CN108152476A - 一种固沟保塬工程措施模拟装置及其模拟方法与应用 - Google Patents

一种固沟保塬工程措施模拟装置及其模拟方法与应用 Download PDF

Info

Publication number
CN108152476A
CN108152476A CN201711397806.9A CN201711397806A CN108152476A CN 108152476 A CN108152476 A CN 108152476A CN 201711397806 A CN201711397806 A CN 201711397806A CN 108152476 A CN108152476 A CN 108152476A
Authority
CN
China
Prior art keywords
ditch
slope
plateau
raceway groove
measure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711397806.9A
Other languages
English (en)
Other versions
CN108152476B (zh
Inventor
霍艾迪
李兰
朱兴华
姜程
王小帆
韦红
郑小路
杜伟宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201711397806.9A priority Critical patent/CN108152476B/zh
Publication of CN108152476A publication Critical patent/CN108152476A/zh
Application granted granted Critical
Publication of CN108152476B publication Critical patent/CN108152476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Revetment (AREA)

Abstract

一种固沟保塬工程措施模拟装置及其模拟方法与应用,模拟装置包括用于放置黄土侵蚀沟模型的坡面板,坡面板安装在折叠支架上,折叠支架由坡面板安装支架、底座支架、调节螺杆组成,坡面板安装支架与底座支架的一端铰接,坡面板安装支架与底座支架的另一端之间安装调节螺杆,坡面板安装支架通过螺纹接头能够沿调节螺杆上下活动;所述黄土侵蚀沟模型的上方设置有人工降雨装置,坡面板的底端布置有泥沙收集箱;在坡面板的板面上设置有传感器以及用于将传感器检测到的数据传输至外部传感器数据采集器的数据线。本发明通过在现场进行对比模拟试验,实现了工程实际效果的定量分析。

Description

一种固沟保塬工程措施模拟装置及其模拟方法与应用
技术领域
本发明属于地质灾害防控领域,为一种固沟保塬工程措施模拟装置及其模拟方法与应用。
背景技术
传统涉及降雨诱发地质灾害的物理模拟装置,如泥石流物理模拟装置,一般都使用金属结构支架,较为笨重,不便于移动,只能在室内试验场中进行模拟试验。而在工程实际中,地质灾害发生位置大多数在较为偏远的地区,所需的模拟介质大多需要原位取样带回室内进行物理模拟,需要耗费大量的人力及物力,且运输过程中也会改变介质的理化性状,影响模拟试验效果。加上室内模拟试验中,野外地形的相似性和物源的相似性难以得到满足。因此需要开发一种既能方便携带且模拟效果良好的新型野外物理模拟实验装置和方法来进行物理模拟试验,以实现针对溯源侵蚀过程及固沟保塬工程实施效果的对比和反馈。
目前常用的固沟保塬工程措施主要有沟头回填、淤地坝、坡改梯、修建蓄水池等,这些工程措施虽有较多的实际工程经验,但实施效果如何目前还缺乏一套成熟的原位物理模拟方法,因此也就难以做到对工程实际效果的进行定量评估与分析。
发明内容
本发明的目的在于针对上述现有技术中的问题,提供一种固沟保塬工程措施模拟装置及其模拟方法与应用,该模拟装置轻巧便携,能在现场进行模拟试验,与周边环境相似程度高。
为了实现上述目的,本发明固沟保塬工程措施模拟装置包括用于放置黄土侵蚀沟模型的坡面板,坡面板安装在折叠支架上,折叠支架由坡面板安装支架、底座支架、调节螺杆组成,坡面板安装支架与底座支架的一端铰接,坡面板安装支架与底座支架的另一端之间安装调节螺杆,坡面板安装支架通过螺纹接头能够沿调节螺杆上下活动;所述黄土侵蚀沟模型的上方设置有人工降雨装置,坡面板的底端布置有泥沙收集箱;在坡面板的板面上设置有传感器以及用于将传感器检测到的数据传输至外部传感器数据采集器的数据线。坡面板的板面上连续开设有凹槽,凹槽衔接处形成用于增大黄土侵蚀沟模型附着力的摩擦条纹。
所述黄土侵蚀沟模型两侧的坡面板上设置有挡板。
所述黄土侵蚀沟模型顶部与底部两侧的坡面板外部连接集雨器。
所述坡面板安装支架与底座支架的中部分别加工有各自的折叠处。人工降雨装置包括通过水管与供水箱连接的花洒,供水箱内设有用于向水管输水的抽水泵。
本发明固沟保塬工程措施模拟装置的模拟方法,包括以下步骤:首先,取两套模拟装置分别在坡面板上制作黄土侵蚀沟模型,其中一套模拟工程措施,另一套不使用任何工程措施作为对照,记录模型的尺寸参数并计算塬面积及沟道参数;然后,通过坡面板安装支架调节坡面板的倾角;最后,通过人工降雨装置同时定量的对两套黄土侵蚀沟模型均匀降雨,观测沟道冲刷情况,通过传感器数据采集器读取传感器数据,对比塬面积及沟道参数的变化。
模拟坡改梯工程措施的具体方法如下:
首先在两套模拟装置的坡面板上堆积高h=300mm、宽b=1000mm、长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为15°,沟长初始定为L=1000mm,塬面积为S=bl-0.5lL=1.2m,沟尾深度为H=50tanθ=134mm,在沟道上等间距监测5个点,记为a、b、c、d、e;测量出各点沟道深度且在沟道里埋设土壤湿度传感器;然后在模拟坡改梯工程措施的坡面上修建梯田,垂直等间距20mm修建一道梯田,梯田宽度b=2/tanθ=74.6mm,夯实田坎并修建好梯田间的排水沟道,另一套作对比的作用,不修建任何工程措施;最后使用人工降雨装置同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度、沟床冲刷宽度以及沟头前进情况,在塬区发生崩塌滑移等明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积,读取土壤湿度传感器数据;根据记录的数据及降雨条件下黄土塬物理形态的改变,得到底坡面角度θ为15°时,有坡改梯工程措施及没有该工程措施情况下,塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化;在底坡面角度θ为15°时的条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,实现有无坡改梯工程措施效果的对比分析;改变底坡面角度θ,再以20°、25°、30°进行试验,分别试验不同坡角下,有坡改梯工程措施及没有该工程措施情况下塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化,记录数据进行定量对比分析。
模拟沟头填埋工程措施的方法如下:
首先在两套模拟装置底板上堆积高h=300mm、宽b=1000mm、长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为15°,沟长初始定为L=1000mm,塬面积为S=bl-0.5lL=1m2,沟尾深度为H=50tanθ=134mm,在沟道上等间距监测5个点,记为a、b、c、d、e;测量出各点沟道深度,在沟道里埋设土壤湿度传感器;然后在模拟沟头回填工程措施的沟头回填土体,将沟长度控制在900mm,将排水管道铺设结束后,进行整体回填,回填当中应采用分层夯实,回填面形成30°~40°的坡面,防止坡体自行崩塌;最后使用人工降雨装置同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度、沟床冲刷宽度以及沟头前进情况,在塬区发生明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积,读取土壤湿度传感器数据;根据记录的数据及降雨条件下黄土塬物理形态的改变,得到底坡面角度θ为15°时,有沟头回填工程措施及没有该工程措施情况下,沟头的前进长度、沟道的冲刷状况等物理形态变化;在坡面角度θ为15°条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,实现有无沟头回填工程措施效果的对比分析;改变底坡面角度θ,再以20°、25°、30°进行试验,分别试验不同坡角下,有坡改梯工程措施以及没有该工程措施情况下,塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化,记录数据进行定量对比分析。
本发明的模拟方法在淤地坝、修建蓄水池工程措施模拟中的应用。
与现有技术相比,本发明具有如下的有益效果:通过有固沟保塬工程措施与无工程措施的对比,实现该工程措施实施后的反馈效果分析,再通过各种工程措施之间的对比,得到一个最适宜的固沟保塬工程措施方案。本发明通过采用折叠支架取代传统装置大型笨重的钢结构支架,增加了模拟装置的灵活性,携带方便。本发明将以往取样带回室内试验变成了野外就地试验,这也就解决了浪费大量人力物力的现实情况,并且,由于是在现场进行模拟试验,能够保证物理模型实验与周边环境达到最大程度的拟合,提高了模拟试验的准确性,增加了研究数据的可靠性。本发明为固沟保塬工程措施的模拟提供了基础,实现了工程实际效果的定量分析,填补了固沟保塬工程措施模拟技术方面的空白。
附图说明
图1本发明模拟装置的装配结构示意图;
图2本发明模拟装置结构的正视图;
图3本发明坡面板结构的俯视图;
图4无工程措施的黄土侵蚀沟模型示意图;
图5模拟坡改梯工程措施示意图;
图6模拟沟头回填工程措施示意图。
附图中:1-泥沙收集箱;2-黄土侵蚀沟模型;2-1.坡面;2-2.塬面;2-3.沟头;2-4.田坎;2-5.田面;2-6.沟头回填土;3-人工降雨装置;4-抽水泵;5-供水箱;6-模拟装置;6-1.折叠处;6-2.集雨器;6-3.摩擦条纹;6-4.传感器数据采集器;6-5.数据线;7-折叠支架;7-1.坡面板安装支架;7-2.底座支架;7-3.调节螺杆。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
侵蚀的基本原理:在自然状态下,坡面自重M产生两个分力,即垂直坡面的正应力σ和沿着坡面方向的分力F=Msinθ(其中θ为沟道底坡面角度)。以及地表径流对表层土体的拖曳力τc=γhj。
土体抗剪强度(其中C为土体内聚力,为土体内摩擦角)。
当F+τc0时,土体抗剪强度无法抵抗下滑分力,坡面发生坍塌滑移;
当F+τc=τ0时,土体处于临界状态;
当F+τc0时,下滑分力不足以引起滑动,坡面稳定。
由于黄土渗水性较小,降水情况下坡面表层土体逐渐饱水,下层土体未饱和。
随着黄土空隙逐渐饱水,土体内摩擦角和内聚力C随着含水量的增加而降低,使土体内摩擦系数变小,内摩擦力降低。
因此在降水情况下,水流的不断冲刷,沟道底坡面角度θ增大,下滑分力F=Msinθ增大。循环往复下,沟床加深变宽,塬面宽度递减,沟头逐渐向上游前进。
参见图1-3,本发明固沟保塬工程措施模拟装置,包括用于放置黄土侵蚀沟模型2的坡面板,坡面板的板面上连续开设有凹槽,凹槽衔接处形成用于增大黄土侵蚀沟模型2附着力的摩擦条纹6-3,黄土侵蚀沟模型2两侧的坡面板上设置有挡板8。黄土侵蚀沟模型2顶部与底部两侧的坡面板外部连接集雨器6-2。坡面板安装在折叠支架7上,折叠支架7由坡面板安装支架7-1、底座支架7-2、调节螺杆7-3组成,坡面板安装支架7-1与底座支架7-2的一端铰接,坡面板安装支架7-1与底座支架7-2的另一端之间安装调节螺杆7-3,坡面板安装支架7-1通过螺纹接头能够沿调节螺杆7-3上下活动。坡面板安装支架7-1与底座支架7-2的中部分别加工有各自的折叠处6-1。黄土侵蚀沟模型2的上方设置有人工降雨装置3,坡面板的底端布置有泥沙收集箱1,人工降雨装置3包括通过水管与供水箱5连接的花洒,供水箱5内设有用于向水管输水的抽水泵4。在坡面板的板面上设置有传感器以及用于将传感器检测到的数据传输至外部传感器数据采集器6-4的数据线6-5。
参见图4,图5,本发明模拟坡改梯工程措施,工程目的为拦蓄坡面水流,减小坡面冲刷;增加降水下渗量,减小沟道径流,降低水流冲刷侵蚀沟床,具体包括以下步骤:
(1)在野外展开该模拟装置,固定好支架。
现场按试验要求准备好所需材料(试验土体、降雨装置等)。
(2)用原状土体在两套模拟装置底板上堆放成近似原状黄土溯源侵蚀沟头形状,一套模拟坡改梯工程措施,另一套不使用任何工程措施作为对照。
①在两套模拟装置底板上堆积高h=300mm,宽b=1000mm,长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为150,沟长初始都定为L=1000mm,计算塬面面积为S=bl-0.5lL=1m2,沟尾深度为H=50tanθ=134mm。在沟道上等间距监测5个点,记为a、b、c、d、e。用卷尺测量出各点沟道深度,且在沟道里埋设土壤湿度传感器;
②在模拟坡改梯工程措施的坡面上修建梯田,垂直等间距20mm修建一道梯田,梯田宽度b=2/tanθ=74.6mm。夯实田坎,使田坎与田面紧密结合,防止试验过程中田坎崩溃。修建好梯田间的排水沟道。另一套作对比的作用,不修建任何工程措施。
(3)使用人工降雨装置同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度及沟床冲刷宽度,以及沟头前进情况。
①在试验区四周均匀各安设一个集水量筒,用人工降雨装置给试验区均匀降雨;
②在塬区发生崩塌滑移等明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积。读取土壤湿度传感器数据;
③根据记录的数据及降雨条件下黄土塬物理形态的改变,可得底坡面角度θ为15°时,有坡改梯工程措施及没有该工程措施情况下,塬面面积的变化及沟头的前进长度、沟道的冲刷状况等物理形态变化;
④在底坡面角度θ为15°时的条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,可实现有无坡改梯工程措施效果的对比分析。
(4)改变底坡面角度θ,按(2)、(3)的步骤分别再以20°、25°、30°进行试验,分别试验不同坡角下,有坡改梯工程措施及没有该工程措施情况下塬面面积的变化及沟头的前进长度、沟道的冲刷状况等物理形态变化。
(5)调节模拟装置底板角度a,可改变沟道水流冲刷强度,可模拟不同倾斜度的沟床中水流对沟道的冲刷情况。通过测量不同角度相同降雨量下沟床的产沙量、下切深度、宽度等进行定量比对。按第(2)步骤做好降雨前的准备,分别以5°、7°、9°、11°、13°、15°进行试验,必要时还可以增设角度a为6°、8°、10°、12°、14°的试验组作为对照。记录数据进行定量对比分析。
参见图4,图6,本发明模拟沟头填埋工程措施的工程目的为加固沟头,减缓塬面侵蚀速度,制止沟头前进,保护地面不被沟壑切割破坏,具体包括以下步骤:
(1)在野外展开该模拟装置,固定好支架。
现场按试验要求准备好所需材料(试验土体、降雨装置等)。
(2)用原状土体在两套模拟装置底板上堆放成近似原状黄土溯源侵蚀沟头形状,一套模拟沟头回填工程措施,另一套不使用任何工程措施作为对照。
①在两套模拟装置底板上堆积高h=300mm、宽b=1000mm、长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为15°,沟长初始都定为L=1000mm,计算塬面面积为S=bl-0.5lL=1m2,沟尾深度为H=50tanθ=134mm。在沟道上等间距监测5个点,记为a、b、c、d、e。用卷尺测量出各点沟道深度,在沟道里埋设土壤湿度传感器;
②在模拟沟头回填工程措施的沟头回填土体,将沟长度控制在900mm,将排水管道铺设结束后,进行整体回填。回填当中应采用分层夯实。其回填面要形成30~40°的坡面,防止坡体自行崩塌。
(3)使用人工降雨装置同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度及沟床冲刷宽度,以及沟头前进情况。
①在试验区四周均匀各安设一个集水量筒,用人工降雨装置给试验区均匀降雨;
②在塬区发生崩塌滑移等明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积。读取土壤湿度传感器数据;
③根据记录数据及降雨条件下黄土塬物理形态的改变,可得底坡面角度θ为15°时,有沟头回填工程措施及没有该工程措施情况下,沟头前进长度、沟道的冲刷状况等物理形态变化;
④在坡面角度θ为15°条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,可实现有无沟头回填工程措施效果的对比分析。
(4)改变底坡面角度θ,按(2)、(3)的步骤分别再以20°、25°、30°进行试验,分别试验不同坡角下,有坡改梯工程措施及没有该工程措施情况下塬面面积的变化及沟头的前进长度、沟道的冲刷状况等物理形态变化。
(5)调节模拟装置底板角度a,可改变沟道水流冲刷强度,可模拟不同倾斜度的沟床中水流对沟道的冲刷情况。通过测量不同角度相同降雨量下沟床的产沙量、下切深度、宽度等进行定量比对。按第(2)步骤做好降雨前的准备,分别以5°、7°、9°、11°、13°、15°进行试验,必要时还可以增设角度a为6°、8°、10°、12°、14°的试验组作为对照。记录数据进行定量对比分析。
以相同的方式可以对淤地坝、修建蓄水池等工程措施模拟。

Claims (8)

1.一种固沟保塬工程措施模拟装置,其特征在于:包括用于放置黄土侵蚀沟模型(2)的坡面板,坡面板安装在折叠支架(7)上,折叠支架(7)由坡面板安装支架(7-1)、底座支架(7-2)、调节螺杆(7-3)组成,坡面板安装支架(7-1)与底座支架(7-2)的一端铰接,坡面板安装支架(7-1)与底座支架(7-2)的另一端之间安装调节螺杆(7-3),坡面板安装支架(7-1)通过螺纹接头能够沿调节螺杆(7-3)上下活动;所述黄土侵蚀沟模型(2)的上方设置有人工降雨装置(3),坡面板的底端布置有泥沙收集箱(1);在坡面板的板面上设置有传感器以及用于将传感器检测到的数据传输至外部传感器数据采集器(6-4)的数据线(6-5);
所述坡面板的板面上连续开设有凹槽,凹槽衔接处形成用于增大黄土侵蚀沟模型(2)附着力的摩擦条纹(6-3);所述黄土侵蚀沟模型(2)两侧的坡面板上设置有挡板(8)。
2.根据权利要求1所述的固沟保塬工程措施模拟装置,其特征在于:所述黄土侵蚀沟模型(2)顶部与底部两侧的坡面板外部连接集雨器(6-2)。
3.根据权利要求1所述的固沟保塬工程措施模拟装置,其特征在于:所述坡面板安装支架(7-1)与底座支架(7-2)的中部分别加工有各自的折叠处(6-1)。
4.根据权利要求1所述的固沟保塬工程措施模拟装置,其特征在于:人工降雨装置(3)包括通过水管与供水箱(5)连接的花洒,供水箱(5)内设有用于向水管输水的抽水泵(4)。
5.一种基于权利要求1-4中任意一条权利要求所述固沟保塬工程措施模拟装置的模拟方法,其特征在于,包括以下步骤:首先,取两套模拟装置分别在坡面板上制作黄土侵蚀沟模型(2),其中一套模拟工程措施,另一套不使用任何工程措施作为对照,记录模型的尺寸参数并计算塬面积及沟道参数;然后,通过坡面板安装支架(7-1)调节坡面板的倾角;最后,通过人工降雨装置(3)同时定量的对两套黄土侵蚀沟模型(2)均匀降雨,观测沟道冲刷情况,通过传感器数据采集器(6-4)读取传感器数据,对比塬面积及沟道参数的变化。
6.根据权利要求5所述的模拟方法,其特征在于,模拟坡改梯工程措施的具体方法如下:
首先在两套模拟装置的坡面板上堆积高h=300mm、宽b=1000mm、长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为15°,沟长初始定为L=1000mm,塬面积为S=bl-0.5lL=1.2m,沟尾深度为H=50tanθ=134mm,在沟道上等间距监测5个点,记为a、b、c、d、e;测量出各点沟道深度且在沟道里埋设土壤湿度传感器;然后在模拟坡改梯工程措施的坡面上修建梯田,垂直等间距20mm修建一道梯田,梯田宽度b=2/tanθ=74.6mm,夯实田坎并修建好梯田间的排水沟道,另一套作对比的作用,不修建任何工程措施;最后使用人工降雨装置(3)同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度、沟床冲刷宽度以及沟头前进情况,在塬区发生崩塌滑移等明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积,读取土壤湿度传感器数据;根据记录的数据及降雨条件下黄土塬物理形态的改变,得到底坡面角度θ为15°时,有坡改梯工程措施及没有该工程措施情况下,塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化;在底坡面角度θ为15°时的条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,实现有无坡改梯工程措施效果的对比分析;改变底坡面角度θ,再以25°、35°、45°进行试验,分别试验不同坡角下,有坡改梯工程措施及没有该工程措施情况下塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化,记录数据进行定量对比分析。
7.根据权利要求5所述的模拟方法,其特征在于,模拟沟头填埋工程措施的方法如下:
首先在两套模拟装置底板上堆积高h=300mm、宽b=1000mm、长l=150mm的黄土侵蚀沟形状,沟道居中,分割黄土塬,底坡面角度θ为15°,沟长初始定为L=1000mm,塬面积为S=bl-0.5lL=1m2,沟尾深度为H=50tanθ=134mm,在沟道上等间距监测5个点,记为a、b、c、d、e;测量出各点沟道深度,在沟道里埋设土壤湿度传感器;然后在模拟沟头回填工程措施的沟头回填土体,将沟长度控制在900mm,将排水管道铺设结束后,进行整体回填,回填当中应采用分层夯实,回填面形成30°~40°的坡面,防止坡体自行崩塌;最后使用人工降雨装置(3)同时给两套模拟装置进行人工降雨,间隔相同时间记录两试验台上沟道的下切深度、沟床冲刷宽度以及沟头前进情况,在塬区发生明显物理变化时,观测沟道冲刷情况,记录该时段量筒内降雨量、沟道深度、宽度、沟头前进长度、塬面面积,读取土壤湿度传感器数据;根据记录的数据及降雨条件下黄土塬物理形态的改变,得到底坡面角度θ为15°时,有沟头回填工程措施及没有该工程措施情况下,沟头的前进长度、沟道的冲刷状况等物理形态变化;在坡面角度θ为15°条件下,对比两套模拟装置收集到的沟头溯源侵蚀量数据,实现有无沟头回填工程措施效果的对比分析;改变底坡面角度θ,再以25°、35°、45°进行试验,分别试验不同坡角下,有坡改梯工程措施以及没有该工程措施情况下,塬面面积的变化及沟头的前进长度、沟道的冲刷状况变化,记录数据进行定量对比分析。
8.一种如权利要求5所述模拟方法在淤地坝、修建蓄水池工程措施模拟中的应用。
CN201711397806.9A 2017-12-21 2017-12-21 一种固沟保塬工程措施模拟装置及其模拟方法与应用 Active CN108152476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711397806.9A CN108152476B (zh) 2017-12-21 2017-12-21 一种固沟保塬工程措施模拟装置及其模拟方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711397806.9A CN108152476B (zh) 2017-12-21 2017-12-21 一种固沟保塬工程措施模拟装置及其模拟方法与应用

Publications (2)

Publication Number Publication Date
CN108152476A true CN108152476A (zh) 2018-06-12
CN108152476B CN108152476B (zh) 2020-11-10

Family

ID=62465067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711397806.9A Active CN108152476B (zh) 2017-12-21 2017-12-21 一种固沟保塬工程措施模拟装置及其模拟方法与应用

Country Status (1)

Country Link
CN (1) CN108152476B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109753749A (zh) * 2019-01-15 2019-05-14 中国水利水电科学研究院 一种基于力学平衡原理的土体崩塌数值模拟方法
CN111157437A (zh) * 2020-01-07 2020-05-15 西北农林科技大学 一种用于沟头溯源侵蚀过程的观测装置
CN113820093A (zh) * 2021-09-15 2021-12-21 东北石油大学 一种瞬时水量分布测量装置
CN114112893A (zh) * 2021-12-20 2022-03-01 苏州金螳螂园林绿化景观有限公司 一种堆坡土壤冲刷检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201697911U (zh) * 2010-03-05 2011-01-05 四川农业大学 一种改进的土壤冲刷试验装置
CN105301223A (zh) * 2015-11-12 2016-02-03 重庆大学 一种便捷式实时监测水土流失模拟试验方法
CN106290800A (zh) * 2016-09-30 2017-01-04 长沙理工大学 一种土质边坡抗水流侵蚀能力模拟试验方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201697911U (zh) * 2010-03-05 2011-01-05 四川农业大学 一种改进的土壤冲刷试验装置
CN105301223A (zh) * 2015-11-12 2016-02-03 重庆大学 一种便捷式实时监测水土流失模拟试验方法
CN106290800A (zh) * 2016-09-30 2017-01-04 长沙理工大学 一种土质边坡抗水流侵蚀能力模拟试验方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张元星: "流域水沙变化对水土保持梯田措施的响应研究", 《中国博士学位论文全文数据库》 *
李 强: "黄土丘陵区冻融对土壤抗冲性及相关物理性质的影响", 《农业工程学报》 *
郑粉莉等: "黄土陡坡裸露坡耕地浅沟发育过程研究", 《地理科学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109753749A (zh) * 2019-01-15 2019-05-14 中国水利水电科学研究院 一种基于力学平衡原理的土体崩塌数值模拟方法
CN111157437A (zh) * 2020-01-07 2020-05-15 西北农林科技大学 一种用于沟头溯源侵蚀过程的观测装置
CN113820093A (zh) * 2021-09-15 2021-12-21 东北石油大学 一种瞬时水量分布测量装置
CN113820093B (zh) * 2021-09-15 2022-06-21 东北石油大学 一种瞬时水量分布测量装置
CN114112893A (zh) * 2021-12-20 2022-03-01 苏州金螳螂园林绿化景观有限公司 一种堆坡土壤冲刷检测方法

Also Published As

Publication number Publication date
CN108152476B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN106290800B (zh) 一种土质边坡抗水流侵蚀能力模拟试验方法及装置
CN206096123U (zh) 一种土质边坡抗水流侵蚀能力模拟试验装置
CN108152476A (zh) 一种固沟保塬工程措施模拟装置及其模拟方法与应用
CN108061687B (zh) 一种研究有潜在破坏面的岩土工程模拟试验平台
CN102094432B (zh) 一种由工程环境效应引起地面沉降的模型及其试验方法
CN103236209B (zh) 一种河道横断面二维地下渗流水力学实验装置
CN107505448B (zh) 地下管线破损引起的渗流侵蚀模型装置、***及试验方法
CN107179396A (zh) 多功能拼装式岩土工程物理相似试验***
CN110954680B (zh) 一种模拟断裂错动与地下水变化的地裂缝试验装置及方法
CN107037195A (zh) 水位波动对下卧冰层岩堆边坡稳定性影响试验装置及方法
Liu et al. The processes and mechanisms of collapsing erosion for granite residual soil in southern China
CN111679060A (zh) 一种地震与降雨耦合作用下角度可变边坡模型试验装置及方法
CN109961683A (zh) 一种人工增湿边坡足尺模型试验***及方法
CN106596897B (zh) 测定加筋植物土固坡效果与吸水性能的试验装置及方法
Liu et al. Moisture content, pore-water pressure and wetting front in granite residual soil during collapsing erosion with varying slope angle
CN103245391B (zh) 一种坝体浸润线监测模型试验装置及其试验方法
CN103389260A (zh) 桩基础阻碍地下水渗流的室内模拟试验方法
CN210073108U (zh) 一种人工增湿边坡足尺模型试验***
CN114705826A (zh) 一种室内人工降雨与监测边坡稳定性装置
CN207571131U (zh) 一种检验固沟保塬工程措施效果的模拟装置
Zhao et al. Field infiltration of artificial irrigation into thick loess
CN113156083A (zh) 雪道融雪的水土流失测量装置及方法
CN108896736A (zh) 一种油气管道纵穿滑坡地质灾害的物理模型及试验方法
CN206274324U (zh) 双变坡侵蚀槽和壤中流测定仪器
CN109612538B (zh) 一种暗管排水量试验方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant