CN108181331A - 一种信号探测电路及探测器 - Google Patents

一种信号探测电路及探测器 Download PDF

Info

Publication number
CN108181331A
CN108181331A CN201711384167.2A CN201711384167A CN108181331A CN 108181331 A CN108181331 A CN 108181331A CN 201711384167 A CN201711384167 A CN 201711384167A CN 108181331 A CN108181331 A CN 108181331A
Authority
CN
China
Prior art keywords
tdc
signal
detection circuit
signal detection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711384167.2A
Other languages
English (en)
Inventor
李俊
杨隆梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201711384167.2A priority Critical patent/CN108181331A/zh
Publication of CN108181331A publication Critical patent/CN108181331A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20066Measuring inelastic scatter of gamma rays, e.g. Compton effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明实施例公开了一种信号探测电路和探测器,涉及医学成像技术领域。该电路包括:晶体阵列模块,设置于靠近待检测端,用于将接收的γ光子转换为可见光;硅光电倍增管,与所述晶体阵列模块连接,用于将所述可见光转换为时间脉冲信号;TDC模块,由FPGA芯片搭建,与所述硅光电倍增管连接,用于根据所述时间脉冲信号,确定接收所述γ光子的时间位置信息。本发明实施例提供的一种信号探测电路和探测器,实现了同时处理上百个γ光子到达时间的计算能力,此外降低了光电转换芯片体积,提高抗磁场干扰能力。

Description

一种信号探测电路及探测器
技术领域
本发明实施例涉及医学成像技术领域,尤其涉及一种信号探测电路及探测器。
背景技术
在实际应用中,正电子发射断层成像(Positron Emission Tomography,PET)设备如图1所示,PET设备包括PET扫描环101,其中PET扫描环101通常由多个探测器(以正对的探测器A、探测器B做示意)围绕人体排列成环形构成,以捕获人体102内正电子湮没点103湮没后,产生的两个511keV、飞行方向相反的γ光子。
探测器中的时间数字转换电路会对上述两γ光子进行飞行时间测量,根据测量结果进行符合判断,然后根据满足符合关系的两γ光子,确定人体内正电子湮没点的位置。
发明人在实现本发明的过程中,发现现有技术存在如下缺陷:
现有的时间数字转换电路主要基于专用集成电路技术,如德国ACAM公司生产的TDC-GPX系列产品,该公司生产的最高端ASIC TDC产品具备I-Mode、G-Mode、R-Mode、M-Mode和General5种工作模式,最高支持8个通道81ps的时间分辨率,该产品使用配置复杂、价格昂贵、温度电压敏感。而实际医疗场所的环境温度多变,从而导致时间数字转换电路测量准确率低的问题。
此外,传统PET测量光子到达时间使用光电倍增管(photomultiplier tube,PMT)进行光电转换,PMT采用多级倍增,但其量子效率低,仅在25%左右,且无法在磁场环境工作,体积庞大,制作工艺较为复杂。
发明内容
本发明实施例提供一种信号探测电路和探测器,以实现具备同时处理上百个γ光子到达时间的计算能力,此外降低了光电转换芯片体积,提高抗磁场干扰能力,进而解决上述问题。
第一方面,本发明实施例提供了一种信号探测电路,该电路包括:
晶体阵列模块,设置于靠近待检测端,用于将接收的γ光子转换为可见光;
硅光电倍增管,与所述晶体阵列模块连接,用于将所述可见光转换为时间脉冲信号;
TDC模块,由FPGA芯片搭建,与所述硅光电倍增管连接,用于根据所述时间脉冲信号,确定接收所述γ光子的时间位置信息。
进一步的,所述信号探测电路包括:
电压比较器,与所述硅光电倍增管连接,用于将所述时间脉冲信号转换为时间矩形脉冲信号,以作为触发信号发送给所述TDC模块。
进一步的,所述信号探测电路,还包括:
前置放大器,所述电压比较器通过所述前置放大器与所述硅光电倍增管连接,用于放大所述时间脉冲信号,以提升信号检出率。
进一步的,所述电压比较器为阈值可调电压比较器,以提升电压比较器的灵活性。
进一步的,所述TDC单元包括:
双链TDC电路,由两条相同的单链TDC电路构成,时钟脉冲信号和所述触发信号经过所述两条单链TDC电路,输出第一TDC值和第二TDC值;
译码器,与所述双链TDC电路连接,用于根据所述第一TDC值和第二TDC值确定第三TDC值,以消除建立/保持时间对所述单链TDC电路中寄存器阵列的输出结果的影响。
进一步的,所述单链TDC电路由至少一个延时子电路串联而成,
所述延迟子单元由一延时器和一寄存器构成,
所述触发信号经过所述延时器的设定时间的延时后,输出给所述寄存器,
所述寄存器结合所述时钟脉冲信号进行输出,并作为所述延时子电路的输出,
其中,将所述至少一个延时子电路的输出作为所述第一TDC值或第二TDC值。
进一步的,所述单链TDC电路还包括:
与门,将未经延时的所述触发信号,以及所述单链TDC电路中第一个所述延迟子单元的输出信号作为其输入,将经过与门后输出的信号作为至少一个所述延时子电路的使能信号。
进一步的,所述的信号探测电路,还包括:
符合判断模块,与所述TDC模块连接,用于根据所述时间位置信息,判断所述γ光子是否满足设定符合关系。
进一步的,所述晶体阵列模块包括:LYSO阵列。
第二方面,本发明实施例还提供了一种探测器,该探测器包括说明书任一实施例中所述的信号探测电路。
本发明实施例通过硅光电倍增管的应用,减小了信号探测电路的体积,降低了信号探测电路制作工艺的复杂度,提高了信号探测电路抗磁场干扰的性能。此外,通过基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)芯片搭建的TDC(Time-to-Digital Converter,时间数字转换器)模块,因为FPGA芯片中的多个逻辑模块可以同时对多个时间脉冲信号的并行处理,从而提高信号探测电路对大量γ光子到达时间的处理能力;同时,FPGA芯片相对专用集成电路价格便宜、温度电压不敏感,从而使得信号探测电路更实用于实际环境温度多变的医疗场所。
附图说明
图1为现有技术中PET扫描环结构示意图;
图2为本发明实施例一提供的一种信号探测电路的结构示意图;
图3为本发明实施例二提供的一种信号探测电路的结构示意图;
图4是本发明实施例二提供的双链TDC电路的部分结构示意图;
图5是本发明实施例二提供的单链TDC电路的部分结构示意图;
图6是本发明实施例二提供的另一单链TDC电路的部分结构示意图;
图7是本发明实施例二提供的另一种信号探测电路的结构示意图;
图8是本发明实施例三提供的一种探测器的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图2为本发明实施例一提供的一种信号探测电路的结构示意图。本实施例可适用于确定接收的γ光子的时间位置信息的情况。参见图2,本实施例提供的信号探测电路包括:晶体阵列模块10、硅光电倍增管20和TDC模块30。
其中,晶体阵列模块10,设置于靠近待检测端,用于将接收的γ光子转换为可见光;
硅光电倍增管20,与所述晶体阵列模块10连接,用于将所述可见光转换为时间脉冲信号;
TDC模块30,由FPGA芯片搭建,与所述硅光电倍增管20连接,用于根据所述时间脉冲信号,确定接收所述γ光子的时间位置信息。
具体的,待检测端表示信号探测电路中靠近待检查体的一端,该待检查体可以是人体,也可以是其他介质。TDC模块30可以由FPGA芯片内部资源搭建,可以理解的是,FPGA芯片中有多个可配置逻辑模块,可以依据时间数字转换器电路逻辑,利用上述可配置逻辑模块完成TDC模块30的搭建。其中,间数字转换器电路逻辑可以实现根据所述时间脉冲信号,确定接收所述γ光子的时间位置信息。
可选的,上述晶体阵列模块10可以由现有技术中可将γ光子转换为可见光的任意的晶体构成。典型的,所述晶体阵列模块可以包括:LYSO阵列。因为该晶体阵列具有以其高光输出、快发光衰减、有效原子序数多、密度大,并且物化性质稳定、不潮解、对γ射线探测效率高等特性,从而提高将接收的γ光子转换为可见光的效率,进而提高信号探测电路对所述γ光子的时间位置信息的计算效率。
进一步的,所述的信号探测电路,还可以包括:符合判断模块。
其中,符合判断模块,与所述TDC模块连接,用于根据所述时间位置信息,判断所述γ光子是否满足设定符合关系。
本发明实施例的技术方案,通过硅光电倍增管的应用,减小了信号探测电路的体积,降低了信号探测电路制作工艺的复杂度,提高了信号探测电路抗磁场干扰的性能。此外,通过基于FPGA芯片搭建的TDC模块,因为FPGA芯片中的多个逻辑模块可以同时对多个时间脉冲信号的并行处理,从而提高信号探测电路对大量γ光子到达时间的处理能力;同时,FPGA芯片相对专用集成电路价格便宜、温度电压不敏感,从而使得信号探测电路更实用于实际环境温度多变的医疗场所。
实施例二
图3为本发明实施例二提供的一种信号探测电路的结构示意图。本实施例在上述实施例的基础上提出了一种可选方案。参见图3,本实施例提供的信号探测电路包括:晶体阵列模块10、硅光电倍增管20、TDC模块30和电压比较器40。
其中,电压比较器40,与所述硅光电倍增管20连接,用于将所述时间脉冲信号转换为时间矩形脉冲信号,以作为触发信号发送给所述TDC模块30。
本发明实施例的技术方案,通过电压比较器将所述时间脉冲信号转换为时间矩形脉冲信号,以作为触发信号。从而触发FPGA芯片对所述γ光子的时间位置信息进行计算。
进一步的,所述的信号探测电路还可以包括:前置放大器。
其中,前置放大器,所述电压比较器40通过所述前置放大器与所述硅光电倍增管20连接,用于放大所述时间脉冲信号,以提升信号检出率。
典型的,所述电压比较器40为阈值可调电压比较器,通过对阈值的调节可以提升电压比较器的灵活性。
优选的,所述TDC单元可以包括:双链TDC电路和译码器。
其中,参见图4,双链TDC电路,由两条相同的单链TDC电路构成,时钟脉冲信号和所述触发信号经过所述两条单链TDC电路,输出第一TDC值和第二TDC值;
译码器,与所述双链TDC电路连接,用于根据所述第一TDC值和第二TDC值确定第三TDC值。
典型的,用于将所述第一TDC值和第二TDC值的均值作为第三TDC值。
例如,在时钟信号的上升沿对输入的时间矩形脉冲信号进行采样,若在时钟信号的上升沿时刻,时间脉冲信号处于0和1突变的状态。此时,单链TDC电路输出的TDC值中对应位的可能是0,也可能是1。理论上,如果时间脉冲信号处于0至1突变的状态,则TDC值中对应位的应该是1,此时如果是0的话将会造成1个周期的误差。
为减少该误差,将所述第一TDC值和第二TDC值的均值作为第三TDC值,也即最终输出的TDC值。继续以上述采样时刻为时间脉冲信号处于至1突变的状态时刻为例,第一TDC值在该时刻的对应位为1,第二TDC值在该时刻的对应位为0,在译码时将该时刻的对应位取1和0的均值,即译码为0.5个周期。这样可以将原来的1个周期的误差,降为了半个周期,从而可以达到消除建立/保持时间对所述单链TDC电路中寄存器阵列的输出结果的影响的效果。
进一步的,参见图5,所述单链TDC电路由至少一个延时子电路串联而成,
所述延迟子单元由一延时器和一寄存器构成,
所述触发信号经过所述延时器的设定时间的延时后,输出给所述寄存器,
所述寄存器结合所述时钟脉冲信号进行输出,并作为所述延时子电路的输出,
其中,将所述至少一个延时子电路的输出作为所述第一TDC值或第二TDC值。
进一步的,参见图6,所述单链TDC电路还包括:与门330。
其中,与门330,将未经延时的所述触发信号,以及所述单链TDC电路中第一个所述延迟子单元的输出信号作为其输入,将经过与门330后输出的信号作为至少一个所述延时子电路的使能信号。
具体的,所述与门330的数量为1个。该与门330的设置可以达到这样一种效果:当第一所述延迟子单元的输出信号为高电平时,将所述单链TDC电路的使能,保持当前时钟下的寄存器输出,从而提高芯片资源的利用率。
进一步的,所述的信号探测电路还可以包括:符合判断模块。
其中,符合判断模块,与所述TDC模块30连接,用于根据两所述γ光子的所述第三TDC值,判断所述γ光子是否满足设定符合关系的。
在实际应用中,参见图7,LYSO晶体阵列将接收的γ光子转换为可见光;硅光电倍增管,与所述LYSO晶体阵列连接,用于将所述可见光转换为时间脉冲信号;前置放大器,与所述硅光电倍增管连接,用于放大所述时间脉冲信号,以提升信号检出率;电压比较器,与所述前置放大器连接,用于将所述时间脉冲信号转换为时间矩形脉冲信号,以作为触发信号;双链TDC电路,与所述电压比较器连接,时钟脉冲信号和所述触发信号经过所述两条单链TDC电路,输出第一TDC值和第二TDC值,其中每个单链TDC电路均包括一上述与门;译码器,与所述双链TDC电路连接,用于将所述第一TDC值和第二TDC值的均值作为第三TDC值;符合判断模块,与所述译码器连接,用于根据两所述γ光子的所述第三TDC值,判断所述γ光子是否满足设定符合关系。
实施例三
图8是本发明实施例三提供的一种探测器的结构示意图。参见图8,本实施例提供的探测器1包括:信号探测电路100,该信号探测电路100可以为上述实施例中任一所述的信号探测电路。
上述探测器1可以用于PET医学成像***中,该过程可以描述为:在把正电子核素示踪剂注射到观测体内后,这些示踪剂通过血液的流动被运载到器官或病变区域参与人体的胜利或代谢过程。到器官或病变区域参与人体的生理或代谢过程。例如人体注入正电子的放射性核素F18后,注入人体的放射性核素发生衰变产生正电子,正电子在体内移动大约(1~3)毫米后与组织中的负电子结合发生湮灭辐射,产生两个具有产生的两个511keV、飞行方向相反的γ光子。利用由上述探测器1构成的PET扫描环,可以确定γ光子的时间位置信息。根据γ光子的时间位置信息,确定存在符合关系的γ光子对;根据该γ光子对的时间位置信息,确定人体内正电子湮没点的位置;根据湮没点的位置,对观测体的器官进行图像重建,以供医生分析。
本发明实施例的技术方案,通过应用上述实施例中任一所述的信号探测电路于探测器,使得该探测器的成本降低,温度电压敏感度降低,具有抗磁场的干扰,从而更适用于实际环境温度多变的医疗场所。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

1.一种信号探测电路,其特征在于,包括:
晶体阵列模块,设置于靠近待检测端,用于将接收的γ光子转换为可见光;
硅光电倍增管,与所述晶体阵列模块连接,用于将所述可见光转换为时间脉冲信号;
时间数字转换TDC模块,由现场可编程门阵列FPGA芯片搭建,与所述硅光电倍增管连接,用于根据所述时间脉冲信号,确定接收所述γ光子的时间位置信息。
2.根据权利要求1所述的信号探测电路,其特征在于,还包括:
电压比较器,与所述硅光电倍增管连接,用于将所述时间脉冲信号转换为时间矩形脉冲信号,以作为触发信号发送给所述TDC模块。
3.根据权利要求2所述的信号探测电路,其特征在于,还包括:
前置放大器,所述电压比较器通过所述前置放大器与所述硅光电倍增管连接,用于放大所述时间脉冲信号,以提升信号检出率。
4.根据权利要求2所述的信号探测电路,其特征在于,所述电压比较器为阈值可调电压比较器,以提升电压比较器的灵活性。
5.根据权利要求2所述的信号探测电路,其特征在于,所述TDC单元包括:
双链TDC电路,由两条相同的单链TDC电路构成,时钟脉冲信号和所述触发信号经过所述两条单链TDC电路,输出第一TDC值和第二TDC值;
译码器,与所述双链TDC电路连接,用于根据所述第一TDC值和第二TDC值确定第三TDC值,以消除建立/保持时间对所述单链TDC电路中寄存器阵列的输出结果的影响。
6.根据权利要求5所述的信号探测电路,其特征在于,所述单链TDC电路由至少一个延时子电路串联而成,
所述延迟子单元由一延时器和一寄存器构成,
所述触发信号经过所述延时器设定时间的延时后,输出给所述寄存器,
所述寄存器结合所述时钟脉冲信号进行输出,并作为所述延时子电路的输出,
其中,将所述至少一个延时子电路的输出作为所述第一TDC值或第二TDC值。
7.根据权利要求6所述的信号探测电路,其特征在于,所述单链TDC电路还包括:
与门,将未经延时的所述触发信号,以及所述单链TDC电路中第一个所述延迟子单元的输出信号作为其输入,将经过与门后输出的信号作为至少一个所述延时子电路的使能信号。
8.根据权利要求1所述的信号探测电路,其特征在于,还包括:
符合判断模块,与所述TDC模块连接,用于根据所述时间位置信息,判断所述γ光子是否满足设定符合关系。
9.根据权利要求1所述的信号探测电路,其特征在于,所述晶体阵列模块包括:硅酸钇镥闪烁晶体LYSO阵列。
10.一种探测器,其特征在,包括所述权利要求1-9中任一所述的信号探测电路。
CN201711384167.2A 2017-12-20 2017-12-20 一种信号探测电路及探测器 Pending CN108181331A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711384167.2A CN108181331A (zh) 2017-12-20 2017-12-20 一种信号探测电路及探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711384167.2A CN108181331A (zh) 2017-12-20 2017-12-20 一种信号探测电路及探测器

Publications (1)

Publication Number Publication Date
CN108181331A true CN108181331A (zh) 2018-06-19

Family

ID=62546591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711384167.2A Pending CN108181331A (zh) 2017-12-20 2017-12-20 一种信号探测电路及探测器

Country Status (1)

Country Link
CN (1) CN108181331A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765779A (zh) * 2019-01-14 2019-05-17 上海联影医疗科技有限公司 延时校正方法、装置、计算机设备和存储介质
WO2021135337A1 (zh) * 2020-01-02 2021-07-08 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像***
CN114384099A (zh) * 2021-12-31 2022-04-22 江苏赛诺格兰医疗科技有限公司 用于检测硅光电倍增管阵列信号通断的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252005A (zh) * 2013-06-26 2014-12-31 北京大基康明医疗设备有限公司 一种pet探测器模块
CN105277943A (zh) * 2014-06-12 2016-01-27 德尔福国际运营卢森堡有限公司 距离测量装置
CN205450144U (zh) * 2015-12-31 2016-08-10 深圳市英威腾电气股份有限公司 放电测试辅助电路
CN206313746U (zh) * 2016-12-29 2017-07-07 深圳玩智商科技有限公司 一种电压比较器
CN107320121A (zh) * 2016-04-29 2017-11-07 上海联影医疗科技有限公司 正电子发射断层成像光子探测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252005A (zh) * 2013-06-26 2014-12-31 北京大基康明医疗设备有限公司 一种pet探测器模块
CN105277943A (zh) * 2014-06-12 2016-01-27 德尔福国际运营卢森堡有限公司 距离测量装置
CN205450144U (zh) * 2015-12-31 2016-08-10 深圳市英威腾电气股份有限公司 放电测试辅助电路
CN107320121A (zh) * 2016-04-29 2017-11-07 上海联影医疗科技有限公司 正电子发射断层成像光子探测装置
CN206313746U (zh) * 2016-12-29 2017-07-07 深圳玩智商科技有限公司 一种电压比较器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘详: "基于SIPM的数字化PET探测器设计、实现与评估", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
王丹 等: "一种基于FPGA快速进位链的时间数字转换电路", 《复旦学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765779A (zh) * 2019-01-14 2019-05-17 上海联影医疗科技有限公司 延时校正方法、装置、计算机设备和存储介质
WO2021135337A1 (zh) * 2020-01-02 2021-07-08 苏州瑞派宁科技有限公司 信号采样电路、探测装置及成像***
CN114384099A (zh) * 2021-12-31 2022-04-22 江苏赛诺格兰医疗科技有限公司 用于检测硅光电倍增管阵列信号通断的装置及方法
CN114384099B (zh) * 2021-12-31 2023-09-12 江苏赛诺格兰医疗科技有限公司 用于检测硅光电倍增管阵列信号通断的装置及方法

Similar Documents

Publication Publication Date Title
Surti et al. Advances in time-of-flight PET
Won et al. Highly integrated FPGA-only signal digitization method using single-ended memory interface input receivers for time-of-flight PET detectors
CN111565044B (zh) 基于分相时钟tdc的adc装置及其模数转换方法
CN108181331A (zh) 一种信号探测电路及探测器
CN107320121B (zh) 正电子发射断层成像光子探测装置
CN103698801A (zh) 高能质子和中子能谱测量的多层闪烁探测器及测量方法
Kuhn et al. Performance assessment of pixelated LaBr/sub 3/detector modules for time-of-flight PET
Lee et al. High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration
US9804206B2 (en) Method and a device for measuring parameters of an analog signal
Wu et al. PET performance evaluation of an MR-compatible PET insert
Geramifar et al. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE
CN108132592A (zh) 一种时间数字转换装置、探测器、方法和介质
CN113057667A (zh) Pet探测器信号采样方法、装置、电子装置和存储介质
US10007011B2 (en) System for acquisition of tomographic measurement data
CN109407139B (zh) 组合闪烁晶体及包括组合闪烁晶体的辐射探测装置和***
CN108294771B (zh) 一种正电子发射计算机断层显像探测器装置
CN110389374A (zh) 一种探测器的前端电路及探测器
Zeng et al. Evaluation of a PET detector based on SiPMs and FPGA-only MVT digitizers
Marino et al. An innovative detection module concept for PET
TWI472792B (zh) 輻射偵測信號處理方法與系統
Moses Recent Advances and Future Advances in Time‐of‐Flight PET
Stringhini et al. Development of a high resolution module for PET scanners
Buechel et al. Newer generation cameras are preferred
CN111728625A (zh) Pet***时间同步方法、装置、计算机设备和存储介质
Brekke et al. Trigger performance simulation of a high speed ADC-based TOF-PET read-out system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20180619

RJ01 Rejection of invention patent application after publication