CN108165322A - 焦炉煤气的净化方法 - Google Patents

焦炉煤气的净化方法 Download PDF

Info

Publication number
CN108165322A
CN108165322A CN201710590843.5A CN201710590843A CN108165322A CN 108165322 A CN108165322 A CN 108165322A CN 201710590843 A CN201710590843 A CN 201710590843A CN 108165322 A CN108165322 A CN 108165322A
Authority
CN
China
Prior art keywords
logistics
adsorption tower
molecular sieve
coke
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710590843.5A
Other languages
English (en)
Inventor
彭继荣
李建
马海洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Shen Tan Environmental Protection New Material Co Ltd
Original Assignee
Hubei Shen Tan Environmental Protection New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Shen Tan Environmental Protection New Material Co Ltd filed Critical Hubei Shen Tan Environmental Protection New Material Co Ltd
Priority to CN201710590843.5A priority Critical patent/CN108165322A/zh
Publication of CN108165322A publication Critical patent/CN108165322A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及一种用于燃机发电的焦炉煤气的净化方法,主要解决现有技术中焦炉煤气净化中硫化物、焦油、苯和萘脱除不干净,造成压缩机冷却管道易堵塞、燃机尾气二氧化硫排放超标的技术问题。本发明通过采用包括以下步骤:a.炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b.物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c.物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ的技术方案,较好地解决了该问题,可用于焦炉煤气发电的工业生产中。

Description

焦炉煤气的净化方法
技术领域
本发明涉及一种用于燃机发电的焦炉煤气的净化方法,特别是用于燃机发电的焦炉煤气的净化方法。
背景技术
焦炉煤气主要是焦化厂副产的含有烃类、甲烷、氢气的高热能可燃气体,一般作为燃气发电使用。由于燃机发电的热效率高于蒸汽轮机,一般焦化厂的焦炉煤气发电选用燃机发电。但燃机发电对煤气的纯度要求较高,要去除焦炉煤气中的苯、甲苯、二甲苯、萘、焦油等有机物,防止堵塞燃机喷嘴,还要去除焦炉煤气中的硫化物,防止燃烧后的烟气二氧化硫排放超标,为了防止氮化物超标,还需要脱除焦炉煤气中的氨气。所以煤气燃烧发电前,需要进行净化,脱除煤气中携带的芳烃、焦油、硫化物、氨气等。
现有的焦炉煤气净化工艺,先用氧化铁吸附剂脱除焦炉煤气中的硫化氢,然后用活性炭脱除其中的萘、再用活性炭脱除其中的苯,然后送入燃机发电,但是脱出硫化氢、苯、萘的效果不好。
文献CN201410651179.7公开了一种焦炉煤气净化的方法,过程是:焦炉煤气通过初冷器用水间接冷却到300~500℃,脱水塔脱水至水含量5~10ppm进入焦油回收塔,冷凝析出液态焦油外排,进入液氨回收塔冷却到-30~-50℃析出液态氨外排,经过甲醇洗涤塔脱除杂质,洁净焦炉煤气进净煤气罐。焦炉煤气净化的装置包括初冷器、脱水塔、焦油回收塔、液氨回收塔和甲醇洗涤塔并依次相连。焦油回收塔和液氨回收塔分别与液态二氧化碳管路连接,焦油回收塔的塔底出口与焦油回收设备连接,液氨回收塔的塔底出口与液氨回收设备连接。该发明通过冷却、脱水、分离焦油和氨,再经甲醇洗涤过程,脱除煤气中的杂质及有害物质,没有涉及采用吸附剂净化焦炉煤气。
文献CN201210012179.3涉及一种燃气轮机发电焦炉煤气综合净化***及其净化方法,燃气轮机发电焦炉煤气综合净化***,煤气管内的焦炉煤气依次经脱硫***、压缩机过滤***和煤气过滤***进入燃气轮机中,脱硫***是四组干脱硫塔并联在煤气管上,压缩机过滤***是由四台压缩机过滤器串联在从脱硫***出来的第一输气管上;利用煤气综合净化***的净化方法,包括如下步骤:a、将煤气脱硫;b、将步骤a所得的煤气过滤压缩;c、将步骤b所得煤气等压升温;d、将步骤c所得煤气预过滤;e、将步骤d所得煤气精过滤,得到符合燃机要求的煤气。本发明***在粗苯净化处理的基础上,新设四组干脱硫塔,与本发明的一塔式同时脱硫脱苯不同。
文献CN201110250178.8报道了一种多功能原料气净化剂及其制备和应用方法。该多功能原料气净化剂以活性氧化铝为载体,负载钼酸铵,同时负载醋酸铜、醋酸锌、醋酸铅、草酸镍、偏钒酸铵中的1~2种,同时还负载氯化镁、碳酸钾、碳酸钠中的一种制成,该多功能原料气净化剂的原组成以载体质量计,负载的钼酸铵为载体质量的1%~10%,其它2~3种金属化合物总量为载体质量的10%~25%。该多功能原料气净化剂的制备方法是先用金属化合物溶液浸渍载体2~6小时,经过120℃干燥2~4小时,280~350℃焙烧4~6小时后即制得该多功能净化剂。该多功能原料气净化剂用于水煤气、半水煤气、焦炉煤气或IGCC发电燃气原料气中净化COS、CS2、HCN、SO2、SO3和O2等杂质,其中COS、CS2、HCN、SO2、SO3转化率均≥90%,O2脱除率≥95%。该文献并没有报道净化剂对芳烃具有吸附作用。
现有技术没有使用分子筛类吸附剂净化煤气的报道,更没有公开使用分子筛吸附剂,同时脱除硫化物和芳烃的报道,本发明煤气净化方法,完全脱除硫化物和芳烃,有针对性的解决了目前存在煤气净化不干净的技术问题。
发明内容
本发明所要解决的技术问题是现有技术中主要解决现有技术中焦炉煤气净化中硫化物、焦油、苯和萘脱除不干净,造成压缩机冷却管道易堵塞,发电后的燃机尾气中二氧化硫排放超标的技术问题,本发明提供一种新的焦炉煤气净化方法。该方法用于采用焦炉煤气发电的生产中,煤气净化干净,硫排放低,发电装置运行稳定的优点。
为解决上述技术问题,本发明采用的技术方案如下:一种焦炉煤气的净化方法,包括以下步骤:
a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;
b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;
c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;
e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;
f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在100~250℃热吹5~100小时,再生出来的含芳烃气体送到回收单元;
g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;
h. 物流Ⅲ剩余部分煤气,进入后续使用工段;
所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
上述技术方案中,优选的技术方案为所述的物流Ⅰ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分。
上述技术方案中,优选的技术方案为所述的物流Ⅳ进入尾气脱硫和脱硝单元,脱除二氧化硫和氮化物后,放空。
所述的物流Ⅱ在进入综合吸附塔之前,中进入水气分离器,脱除焦炉煤气中的水分;物流Ⅳ进入尾气脱硫和脱硝单元,脱除二氧化硫和氮化物后,放空。
上述技术方案中,优选的技术方案为煤气进入到换热器换热后,温度达到100~250℃,综合吸附塔A再生5~100小时,完成再生过程。
上述技术方案中,优选的技术方案为水蒸汽进入换热器之前,通过加热器加热。
上述技术方案中,优选的技术方案为综合吸附塔A再生完成后,物流Ⅲ中的煤气冷吹到80℃以下,综合吸附塔A投入使用。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂为疏水型分子筛吸附剂。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂中含有元素周期表中第ⅠA、ⅡA、ⅤA、ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB或第Ⅷ族元素中的至少一种元素。
上述技术方案中,优选的技术方案为所述的元素周期表中第ⅡA元素选自镁和钙中的至少一种;第ⅠB族元素选自铜、银中的至少一种;第ⅢB族元素选自镧、铈、钇中的至少一种。
上述技术方案中,优选的技术方案为综合吸附塔A和综合吸附塔B中,所述的分子筛类吸附剂中分子筛选自X型分子筛、Y型分子筛、A型分子筛、ZSM型分子筛、丝光沸石、β型分子筛、SAPO型分子筛、MCM-22、MCM-49、MCM-56、ZSM-5/丝光沸石、ZSM-5/β沸石、ZSM-5/Y、MCM-22/丝光沸石、ZSM-5/Magadiite、ZSM-5/β沸石/丝光沸石、ZSM-5/β沸石/Y沸石或ZSM-5/Y沸石/丝光沸石中的至少一种。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂中ZSM型分子筛包括ZSM-5、ZSM-23、ZSM-11、ZSM-48中的至少一种。
上述技术方案中,优选的技术方案为所述分子筛的硅铝摩尔比大于100。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂同时脱除煤气中的焦油、氰化物、氨气。
上述技术方案中,优选的技术方案为所述的芳烃为苯、甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的至少一种;硫化物为硫化氢、二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的至少一种。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂为可再生吸附剂。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂吸附饱和后,在100℃以上的氮气或者煤气中再生3小时以上,再生完成后,重复使用。
上述技术方案中,优选的技术方案为所述的分子筛类吸附剂吸附饱和后,在150~220℃的煤气中再生10~30小时,再生完成后,重复使用。
上述技术方案中,优选的技术方案为粗脱苯单元采用分子筛吸附剂;粗脱硫单元采用含有元素周期表中第ⅠA、ⅡA、ⅤA、ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB或第Ⅷ族元素中的至少一种元素的分子筛类吸附剂。
上述技术方案中,优选的技术方案为粗脱苯单元采用溶剂萃取的方法,粗脱硫单元采用石灰石脱硫剂。
上述技术方案中,优选的技术方案为粗脱苯单元采用分子筛吸附剂;粗脱硫单元采用含有元素周期表中第ⅠA、ⅡA、ⅤA、ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB或第Ⅷ族元素中的至少一种元素的分子筛类吸附剂。所述的分子筛类吸附剂中分子筛选自X型分子筛、Y型分子筛、A型分子筛、ZSM型分子筛、丝光沸石、β型分子筛、SAPO型分子筛、MCM-22、MCM-49、MCM-56、ZSM-5/丝光沸石、ZSM-5/β沸石、ZSM-5/Y、MCM-22/丝光沸石、ZSM-5/Magadiite、ZSM-5/β沸石/丝光沸石、ZSM-5/β沸石/Y沸石或ZSM-5/Y沸石/丝光沸石中的至少一种。所述的元素周期表中第ⅡA元素选自镁和钙中的至少一种;第ⅠB族元素选自铜、银中的至少一种;第ⅢB族元素选自镧、铈、钇中的至少一种。
本领域所公知的,在煤气净化工艺过程中,采用传统工艺净化煤气,采用再脱硫塔中用氧化铁脱硫;采用脱萘塔中用活性炭脱萘;再采用脱苯塔用活性炭脱苯;一共使用3个吸附单元,依次净化煤气。装置运行中,装置出口处硫化氢、苯和萘浓度很高,压缩机冷却管道经常堵塞,需要停机疏通,影响生产效率。采用本发明的方法,具有如下优点:(1)使用分子筛吸附剂,能将苯、萘和硫化氢、有机硫能彻底脱除干净,解决了管道堵塞的问题。(2)将吸附剂进行多功能化,可同时脱硫、脱苯、脱萘,在一个吸附塔内,可同时进行综合净化过程,这样减少了吸附塔的数量,降低了生产成本。
采用本发明的技术方案:炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后进入综合吸附塔,吸附塔内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,再进入压缩机压缩后,送到燃气轮机发电。脱萘塔出口处硫化氢含量为小于4mg/m3,萘含量小于4mg/m3,焦油含量为0,气体中携带的有机硫也被脱除,燃机烟气中二氧化硫排放在7mg以下,装置运行稳定,取得了较好的技术效果。
附图说明
图1为的本发明焦炉煤气净化流程示意图。
图1中,1为炼焦炉来的焦炉煤气,2为物流Ⅰ,即粗脱苯后的焦炉煤气,3为物流Ⅱ;
4为物流Ⅲ,5为物流Ⅳ,6为再生用煤气,7为加热后的再生煤气,8为水蒸汽,9为换热后的水蒸汽,10为再生后的煤气。
Ⅰ为脱粗苯塔,Ⅱ为粗脱硫塔,Ⅲ为综合吸附塔,Ⅳ为煤气压缩机,Ⅴ为燃机发电机,Ⅵ为换热器,Ⅶ为加热器。
下面通过实施例对本发明作进一步的阐述,但不仅限于本实施例。
具体实施方式
【实施例1】
如附图1所示,一种焦炉煤气的净化方法,包括以下步骤:
a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;
b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;
c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;
e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;
f. 物流Ⅲ中的10%煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在150℃热吹20小时,再生出来的含芳烃气体送到回收单元;
g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到80℃以下,完成再生过程,综合吸附塔A备用;
h. 物流Ⅲ剩余部分90%的煤气,进入后续使用工段;
所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有ZSM分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放中的物流Ⅳ中二氧化硫浓度小于5mg/m3
【实施例2】
如附图1所示,一种焦炉煤气的净化方法,包括以下步骤:
a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;
b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;
c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;
e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;
f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在120℃热吹60小时,再生出来的含芳烃气体送到回收单元;
g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到60℃以下,完成再生过程,综合吸附塔A备用;
h. 物流Ⅲ剩余部分煤气,进入后续使用工段;
所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有丝光沸石分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3
【实施例3】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有Y沸石分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3
【实施例4】
一种焦炉煤气的净化方法,包括以下步骤:
a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;
b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;
c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;
e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;
f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在120℃热吹40小时,再生出来的含芳烃气体送到回收单元;
g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到40℃以下,完成再生过程,综合吸附塔A备用;
h. 物流Ⅲ剩余部分煤气,进入后续使用工段;
所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有稀土改性的Y分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3
【实施例5】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分。然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有锌改性的ZSM-5分子筛类吸附剂,分子筛硅铝比为200,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3
【实施例6】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分;然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,分子筛硅铝比为150,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3
所述的分子筛类吸附剂吸附芳烃饱和后,在150℃用煤气中再生10小时,再生完成后,重复使用。
【实施例7】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中,粗脱苯单元采用甲醇溶剂萃取的方法,粗脱硫单元采用氢氧化钙脱硫剂,物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分;然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,分子筛硅铝比为150,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3。所述的分子筛类吸附剂吸附芳烃饱和后,在150℃用煤气中再生10小时,再生完成后,重复使用。
【实施例8】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中,粗脱苯单元采用Y分子筛类吸附剂,粗脱硫单元采用稀土Y分子筛类吸附剂,物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分;然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,分子筛硅铝比为150,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,形成的尾气再进入烟气脱硫脱氮单元;然后放空。装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3。所述的分子筛类吸附剂吸附芳烃饱和后,在150℃用煤气中再生10小时,再生完成后,重复使用。
【实施例9】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中,粗脱苯单元采用铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,粗脱硫单元采用铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分;然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,分子筛硅铝比为150,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4 mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1 mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,形成的尾气再进入烟气脱硫脱氮单元;然后放空。装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3。所述的分子筛类吸附剂吸附芳烃饱和后,采用净化后的煤气在180℃以上的煤气再生,再生5小时后,吸附剂的吸附性能稳定,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于2mg/m3之间,硫化氢浓度小于2mg/m3
【实施例12】
焦炉煤气的净化方法,包括以下步骤:a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在250℃热吹10小时,再生出来的含芳烃气体送到回收单元;g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;h. 物流Ⅲ剩余部分煤气,进入后续使用工段;所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
其中,粗脱苯单元采用铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,粗脱硫单元采用锌改性的ZSM-5分子筛类吸附剂,物流Ⅱ中苯浓度在1000~4000mg/m3之间,萘浓度在200~500mg/m3之间,硫化氢浓度在100~500mg/m3之间;物流Ⅱ在进入综合吸附塔之前,进入水气分离器,脱除焦炉煤气中的水分;然后物流Ⅱ进入综合吸附塔,所述的综合吸附塔内含有铜改性的ZSM-5分子筛和锌改性的Y分子筛类吸附剂,分子筛硅铝比为150,同时脱除掉煤气中的芳烃和硫化物,形成物流Ⅲ,物流Ⅲ中苯浓度小于50mg/m3,萘浓度小于4mg/m3之间,硫化氢浓度小于4mg/m3;甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的浓度小于1mg/m3之间;二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的浓度小于1 mg/m3之间。物流Ⅲ进入压缩机压缩后,送到燃气轮机发电,形成的尾气再进入烟气脱硫脱氮单元;然后放空。装置连续运行3个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放的物流Ⅳ中二氧化硫浓度小于5mg/m3。所述的分子筛类吸附剂吸附芳烃饱和后,在150℃用煤气中再生10小时,再生完成后,重复使用。
其中,物流Ⅲ中的焦油、氰化物、氨气浓度小于1mg/m3。装置连续运行4个月以上,综合吸附塔出口处苯、萘、硫化氢浓度稳定,煤气压缩机也未出现堵管现象,燃机的尾气排放中二氧化硫浓度小于5mg/m3
【比较例1】
按照实施例1所述的方法,只是采用活性炭吸附剂,运行10个小时后,物流Ⅲ的取样分析,苯浓度在1500mg/m3,萘浓度在200mg/m3,硫化氢浓度在300mg/m3
显然,采用本发明的吸附剂补充,有效的吸附了苯、萘、硫化氢、氨气、焦油、氰化氢、甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎、二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲和基硫醚,保证了净化后的煤气干净,保证了发电***的正常运行。

Claims (10)

1.一种焦炉煤气的净化方法,包括以下步骤:
a. 炼焦炉出来的焦炉煤气进入粗脱苯单元,粗脱苯后形成物流Ⅰ;
b. 物流Ⅰ进入粗脱硫单元,粗脱硫后形成物流Ⅱ;
c. 物流Ⅱ进入综合吸附塔A,形成物流Ⅲ;
e. 当综合吸附塔A吸附饱和后,物流Ⅱ由综合吸附塔A切换进入综合吸附塔B,形成物流Ⅲ;
f. 物流Ⅲ中的部分煤气进入换热器,换热后进入综合吸附塔A中,综合吸附塔A内吸附剂开始再生,温度在100~250℃热吹5~100小时,再生出来的含芳烃气体送到回收单元;
g. 热吹完成后,再生用煤气不经过换热器,直接进入综合吸附塔A,进行冷吹降温,冷吹到100℃以下,完成再生过程,综合吸附塔A备用;
h. 物流Ⅲ剩余部分煤气,进入后续使用工段;
所述的综合吸附塔A和综合吸附塔B内含有分子筛类吸附剂,同时脱除掉煤气中的芳烃和硫化物。
2.根据权利要求1所述的焦炉煤气的净化方法,其特征在于所述的物流Ⅱ在进入综合吸附塔之前,中进入水气分离器,脱除焦炉煤气中的水分;物流Ⅳ进入尾气脱硫和脱硝单元,脱除二氧化硫和氮化物后,放空,所述的换热器通过水蒸汽加热;步骤g中的物流Ⅲ进入压缩机压缩后,送到燃气轮机燃烧发电,燃气轮机燃烧后的尾气,形成物流Ⅳ,物流Ⅳ放空。
3.根据权利要求1所述的焦炉煤气的净化方法,其特征在于煤气进入到换热器换热后,温度达到100~250℃,综合吸附塔A再生5~100小时,完成再生过程;水蒸汽进入换热器之前,通过加热器加热。
4.根据权利要求1所述的焦炉煤气的净化方法,其特征在于综合吸附塔A再生完成后,物流Ⅲ中的煤气冷吹到80℃以下,综合吸附塔A投入使用。
5.根据权利要求4所述的焦炉煤气的净化方法,其特征在于所述的分子筛类吸附剂为疏水型分子筛吸附剂;所述的分子筛类吸附剂中含有元素周期表中第ⅠA、ⅡA、ⅤA、ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB或第Ⅷ族元素中的至少一种元素。
6.根据权利要求1所述的焦炉煤气的净化方法,其特征在于所述的元素周期表中第ⅡA元素选自镁和钙中的至少一种;第ⅠB族元素选自铜、银中的至少一种;第ⅢB族元素选自镧、铈、钇中的至少一种;所述的分子筛类吸附剂中分子筛选自X型分子筛、Y型分子筛、A型分子筛、ZSM型分子筛、丝光沸石、β型分子筛、SAPO型分子筛、MCM-22、MCM-49、MCM-56、ZSM-5/丝光沸石、ZSM-5/β沸石、ZSM-5/Y、MCM-22/丝光沸石、ZSM-5/Magadiite、ZSM-5/β沸石/丝光沸石、ZSM-5/β沸石/Y沸石或ZSM-5/Y沸石/丝光沸石中的至少一种。
7.根据权利要求1所述的焦炉煤气的净化方法,其特征在于所述的分子筛类吸附剂中ZSM型分子筛包括ZSM-5、ZSM-23、ZSM-11、ZSM-48中的至少一种,其中所述分子筛的硅铝摩尔比大于100。
8.根据权利要求1所述的焦炉煤气的净化方法,其特征在于所述的分子筛类吸附剂同时脱除煤气中的焦油、氰化物、氨气;步骤c中所述的芳烃为苯、甲苯、二甲苯、乙苯、三甲苯、萘、蒽、菎中的至少一种;硫化物为硫化氢、二氧化硫、硫醇、硫醚、噻吩、甲基硫醇、甲基硫醚中的至少一种。
9.根据权利要求1所述的焦炉煤气的净化方法,其特征在于所述的分子筛类吸附剂吸附饱和后,在150~220℃的煤气中再生10~30小时,再生完成后,重复使用。
10.根据权利要求1所述的焦炉煤气的净化方法,其特征在于粗脱苯单元采用分子筛吸附剂;粗脱硫单元采用含有元素周期表中第ⅠA、ⅡA、ⅤA、ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB或第Ⅷ族元素中的至少一种元素的分子筛类吸附剂。
CN201710590843.5A 2017-07-19 2017-07-19 焦炉煤气的净化方法 Pending CN108165322A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710590843.5A CN108165322A (zh) 2017-07-19 2017-07-19 焦炉煤气的净化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710590843.5A CN108165322A (zh) 2017-07-19 2017-07-19 焦炉煤气的净化方法

Publications (1)

Publication Number Publication Date
CN108165322A true CN108165322A (zh) 2018-06-15

Family

ID=62527239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710590843.5A Pending CN108165322A (zh) 2017-07-19 2017-07-19 焦炉煤气的净化方法

Country Status (1)

Country Link
CN (1) CN108165322A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467154A (zh) * 2018-12-07 2019-03-15 铜陵泰富特种材料有限公司 焦化废水的净化方法
CN109485121A (zh) * 2018-12-07 2019-03-19 铜陵泰富特种材料有限公司 蒸氨废水除油的方法
CN109513346A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109513347A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109513340A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109513349A (zh) * 2018-12-21 2019-03-26 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109529609A (zh) * 2018-12-21 2019-03-29 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109550394A (zh) * 2018-12-07 2019-04-02 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109550393A (zh) * 2018-12-07 2019-04-02 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109569281A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 烧结烟气脱硫脱硝方法
CN109569282A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 球团烟气的脱硫脱硝方法
CN109569276A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 球团烟气的脱硫脱硝方法
CN110218828A (zh) * 2019-07-15 2019-09-10 湖北申昙环保新材料有限公司 高炉煤气净化方法
CN113528189A (zh) * 2020-04-16 2021-10-22 国家能源投资集团有限责任公司 一种气流床气化***及方法
WO2022037204A1 (zh) * 2020-08-19 2022-02-24 中冶南方都市环保工程技术股份有限公司 高炉煤气脱硫装置及脱硫方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849604A (ja) * 1981-09-21 1983-03-23 Kansai Coke & Chem Co Ltd コ−クス炉ガスの精製法
CN101280235A (zh) * 2008-05-21 2008-10-08 太原理工天成科技股份有限公司 一种以焦炉煤气为原料生产液化天然气的方法
CN102250658A (zh) * 2010-05-19 2011-11-23 上海标氢气体技术有限公司 焦炉煤气和高炉煤气原料转化制液化天然气的方法
CN103641102A (zh) * 2013-12-24 2014-03-19 上海同助化工科技有限公司 焦炉煤气脱苯剂的制造方法
CN104557388A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种炼厂碳四的深度脱硫方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849604A (ja) * 1981-09-21 1983-03-23 Kansai Coke & Chem Co Ltd コ−クス炉ガスの精製法
CN101280235A (zh) * 2008-05-21 2008-10-08 太原理工天成科技股份有限公司 一种以焦炉煤气为原料生产液化天然气的方法
CN102250658A (zh) * 2010-05-19 2011-11-23 上海标氢气体技术有限公司 焦炉煤气和高炉煤气原料转化制液化天然气的方法
CN104557388A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种炼厂碳四的深度脱硫方法
CN103641102A (zh) * 2013-12-24 2014-03-19 上海同助化工科技有限公司 焦炉煤气脱苯剂的制造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569281A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 烧结烟气脱硫脱硝方法
CN109550393A (zh) * 2018-12-07 2019-04-02 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109513346A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109513347A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109513340A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109569276A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 球团烟气的脱硫脱硝方法
CN109485121A (zh) * 2018-12-07 2019-03-19 铜陵泰富特种材料有限公司 蒸氨废水除油的方法
CN109550394A (zh) * 2018-12-07 2019-04-02 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN109569282A (zh) * 2018-12-07 2019-04-05 山东洲蓝环保科技有限公司 球团烟气的脱硫脱硝方法
CN109467154A (zh) * 2018-12-07 2019-03-15 铜陵泰富特种材料有限公司 焦化废水的净化方法
CN109529609A (zh) * 2018-12-21 2019-03-29 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN109513349A (zh) * 2018-12-21 2019-03-26 山东洲蓝环保科技有限公司 烧结烟气低温脱硫脱硝方法
CN110218828A (zh) * 2019-07-15 2019-09-10 湖北申昙环保新材料有限公司 高炉煤气净化方法
CN113528189A (zh) * 2020-04-16 2021-10-22 国家能源投资集团有限责任公司 一种气流床气化***及方法
WO2022037204A1 (zh) * 2020-08-19 2022-02-24 中冶南方都市环保工程技术股份有限公司 高炉煤气脱硫装置及脱硫方法

Similar Documents

Publication Publication Date Title
CN108165322A (zh) 焦炉煤气的净化方法
CN102627280B (zh) 一种电石炉气净化提浓co的方法
CN102139860B (zh) 一种净化焦炉煤气的装置和方法
CN112915777A (zh) 一种高炉煤气脱氯脱硫净化工艺
CN101757830B (zh) 一种炼厂干气中c2、c3组分及氢气的回收方法
CN102626580A (zh) 含氢气、硫化氢的多组分气体的两步法变压吸附分离方法
CN111659147A (zh) 回收低温甲醇洗工艺中co2的方法以及回收***
CN108102727A (zh) 用于焦炉煤气净化回收芳烃的方法
CN114835142B (zh) 一种从工业窑炉尾气中回收二氧化碳并生产碳酸锂的方法
CN108165321A (zh) 煤气的净化方法
CN111375271B (zh) 一种含二氧化硫烟气的处理方法及装置
CN107485962A (zh) 煤气净化吸附塔及其煤气净化的方法
CN108102733A (zh) 焦炉煤气的综合利用方法
CN108102726A (zh) 焦炉煤气吸附塔再生回收芳烃的方法
CN107236576A (zh) 用于燃机发电的焦炉煤气净化方法
CN111375273A (zh) 一种含二氧化硫废气的处理方法及装置
CN108102728A (zh) 焦炉煤气中有机硫的脱除方法
CN103523749B (zh) 一种利用炭黑尾气制氢的工艺
CN107252615A (zh) 气体分布器及吸附塔
CN109277075A (zh) 焦炉煤气净化用吸附剂及其净化方法
CN210332252U (zh) 一种对水泥窑尾烟气中co2的捕集提浓与利用***
CN108165317A (zh) 用于燃机发电的焦炉煤气的净化方法
CN103316563A (zh) 兰炭尾气脱硫净化装置及其使用方法
CN108130137A (zh) 焦炉煤气的发电方法
CN108102729A (zh) 焦炉煤气的发电方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180615