CN108134089B - 高担量活性物质电极及其制备和应用 - Google Patents

高担量活性物质电极及其制备和应用 Download PDF

Info

Publication number
CN108134089B
CN108134089B CN201611088186.6A CN201611088186A CN108134089B CN 108134089 B CN108134089 B CN 108134089B CN 201611088186 A CN201611088186 A CN 201611088186A CN 108134089 B CN108134089 B CN 108134089B
Authority
CN
China
Prior art keywords
electrode
pore
forming agent
active material
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611088186.6A
Other languages
English (en)
Other versions
CN108134089A (zh
Inventor
张华民
郑琼
易红明
刘婉秋
张洪章
冯凯
李先锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611088186.6A priority Critical patent/CN108134089B/zh
Publication of CN108134089A publication Critical patent/CN108134089A/zh
Application granted granted Critical
Publication of CN108134089B publication Critical patent/CN108134089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种高担量活性物质电极的方法,该方法在电极浆料制备过程中加入造孔剂,电极浆料经涂覆设备刮涂在铝箔集流体上,形成电极‑集流体一体化电极,其在干燥过程中,造孔剂受热分解,以气体形式挥发,使得电极结构呈蓬松态,出现大量孔洞结构。由此方法制备的具有蓬松多孔结构的高担量电极,可以有效促进钠离子在电极中的扩散传质,尤其是强化高倍率下钠离子在电极中的扩散。通过电池性能测试,由本发明采用造孔剂制备高担量活性物质电极组装的钠离子电池性能获得大幅度提升,尤其在高倍率下性能得到显著改善。

Description

高担量活性物质电极及其制备和应用
技术领域
本发明涉及钠离子电池电极材料技术领域,特别涉及一种采用造孔剂制备高担量活性物质电极的方法及其在钠离子电池中的应用。
背景技术
众所周知,锂离子电池具有体积小、重量轻、能量密度高等优点,在手机、笔记本电脑等便携设备以及电动自行车、电动汽车等交通工具中正发挥着越来越重要的作用。锂离子电池的用量逐年增加,特别是支持新能源发展的储能电池需求旺盛。根据美国地质调查局的数据显示,2015 年全球已探明的锂资源量(金属锂当量)为 3950 万吨,其中几乎 73%集中分布在南美洲少数国家。全球可开采锂资源储量约为 1350 万吨(以碳酸锂当量计算约为 7100 万吨),近两年锂资源的年平均开采量为 3.5万吨,即便如此预计也仅可供开采385 年,更何况目前每年的锂资源开采量正逐渐增加。随着锂离子电池应用范围的快速扩展,必然会出现锂资源供不应求的局面。因此,寻求储量丰富,成本低廉且可取代锂离子电池锂资源的任务迫在眉睫。
根据地壳中各种化学元素的丰度数据可以发现,金属钠元素储量为2.75%,约为锂含量的400倍;且金属钠分布区域广泛(钠分布于全球各地,而约70%的锂集中分布在南美洲地区);同时钠和锂的物理化学性质和脱/嵌机制类似,这就使得钠离子电池的研究与开发有望在一定程度上缓解由于锂资源短缺引发的储能电池发展受限问题。但是由于钠离子半径比锂离子半径大,其能量密度和功率密度比锂离子电池要低。然而在规模储能应用中对电池能量密度的要求并不是太高,其成本和寿命则是关心的重点。从这个角度去看,钠离子电池在大规模储能应用领域拥有比锂离子电池更大的市场竞争优势。因此,大力发展大规模储能应用的钠离子电池技术具有十分重要的战略意义。
研究和开发价格低廉且性能优异的钠离子电池是最终实现钠离子电池实用化的关键。目前,钠离子电池电极上活性物质的担量还较低(1~2 mg cm-2),虽然通过各种方法,使得电池性能得到明显改善,但低担量活性物质电极组装的电池仍无法满足实际应用需要。高担量活性物质电极的制备是钠离子电池实用化发展的关键。提高活性物质的担量,势必会引起钠离子在电极中的传质受阻,降低电池整体性能,尤其是降低在高倍率下的电池性能。因此,探索有利于提高高担量活性物质电极中的钠离子扩散传质的电极制备方法十分关键。
发明内容
为解决上述技术问题,本发明采用的具体技术方案如下:
提出了一种采用造孔剂制备高担量活性物质电极的方法并应用在钠离子电池中。
1)首先将电极活性物质、导电剂和粘结剂混合成溶质,并用溶剂N-甲基吡咯烷酮溶剂进行溶解,溶质为溶剂和溶质总质量的20-50%;同时将造孔剂溶解于溶剂N-甲基吡咯烷酮溶剂中,造孔剂为溶剂和造孔剂总质量的20-50%;电极活性物质、导电剂和粘结剂三者混合质量比例为50~90:5~20:5~30;将溶解的电极活性物质、导电剂、粘结剂和溶解的造孔剂混合,在搅拌器上搅拌4-6h,形成混合均匀且呈黑色粘稠状的浆料;
2)将浆料涂覆在铝箔上,得到电极-集流体一体化电极;电极活性物质的担量通过铝箔上涂覆的电极厚度来控制;涂覆电极厚度为400-2000μm,得到的电极活性物质担量为5-30mg/cm2
3)将制备的电极-集流体一体化电极放入70~100度的恒温烘箱中干燥12h-24h。
步骤1)所述的电极活性物质作为正极材料或负极材料,正极材料为氧化物、聚阴离子型化合物和普鲁士蓝化合物中的一种或二种以上;负极材料为碳基材料、合金材料、磷酸盐中的一种或二种以上。
步骤1)所述的导电剂为Super P、碳黑、还原氧化石墨烯、科琴黑和乙炔黑的碳材料中的一种或二种以上;粘结剂为PVDF、PVDF-HFP、PTFE中的一种或二种以上;造孔剂为2,4,6-***、碳粉、聚乙烯醇(PVA)、聚乙二醇(PEG)、淀粉、PMMA、碳酸氢铵、尿素、聚维酮(PVP)中的一种或二种以上。
造孔剂为电极活性物质、导电剂和粘结剂三者总质量的1-10%。所述的氧化物为NaCoO2、NaMnO2、NaFeO2、NaxFe0.5Mn0.5O2、NaNi0.5Mn0.5O2、Na2/3Ni1/3Mn2/3O2、NaNi1/3Mn1/3Co1/ 3O2、NaNi1/3Fe1/3Mn1/3O2、Na0.44MnO2中的一种;聚阴离子型化合物为NaFePO4、Na2FeP2O7、Na4Fe3(PO4)2P2O7、Na3V2(PO4)3、Na3NiZr(PO4)3、Na3V2(PO4)2F3、Na2FePO4F、Na2FeSiO4中的一种;普鲁士蓝化合物为Na4Fe(CN)6、Na1.72MnFe(CN)6中的一种。
碳基材料为石墨烯,硬碳,软碳中的一种;合金材料为Sb/C, SnSb/C和 Sn/C中的一种;磷酸盐为Na3V2(PO4)3、 NaTi2(PO4)3和Na3MnTi(PO43中的一种。
将干燥后的一体化电极冲压成直径为14mm的圆片电极,组装成钠离子电池,实现所制备的高担量活性物质电极在钠离子电池中的应用。
本发明的有益效果
本发明提出了一种采用造孔剂制备高担量活性物质电极的方法,该方法在电极浆料制备过程中加入造孔剂,电极浆料经涂覆设备刮涂在铝箔集流体上,形成电极-集流体一体化电极,其在干燥过程中,造孔剂受热分解,以气体形式挥发,使得电极结构呈蓬松态,出现大量孔洞结构。由此方法制备的具有蓬松多孔结构的高担量电极,可以有效促进了钠离子在电极中的扩散传质,尤其是强化高倍率下钠离子在电极中的扩散,有利于提高高担量电极钠离子电池尤其是在高倍率下的电池性能。
附图说明
图1为采用造孔剂制备高担量活性物质电极的制备方法示意图;
图2为实施例1与对比例的倍率性能对比图;
图3为实施例2与对比例的倍率性能对比图;
图4为实施例3与对比例的倍率性能对比图;
图5为实施例4与对比例的倍率性能对比图。
具体实施方式
实施例1:(以2.5% NH4H2CO3为造孔剂)
将电极活性物质(正极材料选为磷酸钒钠,0.35g)、导电剂(Super P,0.1g)和粘结剂(PVDF,0.05g)按照质量比为70%:20%:10%进行混合,并用1.3g的N-甲基吡咯烷酮溶剂溶解;同时将0.0125g (2.5%)的造孔剂NH4H2CO3溶解于0.04gN-甲基吡咯烷酮溶剂中溶解。将溶解的电极活性物质、导电剂和粘结剂和溶解的造孔剂NH4H2CO3混合,在搅拌器上进行搅拌,搅拌时间为5h,形成混合均匀且呈黑色粘稠状的浆料。采用涂覆设备将浆料均匀涂覆在铝箔上,得到电极-集流体一体化电极。涂覆的电极厚度为1000μm。将制备的电极-集流体一体化电极放入100度的恒温烘箱中干燥12h。将干燥后的一体化电极冲压成直径为14mm的圆片电极,并以此为正极,金属钠片为负极, 1M NaClO4(ethylene carbonate(EC)/diethylcarbonate(DEC)的体积比为1:1以及2 wt.%FEC)为电解液,组装成钠离子电池。所组装的钠离子电池的活性物质担量约为15mg cm-2
实施例2:(以5% NH4H2CO3为造孔剂)
将电极活性物质(正极材料选为磷酸钒钠,0.35g)、导电剂(Super P,0.1g)和粘结剂(PVDF,0.05g)按照质量比为70%:20%:10%进行混合,并用1.3g的N-甲基吡咯烷酮溶剂溶解;同时将0.025g (5%)的造孔剂NH4H2CO3溶解于0.04gN-甲基吡咯烷酮溶剂中溶解。将溶解的电极活性物质、导电剂和粘结剂和溶解的造孔剂NH4H2CO3混合,在搅拌器上进行搅拌,搅拌时间为5h,形成混合均匀且呈黑色粘稠状的浆料。采用涂覆设备将浆料均匀涂覆在铝箔上,得到电极-集流体一体化电极。涂覆的电极厚度为1000μm。将制备的电极-集流体一体化电极放入100度的恒温烘箱中干燥12h。将干燥后的一体化电极冲压成直径为14mm的圆片电极,并以此为正极,金属钠片为负极, 1M NaClO4(ethylene carbonate(EC)/diethylcarbonate(DEC)的体积比为1:1以及2 wt.%FEC)为电解液,组装成钠离子电池。所组装的钠离子电池的活性物质担量约为15mg cm-2
实施例3:(以2.5%聚乙二醇为造孔剂)
将电极活性物质(正极材料选为磷酸钒钠,0.35g)、导电剂(Super P,0.1g)和粘结剂(PVDF,0.05g)按照质量比为70%:20%:10%进行混合,并用1.3g的N-甲基吡咯烷酮溶剂溶解;同时将0.0125g (2.5%)的造孔剂聚乙二醇溶解于0.04gN-甲基吡咯烷酮溶剂中溶解。将溶解的电极活性物质、导电剂和粘结剂和溶解的造孔剂聚乙二醇混合,在搅拌器上进行搅拌,搅拌时间为5h,形成混合均匀且呈黑色粘稠状的浆料。采用涂覆设备将浆料均匀涂覆在铝箔上,得到电极-集流体一体化电极。涂覆的电极厚度为1000μm。将制备的电极-集流体一体化电极放入100度的恒温烘箱中干燥12h。将干燥后的一体化电极冲压成直径为14mm的圆片电极,并以此为正极,金属钠片为负极, 1M NaClO4(ethylene carbonate(EC)/diethylcarbonate(DEC)的体积比为1:1以及2 wt.%FEC)为电解液,组装成钠离子电池。所组装的钠离子电池的活性物质担量约为15mg cm-2
实施例4:(以5%聚乙二醇为造孔剂)
将电极活性物质(正极材料选为磷酸钒钠,0.35g)、导电剂(Super P,0.1g)和粘结剂(PVDF,0.05g)按照质量比为70%:20%:10%进行混合,并用1.3g的N-甲基吡咯烷酮溶剂溶解;同时将0.025g (5%)的造孔剂聚乙二醇溶解于0.04gN-甲基吡咯烷酮溶剂中溶解。将溶解的电极活性物质、导电剂和粘结剂和溶解的造孔剂聚乙二醇混合,在搅拌器上进行搅拌,搅拌时间为5h,形成混合均匀且呈黑色粘稠状的浆料。采用涂覆设备将浆料均匀涂覆在铝箔上,得到电极-集流体一体化电极。涂覆的电极厚度为1000μm。将制备的电极-集流体一体化电极放入100度的恒温烘箱中干燥12h。将干燥后的一体化电极冲压成直径为14mm的圆片电极,并以此为正极,金属钠片为负极, 1M NaClO4(ethylene carbonate(EC)/diethylcarbonate(DEC)的体积比为1:1以及2 wt.%FEC)为电解液,组装成钠离子电池。所组装的钠离子电池的活性物质担量约为15mg cm-2
对比例:
将电极活性物质(正极材料选为磷酸钒钠,0.35g)、导电剂(Super P,0.1g)和粘结剂(PVDF,0.05g)按照质量比为70%:20%:10%进行混合,并用1.3g的N-甲基吡咯烷酮溶剂溶解,经5h搅拌,配置成混合均匀且呈黑色粘稠状的浆料。采用涂覆设备将浆料均匀涂覆在铝箔上,得到电极-集流体一体化电极。涂覆的电极厚度为1000μm。将制备的电极-集流体一体化电极放入100度的恒温烘箱中干燥12h。将干燥后的一体化电极冲压成直径为14mm的圆片电极,并以此为正极,金属钠片为负极,1M NaClO4(ethylene carbonate(EC)/diethylcarbonate(DEC)的体积比为1:1以及2 wt.%FEC)为电解液,组装成钠离子电池。所组装的钠离子电池的活性物质担量约为15mg cm-2
实施效果
采用适量NH4H2CO3和聚乙二醇作为造孔剂制备的高担量电极,见图1,具有蓬松多孔结构,有利于促进钠离子在电极内的扩散传质,可以显著改善高担量电极组装的电池的倍率性能。
由图2可以看出,加入2.5% NH4H2CO3作为造孔剂制备的高担量电极,即实施例1所组装的电池较对比例具有更好的倍率性能,见图2,在0.2C,0.5C,1C的低倍率下两者差异较小,当倍率提高至2C之后,两者性能差异越来越明显。在2C倍率下,实施例1的容量为108mAhg-1,较对比例提高了13mAh g-1;在5C倍率下,实施例1的容量为98mAh g-1,较对比例提高了22mAh g-1;在8C的高倍率下,实施例1还保持有86mAh g-1的比容量,较对比例提高了25mAhg-1
由图3可以看出,加入5% NH4H2CO3作为造孔剂制备的高担量电极,即实施例2所组装的电池较对比例也具有更好的倍率性能,见图3,在0.2C,0.5C,1C的低倍率下两者差异较小,当倍率提高至2C之后,两者性能差异越来越明显。在2C倍率下,实施例2的容量为108mAhg-1,较对比例提高了13mAh g-1;在5C倍率下,实施例2的容量为99mAh g-1,较对比例提高了23mAh g-1;在8C的高倍率下,实施例2具有高达90mAh g-1的比容量,较对比例提高了近30mAh g-1的比容量;
由图4可以看出,加入2.5% 聚乙二醇作为造孔剂制备的高担量电极,即实施例3所组装的电池较对比例也具有更好的倍率性能,见图4,在0.2C,0.5C,1C的低倍率下两者差异较小,当倍率提高至2C之后,两者性能差异越来越明显。在2C倍率下,实施例3的容量为108mAh g-1,较对比例提高了13mAh g-1;在5C倍率下,实施例3的容量为98mAh g-1,较对比例提高了22mAh g-1;在8C的高倍率下,实施例3具有高达88mAh g-1的比容量,较对比例提高了27mAh g-1的比容量;
由图5可以看出,加入5% 聚乙二醇作为造孔剂制备的高担量电极,即实施例4所组装的电池较对比例也具有更好的倍率性能,见图5,在0.2C,0.5C,1C的低倍率下两者差异较小,当倍率提高至2C之后,两者性能差异越来越明显。在2C倍率下,实施例4的容量为107mAhg-1,较对比例提高了12mAh g-1;在5C倍率下,实施例4的容量为102mAh g-1,较对比例提高了26mAh g-1;在8C的高倍率下,实施例4具有高达89mAh g-1的比容量,较对比例提高了28mAhg-1的比容量。

Claims (6)

1.一种高担量活性物质电极在钠离子电池中的应用,其特征在于,电极采用的制备方法如下:
1) 将电极活性物质、导电剂和粘结剂混合成溶质,并用N-甲基吡咯烷酮溶剂进行溶解,溶质为溶液质量的20-50%;同时将造孔剂溶解于N-甲基吡咯烷酮溶剂中,造孔剂为溶剂和造孔剂总质量的20-50%;电极活性物质、导电剂和粘结剂三者混合质量比例为(50~90):(5~20):(5~30);将溶解的电极活性物质、导电剂、粘结剂和溶解的造孔剂混合,搅拌4-6h,形成浆料;
2) 将浆料涂覆在铝箔上,得到电极-集流体一体化电极;
3) 将制备的电极-集流体一体化电极放入100摄氏度的恒温烘箱中干燥12h-24h;
其中,造孔剂为2,4,6-***、碳粉、聚乙烯醇(PVA)、聚乙二醇(PEG)、淀粉、PMMA、碳酸氢铵、尿素、聚维酮(PVP)中的一种或二种以上;
造孔剂为电极活性物质、导电剂和粘结剂三者总质量的2.5-10%;电极活性物质担量为15-30mg/cm2
2.按照权利要求1所述的应用,其特征在于:步骤1)所述的电极活性物质作为正极材料或负极材料,正极材料为氧化物、聚阴离子型化合物和普鲁士蓝化合物中的一种或二种以上;负极材料为碳基材料、合金材料、磷酸盐中的一种或二种以上。
3.按照权利要求1所述的应用,其特征在于:步骤1)所述的导电剂为Super P、碳黑、还原氧化石墨烯、科琴黑和乙炔黑的碳材料中的一种或二种以上;粘结剂为PVDF、PVDF-HFP、PTFE中的一种或二种以上。
4.按照权利要求1所述的应用,其特征在于:电极活性物质的担量通过铝箔上涂覆的电极厚度来控制;涂覆电极厚度为400-2000um。
5.按照权利要求2所述的应用,其特征在于:氧化物为NaCoO2、NaMnO2、NaFeO2、NaxFe0.5Mn0.5O2、NaNi0.5Mn0.5O2、Na2/3Ni1/3Mn2/3O2、NaNi1/3Mn1/3Co1/3O2、NaNi1/3Fe1/3Mn1/3O2、Na0.44MnO2中的一种或二种以上;聚阴离子型化合物为NaFePO4、Na2FeP2O7、Na4Fe3(PO4)2P2O7、Na3V2(PO4)3、Na3NiZr(PO4)3、Na3V2(PO4)2F3、Na2FePO4F、Na2FeSiO4中的一种或二种以上;普鲁士蓝化合物为Na4Fe(CN)6、Na1.72MnFe(CN)6中的一种或二种以上。
6.按照权利要求2所述的应用,其特征在于:碳基材料为石墨烯,硬碳,软碳中的一种或二种以上;合金材料为Sb/C, SnSb/C和 Sn/C中的一种或二种以上;磷酸盐为Na3V2(PO4)3、NaTi2(PO4)3和Na3MnTi(PO43中的一种或二种以上。
CN201611088186.6A 2016-12-01 2016-12-01 高担量活性物质电极及其制备和应用 Active CN108134089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611088186.6A CN108134089B (zh) 2016-12-01 2016-12-01 高担量活性物质电极及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611088186.6A CN108134089B (zh) 2016-12-01 2016-12-01 高担量活性物质电极及其制备和应用

Publications (2)

Publication Number Publication Date
CN108134089A CN108134089A (zh) 2018-06-08
CN108134089B true CN108134089B (zh) 2020-12-04

Family

ID=62387540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611088186.6A Active CN108134089B (zh) 2016-12-01 2016-12-01 高担量活性物质电极及其制备和应用

Country Status (1)

Country Link
CN (1) CN108134089B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728263B (zh) * 2018-12-06 2022-04-05 盐城工学院 一种Sn-SnSb/碳纳米片复合材料的制备方法与应用
CN109830658A (zh) * 2019-01-15 2019-05-31 中兴高能技术有限责任公司 一种负极浆料、其制备方法和锂离子电池
CN109921021A (zh) * 2019-03-13 2019-06-21 欧格尼材料科技江苏有限公司 一种高电位高容量有机聚合物正极材料及其制备方法和应用
CN110504408B (zh) * 2019-09-02 2021-05-21 浙江金非新能源科技有限公司 一种锂离子电池负极片的制备方法
CN113278819B (zh) * 2021-05-21 2022-07-08 中南大学 一种提锂电极及其制备方法
CN113363424A (zh) * 2021-06-07 2021-09-07 四川启睿克科技有限公司 一种提高干法电极孔隙率的方法
CN114284462A (zh) * 2021-12-22 2022-04-05 珠海冠宇动力电池有限公司 一种正极片、电池及正极片的制备方法
CN114914392A (zh) * 2022-05-11 2022-08-16 芜湖天弋能源科技有限公司 一种钠离子电池多孔极片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595691A (zh) * 2003-09-08 2005-03-16 中国科学院大连化学物理研究所 多硫酸钠/溴储能电池的多孔碳基电极制备方法
CN102931378A (zh) * 2012-10-09 2013-02-13 东莞市创明电池技术有限公司 锂离子电池电极及其制备方法、锂离子电池
CN105938904A (zh) * 2016-05-31 2016-09-14 中南大学 一种钠离子电池用复合正极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595691A (zh) * 2003-09-08 2005-03-16 中国科学院大连化学物理研究所 多硫酸钠/溴储能电池的多孔碳基电极制备方法
CN102931378A (zh) * 2012-10-09 2013-02-13 东莞市创明电池技术有限公司 锂离子电池电极及其制备方法、锂离子电池
CN105938904A (zh) * 2016-05-31 2016-09-14 中南大学 一种钠离子电池用复合正极材料及其制备方法

Also Published As

Publication number Publication date
CN108134089A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN108134089B (zh) 高担量活性物质电极及其制备和应用
Zhao et al. High‐performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers
Hasa et al. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte
CN108172903B (zh) 电解液、钠离子二次电池及其制备方法
Zhang et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery
CN102945947B (zh) 柔性无粘结剂自支撑复合电极的制备方法
US20020106561A1 (en) Positive electrode for a lithium-sulfur battery and a lithium-sulfur battery including the positive electrode
CN108134047B (zh) 高担量活性物质电极制备及其电极和应用
Wang et al. Ni2P nanosheets on carbon cloth: An efficient flexible electrode for sodium-ion batteries
Salihoglu et al. Factors affecting the proper functioning of a 3Ah Li-S pouch cell
KR20180133063A (ko) 촉매점, 이를 포함하는 양극 활물질 및 리튬-황 이차전지
Guo et al. A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries
CN101494286A (zh) 二次电池材料及其制备方法
Qin et al. Heterostructured Mn3O4‐MnS Multi‐Shelled Hollow Spheres for Enhanced Polysulfide Regulation in Lithium–Sulfur Batteries
CN105185958A (zh) 一种新型钠离子电池电极材料及其应用
Luo et al. In situ construction of efficient interface layer with lithiophilic nanoseeds toward dendrite‐free and low N/P ratio Li metal batteries
Bhargav et al. A graphite-polysulfide full cell with DME-based electrolyte
KR20190004651A (ko) 전극 및 이를 포함하는 리튬 이차전지
CN107331856B (zh) 核壳结构的材料、其制备方法及应用
CN112768840A (zh) 一种锂硫电池多功能隔膜及其制备方法
Liu et al. CoP@ C with chemisorption-catalysis effect toward lithium polysulfides as multifunctional interlayer for high-performance lithium-sulfur batteries
Choi et al. Discrete hollow carbon spheres derived from pyrolytic copolymer microspheres for Li-S batteries
Kiai et al. Functionalized double side coated separator for lithium-sulfur batteries with enhanced cycle life
CN110828881A (zh) 双离子电池及其制备方法
Liu et al. A Honeycomb‐Structured CoF2‐Modified Separator Enabling High‐Performance Lithium− Sulfur Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant