CN108169628A - 识别雷击故障性质和精确定位故障点的装置及方法 - Google Patents

识别雷击故障性质和精确定位故障点的装置及方法 Download PDF

Info

Publication number
CN108169628A
CN108169628A CN201810138483.XA CN201810138483A CN108169628A CN 108169628 A CN108169628 A CN 108169628A CN 201810138483 A CN201810138483 A CN 201810138483A CN 108169628 A CN108169628 A CN 108169628A
Authority
CN
China
Prior art keywords
lightning
traveling wave
trouble point
oscillograph
connect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810138483.XA
Other languages
English (en)
Inventor
张新红
唐洪
申成宽
王道义
王少举
宋娜娜
刘慧�
张贤
李娜娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINXIANG STRONG POWER ELECTRIC Co Ltd
Original Assignee
XINXIANG STRONG POWER ELECTRIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINXIANG STRONG POWER ELECTRIC Co Ltd filed Critical XINXIANG STRONG POWER ELECTRIC Co Ltd
Priority to CN201810138483.XA priority Critical patent/CN108169628A/zh
Publication of CN108169628A publication Critical patent/CN108169628A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种识别雷击故障性质和精确定位故障点的装置,包括行波监测和录波器,行波监测一端与利用耦合取电方式供电的耦合取电单元连接,另一端与所述录波器连接,行波监测与录波器通过能够进行上传监测信息和下传控制命令的GPRS/CDMA通讯模块与后台服务显示器连接,耦合取电单元与GPS模块和时钟模块连接,GPS模块与时钟模块相互连接,GPS模块的另一端与行波监测连接,时钟模块的另一端与后台服务显示器连接;一种识别雷击故障性质和精确定位故障点的方法,通过雷电绕击和反击时形成的不同暂态行波特征识别雷击性质,并利用区间定位与行波定位相结合精确定位故障点。本发明能够快速确定其跳闸原因,并且能快速查找到精确故障点。

Description

识别雷击故障性质和精确定位故障点的装置及方法
技术领域:
本发明涉及一种识别雷击故障性质和定位故障点的装置及方法,特别是涉及一种识别雷击故障性质和精确定位故障点的装置及方法。
背景技术:
在输电线路电压等级由超高压向特高压发展的今天,雷击仍然是引起输电线路故障开断的重要原因之一,成为当前线路安全运行中的薄弱环节,目前,在应对和处理输电线路雷击事故方面,电力***广泛采用雷电定位***和行波故障定位***确定雷击故障位置,辅助分析雷击故障类型。但存在以下不足:(1)尚无准确确认跳闸事故是雷击事故的监测手段;由于雷电发生时刻,雷击故障连续大量发生,依据故障时标与雷电定位***时标对时判断雷击故障还存在一定困难。同时落雷线路附近的雷击造成的感应过电压可能叠加污秽、植被等薄弱环节造成闪络跳闸。因此,准确判断线路是否是雷电直击雷(绕击或反击)故障,在生产实践中需要一种直接的监测手段;(2)还没有有效识别绕击或反击的技术手段;由于目前雷电定位***在确定雷电流幅值方面有较大误差,加之雷击放电分散性,目前基于雷电定位***的记录结合电气几何模型来判断雷击故障类型还相当粗略,目前也有个别局使用了在每基杆塔的每个绝缘子串上安装传感器的办法,这种方法即便可行,也不是一种实用的技术,因为需要安装的设备太多太分散;(3)定位不准确,且易受干扰信号的影响;行波定位***由于受地形、弧垂、波速以及干扰信号等因素的影响,常常使该方法难以可靠准确定位,加之雷雨天气时各种感应雷电行波信号的干扰,使雷击故障点准确定位相对困难。
发明内容:
本发明所要解决的技术问题是:克服现有技术的不足,提供一种通过雷电绕击和反击时形成的不同暂态行波特征识别雷击性质,并利用区间定位与行波定位相结合精确定位故障点的识别雷击故障性质和精确定位故障点的装置及方法。
本发明为解决技术问题所采取的技术方案是:
一种识别雷击故障性质和精确定位故障点的装置,包括行波监测和录波器,所述行波监测一端与利用耦合取电方式供电的耦合取电单元连接,另一端与所述录波器连接,所述行波监测与所述录波器通过能够进行上传监测信息和下传控制命令的GPRS/CDMA通讯模块与后台服务显示器连接,所述耦合取电单元与GPS模块和时钟模块连接,所述GPS模块与所述时钟模块相互连接,所述GPS模块的另一端与所述行波监测连接,所述时钟模块的另一端与所述后台服务显示器连接。
所述行波监测包括高速数据采集器、MCU微控制单元、FPGA、ADC实时采集器和电压传感器,高速数据采集器与MCU微控单元和FPGA双向连接,MCU微控单元和FPGA双向连接,高速数据采集器与ADC实时采集器和电压传感器单向连接。
所述行波监测为监测故障信息的行波监测,所述录波器为记录电流波形的录波器,所述时钟模块为利用高稳定度晶振构成的时钟模块,所述GPS模块以GPS对时信号控制采样脉冲。
一种识别雷击故障性质和精确定位故障点的方法,包括以下步骤:
(1)根据录波器上暂态行波的波形识别跳闸性质;录波器和行波监测会通过GPRS/CDMA通讯模块将数据和图形传至后台服务显示器上,在后台服务显示器上查看暂态行波的图形形状,来判断是否是雷击跳闸,若是雷击跳闸根据波形来判断雷击跳闸是绕击跳闸还是反击跳闸,绕击跳闸时,雷电流击中输电线路的导线引起闪络,该导线被击穿后雷电流经过较短的杆塔入地,由于杆塔波阻抗和地面反射波的作用,会使沿线路传输的雷电流波形有很陡峭的下降沿和随后较低的幅值;反击跳闸时,雷电流击中避雷线或杆塔引起绝缘子串闪络跳闸,绝缘子串被击穿后,较长的雷电流波尾会分流进入输电线路的导线传播,该雷电流波形具有很陡的上升沿和相对缓慢下降的波尾;
(2)对故障进行区间定位;利用检测***工频短路电流流向的方法来确定故障所在区间,若某一区间发生故障,则其两侧区间的电流相位为相反的,若电路是单端供电的,则远离电源一侧的区间内无工频故障电流;
(3)在故障区间内确定故障点;在故障区间内利用行波定位的方法来确定故障点。
本发明的积极有益效果是:
1、本发明采用了一种全新的识别雷击故障性质和精确定位故障点的方法,该方法通过雷电绕击和反击时形成的不同暂态行波特征识别雷击性质,并利用区间定位与行波定位相结合精确定位故障点,克服了传统方法需要逐基杆塔安装监测设备的弊端,只需要在线路全线每15~20公里安装一个观测点就可以实现全线路雷击性质的监测,是当前技术先进且实用性很强的雷击故障性质识别与定位***。
2、本发明中MCU微控制单元与FPGA结合,充分利用了可编程逻辑器件并行、高速的特点和MCU在任务处理方面的优势,既保证了数据采样的速度,又解决了与低速任务处理之间的矛盾。
3、本发明中的时钟模块是一个高稳定度晶振构成的时钟模块,使电缆两端行波采集装置之间保持精确的时钟同步,减小走时误差;且根据录波器所记录波形,可以正确地分析判断电力***、线路和设备故障发生的确切地点、发展过程和故障类型,以便迅速排除故障和制定防止对策。
4、本发明中GPS模块以GPS对时信号控制采样脉冲,如利用GPS中误差小于l微秒的lpps脉冲,经高稳定度晶振分频后产生采样脉冲,来解决现有GPS对时方法使网内务录波器之间将误差控制在l毫秒以下,实现真正意义上的全网时标统一和采样的同时性。
附图说明:
图1是本发明识别雷击故障性质和精确定位故障点的装置的结构连接框图;
图2是本发明识别雷击故障性质和精确定位故障点的方法的流程图;
图3是雷击为绕击事故下的典型行波波形;
图4是雷击为反击事故下的典型行波波形;
图5是区间定位与行波定位原理示意图。
具体实施方式:
下面结合附图和具体实施例对本发明作进一步的解释和说明:
实施例:一种识别雷击故障性质和精确定位故障点的装置,包括行波监测和录波器,行波监测一端与利用耦合取电方式供电的耦合取电单元连接,另一端与录波器连接,行波监测与录波器通过能够进行上传监测信息和下传控制命令的GPRS/CDMA通讯模块与后台服务显示器连接,耦合取电单元与GPS模块和时钟模块连接,耦合取电单元耦合取电正常工作电流范围为 30A~1500A,GPS模块与时钟模块相互连接,GPS模块的另一端与行波监测连接,时钟模块的另一端与后台服务显示器连接。
行波监测包括高速数据采集器、MCU微控制单元、FPGA、ADC实时采集器和电压传感器,高速数据采集器与MCU微控单元和FPGA双向连接,MCU微控单元和FPGA双向连接,高速数据采集器与ADC实时采集器和电压传感器单向连接。
高速数据采集器控制ADC实时采集器采集数据,并判断是否发生故障,若没有故障发生,将数据存入SRAM即可;否则,需锁定GPS模块的时标,及时通知MCU微控制单元将记录下的故障波形和时标信息取走;MCU微控制单元负责在发生故障时从FPGA获取故障相关信息,并通过GPRS /CDMA通讯模块将数据上传到后台服务显示器,完成数据的远程通信任务。
行波监测为监测故障信息的行波监测,录波器为记录电流波形的录波器,时钟模块为利用高稳定度晶振构成的时钟模块,GPS模块以GPS对时信号控制采样脉冲。
一种识别雷击故障性质和精确定位故障点的方法,包括以下步骤:
(1)根据录波器上暂态行波的波形识别跳闸性质;录波器和行波监测会通过GPRS/CDMA通讯模块将数据和图形传至后台服务显示器上,在后台服务显示器上查看暂态行波的图形形状,来判断是否是雷击跳闸,若是雷击跳闸根据波形来判断雷击跳闸是绕击跳闸还是反击跳闸,绕击跳闸时,雷电流击中输电线路的导线引起闪络,该导线被击穿后雷电流经过较短的杆塔入地,由于杆塔波阻抗和地面反射波的作用,会使沿线路传输的雷电流波形有很陡峭的下降沿和随后较低的幅值,如图3所示;反击跳闸时,雷电流击中避雷线或杆塔引起绝缘子串闪络跳闸,绝缘子串被击穿后,较长的雷电流波尾会分流进入输电线路的导线传播,该雷电流波形具有很陡的上升沿和相对缓慢下降的波尾,如图4所示。
(2)对故障进行区间定位;利用检测***工频短路电流流向的方法来确定故障所在区间,若某一区间发生故障,则其两侧区间的电流相位为相反的,若电路是单端供电的,则远离电源一侧的区间内无工频故障电流,如图5所示,设定输电线路在i、j、m、n等杆塔处装设了故障信号的检测装置,现在第j 基杆塔至第m基杆塔间发生了跳闸事故,此时,i j处的工频故障电流相位与m n处的工频故障电流相位是相反的(在单端供电时,m n处无工频故障电流),利用这一简单逻辑原理,可以十分准确地确定故障发生在j m间,区间的准确定位也可排除各种可能引起较大误差的干扰信号的影响,由于区间定位采用的是***工频短路电流流向的方法,区间定位具有十分高的可靠性。
(3)在故障区间内确定故障点;在故障区间内利用行波定位的方法来确定故障点,由于故障区间已经确定,所以行波定位的故障区间变短,地形弧垂所引起的误差按比例线性缩小;在故障区间确定在j m间后,只需对j m段实施行波定位,地形弧垂带来的误差由两部分组成,一部分是在理论上计算故障点距离一端的距离:,其中为故障点距离母线M点的长度,v为波速,Tm和Tn分别为到达M端和N端的绝对时间,而L表示线路全长;此时线路全长L应该为行波传输的长度即导线的长度,而非杆塔距离表达的直线距离;另一部分误差是在按照定位计算得到的去定位故障的空间位置时产生,其误差,其中表示在地图上定位故障点位置的杆塔直线距离;两部分误差会有所抵消,同时我们注意到两部分误差都与区间的大小呈线性关系(第一部分的L系数为1/2,第二部分的系数为1 ),因此当区间变小时,由于地形弧垂引起的误差会呈比例缩小,按照实际情况,地形和弧垂的影响可能导致实际导线的长度与杆塔间的直线距离误差达5%以上,对于一条60公里的线路,5%意味着3公里的误差,考虑到两部分误差的相消作用,设误差为1公里,因此,如果每10公里一个区段,误差将缩小到1/6公里。
工作时,录波器进行电流录波,并且录波器和行波监测通过GPRS/CDMA通讯模块将数据和波形发送到后台服务器上,通过显示器显示出来,在发生跳闸事件时,通过在显示器上查看不同暂态行波特征来判断识别其雷击性质,并利用区间定位与行波定位相结合精确定位故障点,克服了传统方法需要逐基杆塔安装监测设备的弊端,只需要在线路全线每15~20公里安装一个观测点就可以实现全线路雷击性质的监测。
以上所述,仅是本发明的优先实施例而已,并未对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的保护范围内。

Claims (4)

1.一种识别雷击故障性质和精确定位故障点的装置,包括行波监测和录波器,其特征是:所述行波监测一端与利用耦合取电方式供电的耦合取电单元连接,另一端与所述录波器连接,所述行波监测与所述录波器通过能够进行上传监测信息和下传控制命令的GPRS/CDMA通讯模块与后台服务显示器连接,所述耦合取电单元与GPS模块和时钟模块连接,所述GPS模块与所述时钟模块相互连接,所述GPS模块的另一端与所述行波监测连接,所述时钟模块的另一端与所述后台服务显示器连接。
2.根据权利要求1所述的识别雷击故障性质和精确定位故障点的装置,其特征是:所述行波监测包括高速数据采集器、MCU微控制单元、FPGA、ADC实时采集器和电压传感器,高速数据采集器与MCU微控单元和FPGA双向连接,MCU微控单元和FPGA双向连接,高速数据采集器与ADC实时采集器和电压传感器单向连接。
3.根据权利要求1所述的识别雷击故障性质和精确定位故障点的装置,其特征是:所述行波监测为监测故障信息的行波监测,所述录波器为记录电流波形的录波器,所述时钟模块为利用高稳定度晶振构成的时钟模块,所述GPS模块以GPS对时信号控制采样脉冲。
4.一种识别雷击故障性质和精确定位故障点的方法,包括以下步骤:
(1)根据录波器上暂态行波的波形识别跳闸性质;录波器和行波监测会通过GPRS/CDMA通讯模块将数据和图形传至后台服务显示器上,在后台服务显示器上查看暂态行波的图形形状,来判断是否是雷击跳闸,若是雷击跳闸根据波形来判断雷击跳闸是绕击跳闸还是反击跳闸,绕击跳闸时,雷电流击中输电线路的导线引起闪络,该导线被击穿后雷电流经过较短的杆塔入地,由于杆塔波阻抗和地面反射波的作用,会使沿线路传输的雷电流波形有很陡峭的下降沿和随后较低的幅值;反击跳闸时,雷电流击中避雷线或杆塔引起绝缘子串闪络跳闸,绝缘子串被击穿后,较长的雷电流波尾会分流进入输电线路的导线传播,该雷电流波形具有很陡的上升沿和相对缓慢下降的波尾;
(2)对故障进行区间定位;利用检测***工频短路电流流向的方法来确定故障所在区间,若某一区间发生故障,则其两侧区间的电流相位为相反的,若电路是单端供电的,则远离电源一侧的区间内无工频故障电流;
(3)在故障区间内确定故障点;在故障区间内利用行波定位的方法来确定故障点。
CN201810138483.XA 2018-02-10 2018-02-10 识别雷击故障性质和精确定位故障点的装置及方法 Pending CN108169628A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810138483.XA CN108169628A (zh) 2018-02-10 2018-02-10 识别雷击故障性质和精确定位故障点的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810138483.XA CN108169628A (zh) 2018-02-10 2018-02-10 识别雷击故障性质和精确定位故障点的装置及方法

Publications (1)

Publication Number Publication Date
CN108169628A true CN108169628A (zh) 2018-06-15

Family

ID=62513725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810138483.XA Pending CN108169628A (zh) 2018-02-10 2018-02-10 识别雷击故障性质和精确定位故障点的装置及方法

Country Status (1)

Country Link
CN (1) CN108169628A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239532A (zh) * 2018-11-06 2019-01-18 安徽康能电气有限公司 一种基于fpga行波采样的线路故障定位装置
CN109901023A (zh) * 2019-04-08 2019-06-18 国网上海市电力公司 配电网线路柱上故障暂态数据采集终端、***及方法
CN110426607A (zh) * 2019-06-03 2019-11-08 江苏德大石化科技有限公司 一种识别雷电流发生电弧闪络的监控***
CN110927529A (zh) * 2019-12-19 2020-03-27 哈尔滨工业大学 一种输电线路雷电流的故障类型判断方法
CN111007361A (zh) * 2019-12-27 2020-04-14 广东电网有限责任公司电力科学研究院 一种输电线路故障定位方法、***以及设备
CN111239545A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种雷击过电压故障定位方法
CN111239543A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111239546A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种雷击过电压在线测距及故障定位方法
CN111239547A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111458597A (zh) * 2020-02-06 2020-07-28 云南电网有限责任公司电力科学研究院 一种基于雷击过电压相位传变特性的故障定位方法
CN115577272A (zh) * 2022-12-06 2023-01-06 昆明理工大学 一种基于故障录波数据的多重雷击判别方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162833A (zh) * 2007-08-07 2008-04-16 刘熠 输电线路雷击跳闸事故性质识别***
CN101345415A (zh) * 2008-08-26 2009-01-14 昆明理工大学 直流输电线路雷电绕击与反击分辨的行波分析识别方法
CN102193050A (zh) * 2011-04-19 2011-09-21 嘉兴电力局 一种直流输电线路故障的定位***
CN201993432U (zh) * 2010-11-05 2011-09-28 江西省电力科学研究院 基于行波及工频量原理的输电线路单端行波故障测距装置
CN102565631A (zh) * 2012-02-23 2012-07-11 广东电网公司电力科学研究院 基于分布式监测的跨区输电线路故障区间定位方法
CN102565628A (zh) * 2012-02-07 2012-07-11 云南电力试验研究院(集团)有限公司电力研究院 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
WO2012152055A1 (zh) * 2011-05-10 2012-11-15 山东电力研究院 一种输电线路雷击故障波形精确测量方法
CN102788932A (zh) * 2012-06-13 2012-11-21 武汉三相电力科技有限公司 一种输电线路雷电绕击故障的辨识方法
CN103364693A (zh) * 2013-07-15 2013-10-23 国家电网公司 一种基于区域数据的输电线路行波故障测距方法
US20140009297A1 (en) * 2012-07-03 2014-01-09 Simplexgrinnell Lp Method and apparatus for monitoring transient electrical strikes
CN203838288U (zh) * 2014-04-03 2014-09-17 云南电力试验研究院(集团)有限公司电力研究院 一种交、直流输电线路雷电绕击与反击识别装置
WO2014173314A1 (zh) * 2013-04-27 2014-10-30 国网四川省电力公司电力科学研究院 一种输电线路雷电行波特性测试***
CN104459465A (zh) * 2014-11-26 2015-03-25 国家电网公司 一种含分布式电源的配电网故障区段定位方法
CN104749490A (zh) * 2015-04-14 2015-07-01 国家电网公司 智能故障监测终端及其监测方法
US20160187406A1 (en) * 2014-12-24 2016-06-30 Shanghai Jiao Tong University Method and system for identifying lightning fault and the type thereof in the overhead transmission line
WO2017161630A1 (zh) * 2016-03-23 2017-09-28 清华大学深圳研究生院 一种小区域雷电监测定位方法及***
CN107290623A (zh) * 2017-05-08 2017-10-24 广西电网有限责任公司电力科学研究院 一种基于自动匹配的输电线路故障原因识别方法
CN207780159U (zh) * 2018-02-10 2018-08-28 新乡市中宝电气有限公司 识别雷击故障性质和精确定位故障点的装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162833A (zh) * 2007-08-07 2008-04-16 刘熠 输电线路雷击跳闸事故性质识别***
CN101345415A (zh) * 2008-08-26 2009-01-14 昆明理工大学 直流输电线路雷电绕击与反击分辨的行波分析识别方法
CN201993432U (zh) * 2010-11-05 2011-09-28 江西省电力科学研究院 基于行波及工频量原理的输电线路单端行波故障测距装置
CN102193050A (zh) * 2011-04-19 2011-09-21 嘉兴电力局 一种直流输电线路故障的定位***
WO2012152055A1 (zh) * 2011-05-10 2012-11-15 山东电力研究院 一种输电线路雷击故障波形精确测量方法
CN102565628A (zh) * 2012-02-07 2012-07-11 云南电力试验研究院(集团)有限公司电力研究院 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
CN102565631A (zh) * 2012-02-23 2012-07-11 广东电网公司电力科学研究院 基于分布式监测的跨区输电线路故障区间定位方法
CN102788932A (zh) * 2012-06-13 2012-11-21 武汉三相电力科技有限公司 一种输电线路雷电绕击故障的辨识方法
US20140009297A1 (en) * 2012-07-03 2014-01-09 Simplexgrinnell Lp Method and apparatus for monitoring transient electrical strikes
WO2014173314A1 (zh) * 2013-04-27 2014-10-30 国网四川省电力公司电力科学研究院 一种输电线路雷电行波特性测试***
CN103364693A (zh) * 2013-07-15 2013-10-23 国家电网公司 一种基于区域数据的输电线路行波故障测距方法
CN203838288U (zh) * 2014-04-03 2014-09-17 云南电力试验研究院(集团)有限公司电力研究院 一种交、直流输电线路雷电绕击与反击识别装置
CN104459465A (zh) * 2014-11-26 2015-03-25 国家电网公司 一种含分布式电源的配电网故障区段定位方法
US20160187406A1 (en) * 2014-12-24 2016-06-30 Shanghai Jiao Tong University Method and system for identifying lightning fault and the type thereof in the overhead transmission line
CN104749490A (zh) * 2015-04-14 2015-07-01 国家电网公司 智能故障监测终端及其监测方法
WO2017161630A1 (zh) * 2016-03-23 2017-09-28 清华大学深圳研究生院 一种小区域雷电监测定位方法及***
CN107290623A (zh) * 2017-05-08 2017-10-24 广西电网有限责任公司电力科学研究院 一种基于自动匹配的输电线路故障原因识别方法
CN207780159U (zh) * 2018-02-10 2018-08-28 新乡市中宝电气有限公司 识别雷击故障性质和精确定位故障点的装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. LEE等: "GPS travelling wave fault locator systems: investigation into the anomalous measurements related to lightning strikes" *
束洪春等: "±800 kV 直流输电线路雷电绕击与反击的识别方法" *
马仪等: "基于行波理论的输电线路雷击定位方法研究与应用" *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239532A (zh) * 2018-11-06 2019-01-18 安徽康能电气有限公司 一种基于fpga行波采样的线路故障定位装置
CN109901023A (zh) * 2019-04-08 2019-06-18 国网上海市电力公司 配电网线路柱上故障暂态数据采集终端、***及方法
CN110426607A (zh) * 2019-06-03 2019-11-08 江苏德大石化科技有限公司 一种识别雷电流发生电弧闪络的监控***
CN110927529B (zh) * 2019-12-19 2021-09-28 哈尔滨工业大学 一种输电线路雷电流的故障类型判断方法
CN110927529A (zh) * 2019-12-19 2020-03-27 哈尔滨工业大学 一种输电线路雷电流的故障类型判断方法
CN111007361A (zh) * 2019-12-27 2020-04-14 广东电网有限责任公司电力科学研究院 一种输电线路故障定位方法、***以及设备
CN111239543A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111239546A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种雷击过电压在线测距及故障定位方法
CN111239547A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111458597A (zh) * 2020-02-06 2020-07-28 云南电网有限责任公司电力科学研究院 一种基于雷击过电压相位传变特性的故障定位方法
CN111239546B (zh) * 2020-02-06 2021-07-27 云南电网有限责任公司电力科学研究院 一种雷击过电压在线测距及故障定位方法
CN111239543B (zh) * 2020-02-06 2021-09-03 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111239545A (zh) * 2020-02-06 2020-06-05 云南电网有限责任公司电力科学研究院 一种雷击过电压故障定位方法
CN111239547B (zh) * 2020-02-06 2022-05-20 云南电网有限责任公司电力科学研究院 一种基于雷击过电压陡度传变特性的故障定位方法
CN111458597B (zh) * 2020-02-06 2022-06-10 云南电网有限责任公司电力科学研究院 一种基于雷击过电压相位传变特性的故障定位方法
CN111239545B (zh) * 2020-02-06 2022-08-09 云南电网有限责任公司电力科学研究院 一种雷击过电压故障定位方法
CN115577272A (zh) * 2022-12-06 2023-01-06 昆明理工大学 一种基于故障录波数据的多重雷击判别方法
CN115577272B (zh) * 2022-12-06 2023-02-28 昆明理工大学 一种基于故障录波数据的多重雷击判别方法

Similar Documents

Publication Publication Date Title
CN108169628A (zh) 识别雷击故障性质和精确定位故障点的装置及方法
US6879917B2 (en) Double-ended distance-to-fault location system using time-synchronized positive-or negative-sequence quantities
CN102565628B (zh) 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
CN201307148Y (zh) 输电线路杆塔接地故障监测定位装置
CN104808109B (zh) 基于录波数据的高压输电线路故障识别方法和***
CN110018389A (zh) 一种输电线路在线故障监测方法及***
CN105652152B (zh) 一种复线直供***接触网的故障定位方法和***
CN207780159U (zh) 识别雷击故障性质和精确定位故障点的装置
CN102590654B (zh) 一种直流输电线路故障极判别元件及判别方法
CN104155568A (zh) 一种雷击输电线路避雷线精确定位方法
CN105426671A (zh) 一种雷暴天气下架空配电线路的可靠性评测方法
CN104535895A (zh) 基于同步采样技术的电缆架空线混合线路故障区段的方法
CN106990322A (zh) 面向配网的配电线路故障定位***
CN108169612A (zh) 架空线直流输电***直流短路故障的定位方法
CN110346690B (zh) 基于光纤脉冲传输的海缆故障测距***及方法
CN111239543B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN113759207A (zh) 一种配电线路的故障定位***及故障定位方法
CN109596935A (zh) 一种结合磁场能衰减特征的输电线路故障行波法
CN110320422A (zh) 一种基于多参量融合的线路避雷器动作可靠性评估方法
CN108008195B (zh) 一种输电线路杆塔接地电阻监测***及其使用方法
CN111239544B (zh) 一种雷击过电压故障点的定位方法
CN108362977B (zh) 一种超特高压输电工程线路故障成因辨别方法及***
CN116520072A (zh) 电缆故障定位方法及设备
CN111239547B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN114089117A (zh) 一种基于双端行波法的配电网故障测距方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination