CN108183102B - 一种逆阻型功率mosfet器件 - Google Patents

一种逆阻型功率mosfet器件 Download PDF

Info

Publication number
CN108183102B
CN108183102B CN201711455406.9A CN201711455406A CN108183102B CN 108183102 B CN108183102 B CN 108183102B CN 201711455406 A CN201711455406 A CN 201711455406A CN 108183102 B CN108183102 B CN 108183102B
Authority
CN
China
Prior art keywords
type
region
metalized
drift region
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711455406.9A
Other languages
English (en)
Other versions
CN108183102A (zh
Inventor
任敏
杨梦琦
王梁浩
李泽宏
高巍
张金平
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201711455406.9A priority Critical patent/CN108183102B/zh
Publication of CN108183102A publication Critical patent/CN108183102A/zh
Application granted granted Critical
Publication of CN108183102B publication Critical patent/CN108183102B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种逆阻型功率MOSFET器件,包括从下至上依次层叠设置的金属化漏极、N型漂移区、金属化源极;N型漂移区的下表面为背面结构,背面结构包括:N型轻掺杂区、N型正向场阻止层、第一沟槽,第一沟槽从金属化漏极的上表面,垂直向上依次贯穿N型轻掺杂区、N型正向场阻止层延伸入N型漂移区;N型漂移区的上表面为正面结构,正面结构包括:N型反向场阻止层、P型体区、第二沟槽、P型埋层;第二沟槽从金属化源极的下表面,垂直向下依次贯穿N型源区、P型体区、N型反向场阻止层延伸入N型漂移区;本发明提供的结构具有逆向阻断能力,同时场阻止层的存在防止了漂移区电场的穿通效应,降低了漂移区的厚度,使器件能够获得较低的导通电阻。

Description

一种逆阻型功率MOSFET器件
技术领域
本发明涉及功率半导体技术,特别涉及一种逆阻型功率MOSFET。
背景技术
功率MOSFET(金属氧化物半导体场效应晶体管)以其具有开关速度高、开关损耗低、驱动损耗低等优点,在各种电能变换特别是在高频电能变换中起着重要作用。电能变换通常包括交流到直流(AC-DC),直流到交流(DC-AC),直流到直流(DC-DC)和交流到交流(AC-AC)几种变换方式。AC-AC可以采用间接变换即AC-DC-AC方式,也可以采用直接变换即AC-AC的方式。由于AC-DC-AC间接变换***中需要有大容值的连接电容(电压型变换)或大感值的连接电感(电流型变换)将两部分相对独立的变换***相连,而大容值的电容和大感值的电感增加了电路的元器件数量及元器件之间的连线数量,增大了***的体积和寄生效应,降低了***的可靠性。AC-AC直接转换***避免了传统AC-DC-AC***中大容值连接电容或大感值连接电感的使用,减小了***的成本、体积和寄生效应,并提高了***的可靠性。但是,AC-AC直接转换要求功率开关具有双向导通及双向阻断的能力,但是主流的功率开关器件大多数是单向型器件,双向型器件较少。双向晶闸管或两个反并联的晶闸管虽然可以作为双向开关,但这两种器件靠电流控制,驱动电路复杂。
由于功率MOSFET不具有逆向导通和逆向阻断的能力,以功率MOSFET为基础构建双向开关,通常的方案如图1所示,需要在功率MOSFET的漏端串联一个二极管,再将两组功率MOSFET和二极管的组合反并联在一起。由于采用4个独立器件的组合,该方案增加了器件的损耗,减低了双向开关的性能。为了减少独立器件数量,文献(D.H Lu,N Fujishima,A.Sugi,et al.Integrated Bi-directional Trench Lateral Power MOSFETs for OneChip Lithium-ion Battery Protection ICs,ISPSD’05,2005)和文献(Y Fu,X Cheng,YChen,et al.A 20-V CMOS-Based Monolithic Bidirectional Power Switch,IEEEElectron Devices Letters,2007)采用两个功率MOSFET串联,如图2所示,虽然器件数量减少,但由于采用两个功率MOSFET串联,该双向开关必然具有较大的导通电阻,从而具有较大功耗。
因此,要降低双向开关的导通电阻,必须采用两个功率MOSFET并联,这就需要具有逆向阻断能力的MOSFET。文献(Seigo Mor,et al.Demonstration of 3kV 4H-SiC ReverseBlocking MOSFET,Proceedings of the 2016 28th International Symposium on PowerSemiconductor Devices and ICs,June 12-16,2016,Prague,Czech Republic)提出在功率MOSFET的漏端增加一个肖特基接触,从而使器件具有逆向阻断能力。但是,要保证逆阻型功率MOSFET在正反向耐压时不发生从源端的体区到漏端的肖特基结之间的穿通击穿,必须具有足够的漂移区长度,而增加漂移区长度就意味着导通电阻的增加。
发明内容
针对上述问题,本发明所要解决的问题是:提供一种能够通过反并联连接构成双向开关的具有逆向阻断能力的功率MOSFET器件,同时场阻止层的存在控制了漂移区的厚度,能够获得较低的导通电阻。
为实现上述发明目的,本发明技术方案如下:
一种逆阻型功率MOSFET器件,包括从下至上依次层叠设置的金属化漏极1、N型漂移区4、金属化源极16;所述N型漂移区4的下表面为背面结构,所述背面结构包括:N型轻掺杂区2、N型正向场阻止层3、第一沟槽9,所述N型轻掺杂区2的下表面与金属化漏极1的上表面形成肖特基接触,所述N型正向场阻止层3的下表面与N型轻掺杂区2的上表面接触,所述第一沟槽9的下表面与金属化漏极1的上表面接触,所述第一沟槽9填充有第一氧化层10,所述第一氧化层10中设有多晶硅场板11,所述多晶硅场板11与金属化漏极1的上表面直接接触;所述第一沟槽9从金属化漏极1的上表面,垂直向上依次贯穿N型轻掺杂区2、N型正向场阻止层3延伸入N型漂移区4;所述N型漂移区4的上表面为正面结构,所述正面结构包括:N型反向场阻止层5、P型体区6、第二沟槽12、P型埋层13;所述N型反向场阻止层5的上表面与P型体区6的下表面接触;所述P型体区6的上表面具有N型源区8与P型接触区7,所述N型源区8与P型接触区7相邻,且N型源区8与P型接触区7的上表面均与金属化源极16的下表面接触;所述P型埋层13位于第二沟槽12正下方且与第二沟槽12直接接触;所述第二沟槽12的上表面与金属化源极16的下表面接触;所述第二沟槽12的内部填充有第二氧化层14,且第二氧化层14中具有多晶硅栅电极15,所述多晶硅栅电极15与金属化源极16之间间隔了第二氧化层14,所述多晶硅栅电极15的下表面深度大于P型体区6的结深;所述第二沟槽12从金属化源极16的下表面,垂直向下依次贯穿N型源区8、P型体区6、N型反向场阻止层5延伸入N型漂移区4。
作为优选方式,所述P型埋层13的下表面与第一沟槽9的上表面直接接触。
作为优选方式,器件中的硅材料替换为碳化硅、砷化镓、磷化铟或锗硅半导体材料。
本发明的有益效果为:相比于之前的结构,本发明提供的结构具有逆向阻断能力,同时场阻止层的存在防止了漂移区电场的穿通效应,降低了漂移区的厚度,使器件能够获得较低的导通电阻。
附图说明
图1是两个MOSFET反向并联构成的双向开关示意图;
图2是两个MOSFET串联构成的双向开关示意图;
图3是本发明提供的一种逆阻型功率MOSFET的剖面结构示意图。
其中,1为金属化漏极,2为N型轻掺杂区,3为N型正向场阻止层,4为N型漂移区,5为N型反向场阻止层,6为P型体区,7为P型接触区,8为N型源区,9为第一沟槽,10为第一氧化层,11为多晶硅场板,12为第二沟槽,13为P型埋层,14为第二氧化层,15为多晶硅栅电极,16为金属化源极。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
一种逆阻型功率MOSFET器件,包括从下至上依次层叠设置的金属化漏极1、N型漂移区4、金属化源极16;所述N型漂移区4的下表面为背面结构,所述背面结构包括:N型轻掺杂区2、N型正向场阻止层3、第一沟槽9,所述N型轻掺杂区2的下表面与金属化漏极1的上表面形成肖特基接触,所述N型正向场阻止层3的下表面与N型轻掺杂区2的上表面接触,所述第一沟槽9的下表面与金属化漏极1的上表面接触,所述第一沟槽9填充有第一氧化层10,所述第一氧化层10中设有多晶硅场板11,所述多晶硅场板11与金属化漏极1的上表面直接接触;所述第一沟槽9从金属化漏极1的上表面,垂直向上依次贯穿N型轻掺杂区2、N型正向场阻止层3延伸入N型漂移区4;所述N型漂移区4的上表面为正面结构,所述正面结构包括:N型反向场阻止层5、P型体区6、第二沟槽12、P型埋层13;所述N型反向场阻止层5的上表面与P型体区6的下表面接触;所述P型体区6的上表面具有N型源区8与P型接触区7,所述N型源区8与P型接触区7相邻,且N型源区8与P型接触区7的上表面均与金属化源极16的下表面接触;所述P型埋层13位于第二沟槽12正下方且与第二沟槽12直接接触;所述第二沟槽12的上表面与金属化源极16的下表面接触;所述第二沟槽12的内部填充有第二氧化层14,且第二氧化层14中具有多晶硅栅电极15,所述多晶硅栅电极15与金属化源极16之间间隔了第二氧化层14,所述多晶硅栅电极15的下表面深度大于P型体区6的结深;所述第二沟槽12从金属化源极16的下表面,垂直向下依次贯穿N型源区8、P型体区6、N型反向场阻止层5延伸入N型漂移区4。
本实施例的工作原理如下:
本例的一种逆阻型功率MOSFET,相当于槽栅MOSFET串联肖特基结,其正向导通时的电极连接方式为:金属化源极16接地,金属化漏极1接高电位,多晶硅栅电极15接高电位。当多晶硅栅电极15施加的正偏电压达到阈值电压时,在P型体区6中靠近第二氧化层14的侧壁形成反型沟道;与此同时,当金属化漏极1施加了正偏电压时,肖特基接触的接触势垒降低,电子从N型轻掺杂区2流向金属化漏极1。因此,电子作为载流子从N型源区8经过P型体区6中的反型沟道、N型反向场阻止层5注入N型漂移区4,接着通过N型正向场阻止层3、N型轻掺杂区2流向金属化漏极1,形成正向导通电流。
本例的一种逆阻型功率MOSFET,相当于槽栅MOSFET串联肖特基结,其正向阻断时的电极连接方式为:金属化源极16接地,多晶硅栅电极15接地,金属化漏极1接高电位。此时,P型体区6与N型反向场阻止层5的PN结耐压,耗尽区从N型反向场阻止层5扩展到N型漂移区4,在N型正向场阻止层3处终结。在不发生从源端的体区到漏端的肖特基结之间的穿通击穿的同时控制了N型漂移区4的厚度。另外,P型埋层13同样可以与N型漂移区4形成横向电场,进一步提高器件的正向阻断时的耐压;同时由于P型埋层13位于第二沟槽12的底部,可以防止第二沟槽12的底部发生击穿,提高器件可靠性。
本例的一种逆阻型功率MOSFET,相当于槽栅MOSFET串联肖特基结,其反向阻断时的电极连接方式为:金属化源极16接高电位,多晶硅栅电极15接地,金属化漏极1接地。此时,肖特基结耐压,耗尽区从N型轻掺杂区2扩散到N型漂移区4,在N型反向场阻止层5处终结。在不发生从源端的体区到漏端的肖特基结之间的穿通击穿的同时控制了N型漂移区4的厚度。另外,第一氧化层10和多晶硅场板11形成了金属-氧化层-半导体(MOS)电容,在肖特基结耐压时,MOS电容会引入横向电场,辅助N型正向场阻止层3的耗尽,降低肖特基结处的电场强度,提高器件耐压。
本发明提出的一种逆阻型功率MOSFET,器件中的硅材料替换为碳化硅、砷化镓、磷化铟或锗硅半导体材料。
实施例2
本实施例和实施例2的区别在于:所述P型埋层13的下表面与第一沟槽9的上表面直接接触。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (2)

1.一种逆阻型功率MOSFET器件,其特征在于,包括从下至上依次层叠设置的金属化漏极(1)、N型漂移区(4)、金属化源极(16);所述N型漂移区(4)的下表面为背面结构,所述背面结构包括:N型轻掺杂区(2)、N型正向场阻止层(3)、第一沟槽(9),所述N型轻掺杂区(2)的下表面与金属化漏极(1)的上表面形成肖特基接触,所述N型正向场阻止层(3)的下表面与N型轻掺杂区(2)的上表面接触,所述第一沟槽(9)的下表面与金属化漏极(1)的上表面接触,所述第一沟槽(9)填充有第一氧化层(10),所述第一氧化层(10)中设有多晶硅场板(11),所述多晶硅场板(11)与金属化漏极(1)的上表面直接接触;所述第一沟槽(9)从金属化漏极(1)的上表面,垂直向上依次贯穿N型轻掺杂区(2)、N型正向场阻止层(3)延伸入N型漂移区(4);所述N型漂移区(4)的上表面为正面结构,所述正面结构包括:N型反向场阻止层(5)、P型体区(6)、第二沟槽(12)、P型埋层(13);所述N型反向场阻止层(5)的上表面与P型体区(6)的下表面接触;所述P型体区(6)的上表面具有N型源区(8)与P型接触区(7),所述N型源区(8)与P型接触区(7)相邻,且N型源区(8)与P型接触区(7)的上表面均与金属化源极(16)的下表面接触;所述P型埋层(13)位于第二沟槽(12)正下方且与第二沟槽(12)直接接触;所述第二沟槽(12)的上表面与金属化源极(16)的下表面接触;所述第二沟槽(12)的内部填充有第二氧化层(14),且第二氧化层(14)中具有多晶硅栅电极(15),所述多晶硅栅电极(15)与金属化源极(16)之间间隔了第二氧化层(14),所述多晶硅栅电极(15)的下表面深度大于P型体区(6)的结深;所述第二沟槽(12)从金属化源极(16)的下表面,垂直向下依次贯穿N型源区(8)、P型体区(6)、N型反向场阻止层(5)延伸入N型漂移区(4)。
2.根据权利要求1所述的一种逆阻型功率MOSFET器件,其特征在于:所述P型埋层(13)的下表面与第一沟槽(9)的上表面直接接触。
CN201711455406.9A 2017-12-28 2017-12-28 一种逆阻型功率mosfet器件 Expired - Fee Related CN108183102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711455406.9A CN108183102B (zh) 2017-12-28 2017-12-28 一种逆阻型功率mosfet器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711455406.9A CN108183102B (zh) 2017-12-28 2017-12-28 一种逆阻型功率mosfet器件

Publications (2)

Publication Number Publication Date
CN108183102A CN108183102A (zh) 2018-06-19
CN108183102B true CN108183102B (zh) 2020-07-10

Family

ID=62548271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711455406.9A Expired - Fee Related CN108183102B (zh) 2017-12-28 2017-12-28 一种逆阻型功率mosfet器件

Country Status (1)

Country Link
CN (1) CN108183102B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207818A (zh) * 2021-11-12 2022-03-18 英诺赛科(苏州)科技有限公司 基于氮化物的半导体装置和其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258847A (zh) * 2013-05-09 2013-08-21 电子科技大学 一种双面场截止带埋层的rb-igbt器件
CN103794647A (zh) * 2014-02-28 2014-05-14 电子科技大学 一种双向igbt器件及其制作方法
CN105914231A (zh) * 2016-06-28 2016-08-31 上海华虹宏力半导体制造有限公司 电荷存储型igbt及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258847A (zh) * 2013-05-09 2013-08-21 电子科技大学 一种双面场截止带埋层的rb-igbt器件
CN103794647A (zh) * 2014-02-28 2014-05-14 电子科技大学 一种双向igbt器件及其制作方法
CN105914231A (zh) * 2016-06-28 2016-08-31 上海华虹宏力半导体制造有限公司 电荷存储型igbt及其制造方法

Also Published As

Publication number Publication date
CN108183102A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
CN104538446B (zh) 一种双向mos型器件及其制造方法
US8482031B2 (en) Lateral insulated gate bipolar transistors (LIGBTS)
CN113130627B (zh) 一种集成沟道二极管的碳化硅鳍状栅mosfet
CN109119419B (zh) 一种集成肖特基续流二极管碳化硅槽栅mosfet
CN112420694B (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN104701380B (zh) 一种双向mos型器件及其制造方法
CN113224164B (zh) 一种超结mos器件
US20210098619A1 (en) Trench power transistor
CN109103186B (zh) 一种集成异质结续流二极管碳化硅槽栅mosfet
WO2019085850A1 (zh) Igbt功率器件
CN112687744B (zh) 平面型碳化硅逆阻mosfet器件及其制备方法
CN105993076B (zh) 一种双向mos型器件及其制造方法
CN107170801B (zh) 一种提高雪崩耐量的屏蔽栅vdmos器件
CN106449741B (zh) 一种绝缘栅双极型晶体管器件结构
CN210805778U (zh) 一种SiC-MOS器件结构
CN111403474A (zh) 一种集成肖特基二极管的双沟道碳化硅mosfet器件
CN109166923B (zh) 一种屏蔽栅mosfet
CN106981519A (zh) 一种高雪崩耐量的超结dmos器件
CN107170827B (zh) 一种限定雪崩击穿点的屏蔽栅vdmos器件
CN107516679B (zh) 一种深槽超结dmos器件
CN108183102B (zh) 一种逆阻型功率mosfet器件
CN109065629B (zh) 一种槽栅超结器件
CN108074985B (zh) 一种逆阻型vdmos器件
CN108091696B (zh) 一种逆阻型vdmos器件
CN115528090A (zh) 一种双沟槽SiC MOSFET器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200710

Termination date: 20201228