CN108132469A - 一种双基前视sar的空变滤波参数高阶拟合方法 - Google Patents

一种双基前视sar的空变滤波参数高阶拟合方法 Download PDF

Info

Publication number
CN108132469A
CN108132469A CN201711453018.7A CN201711453018A CN108132469A CN 108132469 A CN108132469 A CN 108132469A CN 201711453018 A CN201711453018 A CN 201711453018A CN 108132469 A CN108132469 A CN 108132469A
Authority
CN
China
Prior art keywords
coordinate system
space
center point
sar
biradical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711453018.7A
Other languages
English (en)
Other versions
CN108132469B (zh
Inventor
胥秋
汪宗福
金敏
吴慧
王驰
张平
何东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hui Rong Guo Ke Micro System Technology Co Ltd
Original Assignee
Chengdu Hui Rong Guo Ke Micro System Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hui Rong Guo Ke Micro System Technology Co Ltd filed Critical Chengdu Hui Rong Guo Ke Micro System Technology Co Ltd
Priority to CN201711453018.7A priority Critical patent/CN108132469B/zh
Publication of CN108132469A publication Critical patent/CN108132469A/zh
Application granted granted Critical
Publication of CN108132469B publication Critical patent/CN108132469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9043Forward-looking SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种双基前视SAR的空变滤波参数高阶拟合方法,包括如下步骤:步骤1. 建立双基前视高机动平台SAR的运动几何构型;步骤2. 计算出场景中心点对应的多普勒中心频率;步骤3.在雷达波照射区域内,以场景中心点为中心取A个在雷达波照射区域内均匀分布的点,对每一点横坐标,带入场景中心点多普勒频率值,求出其纵坐标;步骤4. 以求出的A个点进行曲线拟合到设计空变滤波所需参数。本发明对于双基前视SAR采集数据的后续空变处理给出了一个具体的解决方法,采用高阶省略和常数反推的方式快速拟合出所需要的空变参数,大幅降低了计算强度,弥补了现有技术对SAR数据处理过程中的空缺。

Description

一种双基前视SAR的空变滤波参数高阶拟合方法
技术领域
本发明属于电子技术领域,涉及飞行器导航技术,具体涉及一种双基前视SAR的空变滤波参数高阶拟合方法。
背景技术
双基地合成孔径雷达(Bistatic synthetic aperture radar,简写为BiSAR)是指收发天线分置于两个不同运动平台的雷达***。与单基地SAR相比,双基SAR具有隐蔽性好,安全性高,抗干扰能力强,低成本和灵活性强的优点,并且能够实现一些单基地SAR所无法实现的特殊模式,如前视成像。
然而由于发射机斜视、接收机前视的工作模式使得收发平台高度不断变化和运动方向不同导致回波相位的空变特性,给后续成像带来困难。西安电子科技大学的孟自强博士在其专利中提出采用高阶多项式拟合来消除高精度二维频谱的相位项中的相位空变性,进而设计出高效的频域成像算法,明显改善了成像场景的聚焦性能[1]。但是在其专利中只提到了利用高阶多项式拟合分别得到与场景相关的泰勒系数 , , (∆r表示场景中除点目标P外的其他点目标到场景中心点的斜距差异, 表示场景中除点目标P外的其他点目标到场景中心点的斜距差异,即距离向采样间隔与光速的乘积.),对求(∆𝑟),(∆𝑟),(∆𝑟)需要用到的场景中心点对应系数,,及拟合系数,,(i,N为拟合阶数)并没有给出具体求解方法。
发明内容
为克服现有技术存在的空缺,满足SAR成像后续处理要求,本发明公开了一种双基前视SAR的空变滤波参数高阶拟合方法。
本发明所述一种双基前视SAR的空变滤波参数高阶拟合方法,其特征在于,包括如下步骤:
步骤1. 建立双基前视高机动平台SAR的运动几何构型;
设定直角坐标系原点,并以该原点分别建立收、发平台所处的接收机坐标系xOyz和发射机坐标系x'Oy'z;根据发、收平台的运动情况求出收发平台与接收机坐标系内的目标点P之间的瞬时双基斜距:
---(1);
其中为目标点P在发射机坐标系中的坐标,Rrcen和Rtcen分别表示收发机在合成孔径中心时刻的目标斜距;且
---(2);
将瞬时双基斜距进行泰勒展开,并舍去四阶以上部分;得到
---(3);
本步骤并不必然先于步骤2、3、4进行;
步骤2. 计算出场景中心点对应的多普勒中心频率;所谓场景中心点即雷达波照射区域的几何中心点;
将场景中心点坐标在接收机坐标系中的坐标值代入多普勒频率公式;
---(4)
替换其中的Xp,Yp;计算出中心点多普勒频率值
分别表示发射机在发射机坐标系xoyz下的初始位置的横、纵坐标;
步骤3.在雷达波照射区域内,以场景中心点为中心取A个在雷达波照射区域内X方向均匀间隔分布的点,然后对每一点,根据其在接收机坐标系中的横坐标,带入
,求出其纵坐标;
步骤4 .
以求出的A个点带入步骤1中的(2)、(3)式,即可得到泰勒级数展开系数K1、K2、K3;对K1、K2、K3进行曲线拟合,得到场景中心点对应系数即拟合值K1S、K2S、K3S及拟合系数ai, bi, ci(i=1,2,3,下标表示不同的K),再基于斜距差异△r,通过下式进行高阶多项式拟合得到设计空变滤波器所需参数k1(△r)、k2(△r)、k3(△r)
优选的,所述步骤3中将各个点横坐标带入 ,求出其纵坐标的方法具体为:
将(4)式在处进行泰勒展开,得到
将常数项移至等号左边,得到无常数项的泰勒公式
利用级数反演公式推导:
得到
即可以通过带入不同的直接求出;其中…分别为处的一阶、二阶、三阶导数…,以此类推。
进一步的,无常数项的泰勒公式和级数反演公式推导中舍去三次以上的展开项。
采用本发明所述双基前视SAR的空变滤波参数高阶拟合方法,对于双基前视SAR采集数据的后续空变处理给出了一个具体的解决方法,采用高阶省略和常数反推的方式快速拟合出所需要的空变参数,大幅降低了计算强度,弥补了现有技术对SAR数据处理过程中的空缺。
附图说明
图1为本发明所述双基前视SAR的空变滤波参数高阶拟合方法的一个具体实施方式流程图,图2为本发明一个具体实施方式中的雷达波照射区域的示意图,图3为本发明具体实施方式中所述建立双基前视高机动平台SAR的运动几何构型的一个具体实施方式示意图。
具体实施方式
下面结合附图,对本发明 的具体实施方式作进一步的详细说明。
本发明所述双基前视SAR的空变滤波参数高阶拟合方法,包括如下步骤:
步骤1. 建立双基前视高机动平台SAR的运动几何构型图3所示;
如图3所示O为直角坐标系原点,收、发平台的运动关系分别在接收机坐标系xOyz和发射机坐标系x'Oy'z中表示;
两个坐标系共用一个原点,根据两个坐标系的旋转关系,例如假设如图3所示发射机坐标系旋转角度得到接收机坐标系,则发射机坐标系内坐标(,,)在接收机坐标系中的坐标转换具体为:
发射机(即发平台)在与接收机坐标系的平面 yOz成夹角的平面内沿曲线 做下降运动,斜视持续照射成像区域,瞬时速度为, 方向和z方向的分量分别记为;接收机在接收机坐标系的yOz平面内沿曲线 做下降运动。
接收机(即收平台)在接收机坐标系的平面 yOz内沿曲线做下降运动,前视接收目标区域回波,目标区域回波瞬时速度为 , 在接收机坐标系的y方向和z方向的分量分别记为。P(,,0)为测绘区域内任意一个点目标,假设场景平坦,不存在高度起伏。设慢时间(二维回波数据矩阵的方位向采样时间,慢时间为等距连续分布的多个时间点,例如采样间隔为1秒,从0开始采样,则tm为0秒,1秒,2秒…)tm=0时分别表示接收机和发射机的高度,此时接收机、发射机在接收机坐标系xOyz和发射机坐标系x'Oy'z中的位置分别为R0(0,0,HR)和T0(x’t,0,HT),O'为在水平面内的投影。分别为此时接收机和发射机速度向量,分别为接收机和发射机加速度向量。
假设在任意tm时刻的接收机在接收机坐标系xOy中的位置坐标为(0, ,),发射机在发射机坐标系𝑂中的位置坐标为(,,),则收、发平台位置可分别表示为
根据上述发、收平台的运动情况求出收发平台与接收机坐标系内的目标点之间的瞬时双基斜距表示如下:
---(1);
其中为目标点在发射机坐标系中的坐标,Rrcen和Rtcen分别表示收发机在合成孔径中心时刻的目标斜距;且
---(2);
将瞬时双基斜距进行泰勒展开,并舍去四阶以上部分;得到
---(3);
本步骤并不必然先于步骤2至4进行;
步骤2. 计算出场景中心点对应的多普勒中心频率;所谓场景中心点即雷达波照射区域的几何中心点;
将场景中心点坐标在接收机坐标系中的坐标值代入多普勒频率公式,;
---(4)
替换其中的Xp,Yp;计算出中心点多普勒频率值
分别表示发射机在接收机坐标系xoyz下的初始位置的横、纵坐标;公式(4)的具体推导过程如下:
根据孟志强博士论文《双基前视高机动平台SAR***特性及成像算法研究》中收发平台与目标P(,0) 之间的瞬时双基斜距表示如下:
接收机不变,将上式中发射机的变量都转变在接收机坐标系下,则表示如下:
则:
又根据多普勒频率公式:
假设雷达波照射区域的大小为1000m×2000m,设定行列的分辨率都为0.5,所以行方向得到2000个采样点,列方向得到4000个采样点,即共有M=8000000 个点。(,)为其中心点,具体如图2所示:
从图2中可以看出,当中心点的多普勒中心频率算出后,如果要得到一条等多普勒频率线,需要遍历成像区域内的全部M=8000000个点,求出每个点对应的多普勒频率,将其与中心点多普勒频率相比,如果相等,则保存该点的坐标值信息,最终得到多个离散点来进行拟合。这种直观的高阶多项式拟合方法,需要进行二维的搜索,运算量很大。所以设计一种能够快速拟合出等多普勒线的方法对于雷达***的数据处理尤为重要。
本发明中通过带入不同的直接求出,而不是进行二维搜索,可以将运算量降低数个数量级。
步骤3. 在雷达波照射区域内,以场景中心点为中心取A个在雷达波照射区域内X方向均匀分布的点,对每一点,根据其在接收机坐标系中的横坐标,带入 ,求出其纵坐标;
所谓均匀间隔是指在X坐标上均匀取点,例如在X坐标(-100,100)的雷达波照射范围内,取X=-100,-99…0…99,100等201个点,分别求出其对应的纵坐标。
步骤3中将各个点横坐标带入
,求出其纵坐标的方法具体为:
将(4)式在处进行泰勒展开,得到
;将常数项移至等号左边,得到 无常数项的泰勒公式
利用级数反演公式推导:
得到
即可以通过带入不同的直接求出;其中…分别为处的一阶、二阶、三阶导数…,以此类推。
实际应用中,三次项及以上对最后结果影响极小,但计算量巨大,一般省略,只计算到三次项及三阶导数。
步骤4 .
以求出的A个点带入步骤1中的(2)、(3)式,即可得到泰勒级数展开系数K1、K2、K3;对K1、K2、K3进行曲线拟合,得到场景中心点对应系数即拟合值K1S、K2S、K3S及拟合系数ai, bi, ci(i=1,2,3,下标表示不同的K),再基于斜距差异△r,通过下式进行高阶多项式拟合得到设计空变滤波所需参数K1(△r)、K2(△r)、K3(△r)
采用本发明所述双基前视SAR的空变滤波参数高阶拟合方法,对于双基前视SAR采集数据的后续空变处理给出了一个具体的解决方法,采用高阶省略和常数反推的方式快速拟合出所需要的空变参数,大幅降低了计算强度,弥补了现有技术对SAR数据处理过程中的空缺。
前文所述的为本发明 的各个优选实施例,各个优选实施例中的优选实施方式如果不是明显自相矛盾或以某一优选实施方式为前提,各个优选实施方式都可以任意叠加组合使用,所述实施例以及实施例中的具体参数仅是为了清楚表述发明 人的发明 验证过程,并非用以限制本发明 的专利保护范围,本发明 的专利保护范围仍然以其权利要求书为准,凡是运用本发明 的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (3)

1.一种双基前视SAR的空变滤波参数高阶拟合方法,其特征在于,包括如下步骤:
步骤1. 建立双基前视高机动平台SAR的运动几何构型;
设定直角坐标系原点,并以该原点分别建立收、发平台所处的接收机坐标系xOyz和发射机坐标系x'Oy'z;根据发、收平台的运动情况求出收发平台与接收机坐标系内的目标点P之间的瞬时双基斜距:
---(1);
其中为目标点P在发射机坐标系中的坐标,Rrcen和Rtcen分别表示收发机在合成孔径中心时刻的目标斜距;且
---(2);
将瞬时双基斜距进行泰勒展开,并舍去四阶以上部分;得到
---(3);
本步骤并不必然先于步骤2、3、4进行;
步骤2. 计算出场景中心点对应的多普勒中心频率;所谓场景中心点即雷达波照射区域的几何中心点;
将场景中心点坐标在接收机坐标系中的坐标值代入多普勒频率公式;
---(4)
替换其中的Xp,Yp;计算出中心点多普勒频率值
分别表示发射机在发射机坐标系xoyz下的初始位置的横、纵坐标;
步骤3.在雷达波照射区域内,以场景中心点为中心取A个在雷达波照射区域内X方向均匀间隔分布的点,然后对每一点,根据其在接收机坐标系中的横坐标,带入
,求出其纵坐标;
步骤4 .
以求出的A个点带入步骤1中的(2)、(3)式,即可得到泰勒级数展开系数K1、K2、K3;对K1、K2、K3进行曲线拟合,得到场景中心点对应系数即拟合值K1S、K2S、K3S及拟合系数ai, bi, ci(i=1,2,3,下标表示不同的K),再基于斜距差异△r,通过下式进行高阶多项式拟合得到设计空变滤波器所需参数k1(△r)、k2(△r)、k3(△r)
2.如权利要求1所述的双基前视SAR的空变滤波参数高阶拟合方法,其特征在于,所述步骤3中将各个点横坐标带入 ,求出其纵坐标的方法具体为:
将(4)式在处进行泰勒展开,得到
将常数项移至等号左边,得到无常数项的泰勒公式
利用级数反演公式推导:
得到
即可以通过带入不同的直接求出;其中…分别为处的一阶、二阶、三阶导数…,以此类推。
3.如权利要求2所述的双基前视SAR的空变滤波参数高阶拟合方法,其特征在于,无常数项的泰勒公式和级数反演公式推导中舍去三次以上的展开项。
CN201711453018.7A 2017-12-28 2017-12-28 一种双基前视sar的空变滤波参数高阶拟合方法 Active CN108132469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711453018.7A CN108132469B (zh) 2017-12-28 2017-12-28 一种双基前视sar的空变滤波参数高阶拟合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711453018.7A CN108132469B (zh) 2017-12-28 2017-12-28 一种双基前视sar的空变滤波参数高阶拟合方法

Publications (2)

Publication Number Publication Date
CN108132469A true CN108132469A (zh) 2018-06-08
CN108132469B CN108132469B (zh) 2019-03-01

Family

ID=62393112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711453018.7A Active CN108132469B (zh) 2017-12-28 2017-12-28 一种双基前视sar的空变滤波参数高阶拟合方法

Country Status (1)

Country Link
CN (1) CN108132469B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469612A (zh) * 2018-03-20 2018-08-31 西安电子科技大学 基于等效斜距的双基时变加速度前视sar成像方法
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微***技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及***
CN109765556A (zh) * 2018-12-29 2019-05-17 成都航天科工微电子***研究院有限公司 一种基于级数反演的双基sar快速几何校正方法及装置
CN111308457A (zh) * 2019-12-11 2020-06-19 成都汇蓉国科微***技术有限公司 脉冲多普勒雷达寻北的方法、***及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865573A (zh) * 2015-06-12 2015-08-26 西安电子科技大学 一种双基前视高机动平台sar扩展场景成像优化方法
CN104898120A (zh) * 2015-06-12 2015-09-09 西安电子科技大学 一种基于回波模拟的双基前视高机动平台sar成像方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865573A (zh) * 2015-06-12 2015-08-26 西安电子科技大学 一种双基前视高机动平台sar扩展场景成像优化方法
CN104898120A (zh) * 2015-06-12 2015-09-09 西安电子科技大学 一种基于回波模拟的双基前视高机动平台sar成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孟自强 等: "基于斜距等效的弹载双基前视SAR相位空变校正方法", 《电子与信息学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469612A (zh) * 2018-03-20 2018-08-31 西安电子科技大学 基于等效斜距的双基时变加速度前视sar成像方法
CN109765556A (zh) * 2018-12-29 2019-05-17 成都航天科工微电子***研究院有限公司 一种基于级数反演的双基sar快速几何校正方法及装置
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微***技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及***
CN109765529B (zh) * 2018-12-30 2020-11-10 成都汇蓉国科微***技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及***
CN111308457A (zh) * 2019-12-11 2020-06-19 成都汇蓉国科微***技术有限公司 脉冲多普勒雷达寻北的方法、***及存储介质
CN111308457B (zh) * 2019-12-11 2021-11-16 成都汇蓉国科微***技术有限公司 脉冲多普勒雷达寻北的方法、***及存储介质

Also Published As

Publication number Publication date
CN108132469B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN108132469B (zh) 一种双基前视sar的空变滤波参数高阶拟合方法
Walterscheid et al. Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image results
CN108603926B (zh) 检测和测距***和方法
CN106597437B (zh) 高频机载调频连续波sar运动补偿及成像处理方法
CN105372657B (zh) 基于回波数据的视频合成孔径雷达运动补偿成像方法
CN105182340B (zh) 一种双基地前视sar运动补偿方法
CN104749570B (zh) 一种移不变机载双基合成孔径雷达目标定位方法
CN103792535B (zh) 一种利用sar卫星测量电离层tec值的方法
CN106054187B (zh) 基于斜距模型下的大斜视sar曲线轨迹波数域成像方法
CN106950565A (zh) 星载sar成像抖动补偿方法、成像方法
CN110109103A (zh) 一种星机双基前下视阵列sar三维稀疏成像技术
CN109765556A (zh) 一种基于级数反演的双基sar快速几何校正方法及装置
KR102151362B1 (ko) 극좌표변환을 이용한 항공기기반 영상복원장치 및 이를 이용한 영상복원방법
CN108061890A (zh) 一种sar成像方法
CN113820713B (zh) 发射机运动双基弧形阵列sar的成像方法、装置及存储介质
CN108732555B (zh) 一种自动驾驶阵列微波成像运动补偿的方法
Michalczyk et al. Radar-inertial state-estimation for UAV motion in highly agile manoeuvres
CN111127334A (zh) 基于rd平面像素映射的sar图像实时几何校正方法及***
CN110221295A (zh) 一种补偿调频连续波圆周sar脉内运动的成像方法
CN113671497B (zh) 基于圆柱对称模型的单通道sar目标三维坐标提取方法
CN112946650B (zh) 一站固定双站低频超宽带sar运动目标检测与成像方法
CN112835034B (zh) 一种双通道雷达对地测高***及方法
CN114994676A (zh) 一种一站固定式双站低频超宽带sar运动目标成像方法
CN114200448A (zh) 综合孔径辐射计波数域近场成像方法及设备
Tan et al. 3-D range stacking algorithm for forward-looking SAR 3-D imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant