测未知标签的目标域样本DTU的标签。
进一步地,步骤S4中,度量矩阵G为对称矩阵,其初始值G0设置为单位矩阵,对角线元素为1,其余全部为0。G0在经过许多次迭代更新后就趋于稳定。学习度量矩阵G之前需设置收敛条件:||G-G0||<Lamda,其中,G0为度量矩阵G的初始值,Lamda为设定的阈值,||G-G0||表示G和G0之间距离;
求解度量矩阵G的目标函数的公式如下:
subject to dG(xi,xj)≤α(i,j)∈S,
dG(xi,xj)≥β(i,j)∈D
该公式反应了:不同类的样本之间距离大、同类样本之间的距离小。
其中,xi、xj指其中的某个样本,S表示xi与xj同类,D表示xi与xj不同类;p(x;G)表示度量矩阵G下的样本x的概率分布;α和β为设定的阈值。
阈值α和β的设置方式为:从训练集里任意选取100个样本对,并且将它们之间的距离按从小到大的顺序排列,排第5的距离值为α,排第95的距离值为β。
进一步地,步骤S6的具体过程如下:
S61、求出每个已知标签的目标域样本DTL的所属聚类Ci
S62、使用每个度量矩阵进行预测,若结果与真实标签相同,则不需要调整,若结果与真实标签不相同,则调整聚类Ci和该度量矩阵所对应元素的权重;直至所有已知标签的目标域样本DTL均已测试;
S63、若经所有已知标签的目标域样本DTL测试后的权重矩阵w0满足收敛条件,则训练结束,该权重矩阵即为最优的权重矩阵W;否则继续使用DTL更新权重矩阵,直至满足收敛条件为止。
权重矩阵w0满足收敛条件后,对于w0的每个元素wij(1≤i,j≤n)均执行归一化操作,公式如下:
进一步地,步骤S7的具体过程如下:
S71、求出每个未知标签的目标域样本DTU各自所属的聚类Ct
S72、使用全部的度量矩阵预测样本i的类型;
S73、使用KNN分类器进行分类得出分类值;
S74、若分类值大于阈值threshold,则预测样本i的标签值为Label1,否则预测样本i的标签值为Label2;其中,threshold=(Label1-Label2)/NumOfCategory,NumOfCategory为标签种类。
与现有技术相比,本方案原理如下:
先准备源域样本DS和目标域样本DT,再使用主成份分析方法降低全部样本的维度,然后对源域样本DS进行无监督聚类,将源域样本聚为多个类别,本质相似的样本聚在一起,再为每个聚类学习一个度量矩阵G,通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0,并根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W,最后根据权重矩阵W预测未知标签的目标域样本DTU的标签。
与现有技术相比,本方案优点如下:
1、使用主成份分析方法来降低样本的维度,从而降低后续计算的复杂度。
2、使用无监督聚类方法将样本聚为多个类别,从而更能够反应样本的本质特性。
3、使用带标签的目标域样本来学习权重矩阵,从而更符合目标域样本的实际情况。
附图说明
图1为本发明实施例的流程图;
图2为本发明实施例中权重矩阵的训练流程图;
图3为本发明实施例中预测目标域样本标签的流程图。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
参见附图1所示,本实施例所述的一种基于无监督聚类和度量学习的迁移学习方法,包括以下步骤:
S1、准备源域样本DS和目标域样本DT
目标域样本DT分成两部分:DT={DTL∪DTU},DTL<<DTU,DTL的标签已知,该标签由人工赋予,DTU的标签未知。训练集为T,T={DS∪DTL};
S2、使用主成份分析方法降低全部样本的维度;
S3、对源域样本DS进行无监督聚类,将源域样本聚为多个类别,本质相似的样本聚在一起;
S4、每个聚类学习一个度量矩阵G;对于每个聚类,在学习度量矩阵之前都需要将样本的顺序打乱,如使用randperm函数(以Matlab为例),其目的是让选中的样本更具有随机性;另外,设置收敛条件:||G-G0||<Lamda,其中,G0为度量矩阵G的初始值,Lamda为设定的阈值,||G-G0||表示G和G0之间距离;
求解度量矩阵G的目标函数的公式如下:
subject to dG(xi,xj)≤α(i,j)∈S,
dG(xi,xj)≥β(i,j)∈D
其中,xi、xj指其中的某个样本,S表示xi与xj同类,D表示xi与xj不同类;p(x;G)表示度量矩阵G下的样本x的概率分布;α和β为设定的阈值。
阈值α和β的设置方式为:从训练集里任意选取100个样本对,并且将它们之间的距离按从小到大的顺序排列,排第5的距离值为α,排第95的距离值为β。
S5、通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0;每个聚类都和所有的度量矩阵相关联,如表1所示:
表1
权重矩阵w0={wij,i=1,2,…,n,j=1,2,…,n},如表2所示:
w11 w12 w1n
w21 w22 w2n
wn1 wn2 wnn
表2
n为聚类数目;
权重矩阵w0的初始值为对角矩阵,如表3所示:
1 0 0
0 1 0
0 0 0 1
表3
S6、根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W;如图2所示,具体步骤如下:
S61、求出每个已知标签的目标域样本DTL的所属聚类Ci
S62、使用每个度量矩阵进行预测,若结果与真实标签相同,则不需要调整,若结果与真实标签不相同,则调整聚类Ci和该度量矩阵所对应元素的权重;直至所有已知标签的目标域样本DTL均已测试;
S63、若经所有已知标签的目标域样本DTL测试后的权重矩阵w0满足收敛条件,则训练结束,该权重矩阵即为最优的权重矩阵W;否则继续使用DTL更新权重矩阵,直至满足收敛条件为止。
其中,w0的收敛条件为||ws+1-ws||<Sigma,Sigma为一个很小的正数,ws表示第s次迭代后的权重矩阵;
权重矩阵w0满足收敛条件后,对于w0的每个元素wij(1≤i,j≤n),均执行归一化操作,公式如下:
S7、根据权重矩阵W预测未知标签的目标域样本DTU的标签;如图3所示(假设样本的标签值为0、1),具体步骤如下:
S71、求出每个未知标签的目标域样本DTU各自所属的聚类Ct
S72、使用全部的度量矩阵分别预测样本i的类型为mj(1 j n);
S73、使用KNN分类器进行分类得出分类值:
wi=wt1m1+wt2m2+…+wtnmn
S74、若分类值大于阈值threshold,则预测样本i的标签值为Label1,否则预测样本i的标签值为Label2(Label1大于Label2);其中,threshold=(Label1-Label2)/NumOfCategory,NumOfCategory为标签种类。
如Label1和Label2分别为1和0,NumOfCategory为2,可得threshold=(1-0)/2=0.5;若分类值大于阈值0.5,则预测样本i的标签值为1,否则预测样本i的标签值为0。
本实施例可以用于常见的迁移学习数据集,例如:
i)20Newsgroup(文本分类,
http://people.csail.mit.edu/jrennie/20Newsgroups/)
ii)Office-Caltech(物体识别,
http://www.eecs.berkeley.edu/~jhoffman/domainadapt/)
iii)USPS(手写字体识别,
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html)和MNIST(手写字体识别,http://yann.lecun.com/exdb/mnist)
其中,USPS、MNIST的数据分布不同但相关,两者均可以作为源域或目标域数据。
而且本实施例具有以下优点:
1、使用主成份分析方法来降低样本的维度,从而降低后续计算的复杂度。
2、使用无监督聚类方法将样本聚为多个类别,从而更能够反应样本的本质特性。
3、使用带标签的目标域样本来学习权重矩阵,从而更符合目标域样本的实际情况。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (7)

1.一种基于无监督聚类和度量学习的迁移学习方法,其特征在于,包括以下步骤:
S1、准备源域样本DS和目标域样本DT
S2、使用主成份分析方法降低全部样本的维度;
S3、对源域样本DS进行无监督聚类,将源域样本聚为多个类别,本质相似的样本聚在一起;
S4、为每个聚类学习一个度量矩阵G;
S5、通过每个聚类和所有的度量矩阵的关联性得出权重矩阵w0
S6、根据已知标签的目标域样本DTL训练权重矩阵w0,得到最优的权重矩阵W;
S7、根据权重矩阵W预测未知标签的目标域样本DTU的标签。
2.根据权利要求1所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:所述步骤S4每个聚类在学习一个度量矩阵之前均需要将样本的顺序打乱。
3.根据权利要求1所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:所述步骤S4学习度量矩阵G之前需设置收敛条件:
||G-G0||<Lamda,其中,G0为度量矩阵G的初始值,Lamda为设定的阈值,
||G-G0||表示G和G0之间距离;
求解度量矩阵G的目标函数的公式如下:
subject to dG(xi,xj)≤α(i,j)∈S,
dG(xi,xj)≥β(i,j)∈D
其中,xi、xj指其中的某个样本,S表示xi与xj同类,D表示xi与xj不同类;p(x;G)表示度量矩阵G下的样本x的概率分布;
α和β为设定的阈值。
4.根据权利要求3所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:所述阈值α和β的设置方式为:从训练集里任意选取100个样本对,并且将它们之间的距离按从小到大的顺序排列,排第5的距离值为α,排第95的距离值为β。
5.根据权利要求1所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:
所述步骤S6的具体过程如下:
S61、求出每个已知标签的目标域样本DTL的所属聚类Ci
S62、使用每个度量矩阵进行预测,若结果与真实标签相同,则不需要调整,若结果与真实标签不相同,则调整聚类Ci和该度量矩阵所对应元素的权重;直至所有已知标签的目标域样本DTL均已测试;
S63、若经所有已知标签的目标域样本DTL测试后的权重矩阵w0满足收敛条件,则训练结束,该权重矩阵即为最优的权重矩阵W;否则继续使用DTL更新权重矩阵,直至满足收敛条件为止。
6.根据权利要求5所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:所述权重矩阵w0满足收敛条件后,对于w0的每个元素wij(1≤i,j≤n),均执行归一化操作,公式如下:
7.根据权利要求1所述的一种基于无监督聚类和度量学习的迁移学习方法,其特征在于:所述步骤S7的具体过程如下:
S71、求出每个未知标签的目标域样本DTU各自所属的聚类Ct
S72、使用全部的度量矩阵预测样本i的类型;
S73、使用KNN分类器进行分类得出分类值;
S74、若分类值大于阈值threshold,则预测样本i的标签值为Label1,否则预测样本i的标签值为Label2;其中,
threshold=(Label1-Label2)/NumOfCategory,NumOfCategory为标签种类。
CN201711447557.XA 2017-12-27 2017-12-27 一种基于无监督聚类和度量学习的迁移学习方法 Active CN108197643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711447557.XA CN108197643B (zh) 2017-12-27 2017-12-27 一种基于无监督聚类和度量学习的迁移学习方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711447557.XA CN108197643B (zh) 2017-12-27 2017-12-27 一种基于无监督聚类和度量学习的迁移学习方法

Publications (2)

Publication Number Publication Date
CN108197643A true CN108197643A (zh) 2018-06-22
CN108197643B CN108197643B (zh) 2021-11-30

Family

ID=62584668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711447557.XA Active CN108197643B (zh) 2017-12-27 2017-12-27 一种基于无监督聚类和度量学习的迁移学习方法

Country Status (1)

Country Link
CN (1) CN108197643B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109583506A (zh) * 2018-12-06 2019-04-05 哈尔滨工业大学 一种基于参数迁移学习的无监督图像识别方法
CN110009038A (zh) * 2019-04-04 2019-07-12 北京百度网讯科技有限公司 筛查模型的训练方法、装置及存储介质
CN110851783A (zh) * 2019-11-12 2020-02-28 华中科技大学 一种用于脑机接口校准的异构标签空间迁移学习方法
CN111062406A (zh) * 2019-03-09 2020-04-24 华南理工大学 一种面向异构领域适应的半监督最优传输方法
CN111161239A (zh) * 2019-12-27 2020-05-15 上海联影智能医疗科技有限公司 医学图像分析方法、装置、存储介质及计算机设备
CN111667000A (zh) * 2020-06-05 2020-09-15 成都理工大学 自适应领域深度神经网络的地震预警方法
CN112036451A (zh) * 2020-08-13 2020-12-04 广东电网有限责任公司 基于迁移学习的新型绝缘缺陷识别方法、计算机设备及存储介质
CN112634048A (zh) * 2020-12-30 2021-04-09 第四范式(北京)技术有限公司 一种反洗钱模型的训练方法及装置
WO2022166578A1 (zh) * 2021-02-05 2022-08-11 北京嘀嘀无限科技发展有限公司 用于域自适应学习的方法、装置、设备、介质和产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029839A1 (en) * 2012-07-30 2014-01-30 Xerox Corporation Metric learning for nearest class mean classifiers
CN105787513A (zh) * 2016-03-01 2016-07-20 南京邮电大学 多示例多标记框架下基于域适应迁移学习设计方法和***
CN105930411A (zh) * 2016-04-18 2016-09-07 苏州大学 一种分类器训练方法、分类器和情感分类***
CN107392237A (zh) * 2017-07-10 2017-11-24 天津师范大学 一种基于迁移视觉信息的交叉域地基云图分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029839A1 (en) * 2012-07-30 2014-01-30 Xerox Corporation Metric learning for nearest class mean classifiers
CN105787513A (zh) * 2016-03-01 2016-07-20 南京邮电大学 多示例多标记框架下基于域适应迁移学习设计方法和***
CN105930411A (zh) * 2016-04-18 2016-09-07 苏州大学 一种分类器训练方法、分类器和情感分类***
CN107392237A (zh) * 2017-07-10 2017-11-24 天津师范大学 一种基于迁移视觉信息的交叉域地基云图分类方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘江涛: "距离度量学***衡问题研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109583506A (zh) * 2018-12-06 2019-04-05 哈尔滨工业大学 一种基于参数迁移学习的无监督图像识别方法
CN111062406A (zh) * 2019-03-09 2020-04-24 华南理工大学 一种面向异构领域适应的半监督最优传输方法
CN111062406B (zh) * 2019-03-09 2023-11-28 华南理工大学 一种面向异构领域适应的半监督最优传输方法
CN110009038A (zh) * 2019-04-04 2019-07-12 北京百度网讯科技有限公司 筛查模型的训练方法、装置及存储介质
CN110851783A (zh) * 2019-11-12 2020-02-28 华中科技大学 一种用于脑机接口校准的异构标签空间迁移学习方法
CN111161239A (zh) * 2019-12-27 2020-05-15 上海联影智能医疗科技有限公司 医学图像分析方法、装置、存储介质及计算机设备
CN111161239B (zh) * 2019-12-27 2024-02-27 上海联影智能医疗科技有限公司 医学图像分析方法、装置、存储介质及计算机设备
CN111667000B (zh) * 2020-06-05 2023-02-07 成都理工大学 自适应领域深度神经网络的地震预警方法
CN111667000A (zh) * 2020-06-05 2020-09-15 成都理工大学 自适应领域深度神经网络的地震预警方法
CN112036451A (zh) * 2020-08-13 2020-12-04 广东电网有限责任公司 基于迁移学习的新型绝缘缺陷识别方法、计算机设备及存储介质
CN112634048A (zh) * 2020-12-30 2021-04-09 第四范式(北京)技术有限公司 一种反洗钱模型的训练方法及装置
CN112634048B (zh) * 2020-12-30 2023-06-13 第四范式(北京)技术有限公司 一种反洗钱模型的训练方法及装置
WO2022166578A1 (zh) * 2021-02-05 2022-08-11 北京嘀嘀无限科技发展有限公司 用于域自适应学习的方法、装置、设备、介质和产品

Also Published As

Publication number Publication date
CN108197643B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN108197643A (zh) 一种基于无监督聚类和度量学习的迁移学习方法
Jia et al. Visual concept learning: Combining machine vision and bayesian generalization on concept hierarchies
Xie et al. Representation learning of knowledge graphs with entity descriptions
Yigit A weighting approach for KNN classifier
Zhang et al. Unsupervised and semi-supervised image classification with weak semantic consistency
CN104573669A (zh) 图像物体检测方法
CN104035996B (zh) 基于Deep Learning的领域概念抽取方法
CN107992895A (zh) 一种Boosting支持向量机学习方法
Lu CNN Convolutional layer optimisation based on quantum evolutionary algorithm
Islam et al. InceptB: a CNN based classification approach for recognizing traditional bengali games
CN109784405A (zh) 基于伪标签学习和语义一致性的跨模态检索方法及***
CN108009571A (zh) 一种新的直推式半监督数据分类方法及***
CN103400160A (zh) 一种零训练样本行为识别方法
Kumar et al. Advanced prediction of performance of a student in an university using machine learning techniques
Habib et al. Machine learning based healthcare system for investigating the association between depression and quality of life
CN106846975A (zh) 一种k12阶段数据处理及学生学习情况的智能诊断方法
Karthikeyan et al. A hybrid clustering approach using artificial bee colony (ABC) and particle swarm optimization
CN107423697A (zh) 基于非线性融合深度3d卷积描述子的行为识别方法
Li et al. Agricultural text classification method based on dynamic fusion of multiple features
CN104732522A (zh) 一种基于多态蚁群算法的图像分割方法
Anamisa et al. Technologies. Methods, and Approaches on Detection System of Plant Pests and Diseases
Tan et al. Active learning for deep object detection by fully exploiting unlabeled data
Yao et al. Chemical property relation guided few-shot molecular property prediction
Zhang et al. A dropconnect deep computation model for highly heterogeneous data feature learning in mobile sensing networks
Alif et al. Crop prediction based on geographical and climatic data using machine learning and deep learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant