CN108129144B - 一种低吸收/发射比自适应控温材料及其制备方法 - Google Patents

一种低吸收/发射比自适应控温材料及其制备方法 Download PDF

Info

Publication number
CN108129144B
CN108129144B CN201711455657.7A CN201711455657A CN108129144B CN 108129144 B CN108129144 B CN 108129144B CN 201711455657 A CN201711455657 A CN 201711455657A CN 108129144 B CN108129144 B CN 108129144B
Authority
CN
China
Prior art keywords
powder
mixture
mixing
self
putting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711455657.7A
Other languages
English (en)
Other versions
CN108129144A (zh
Inventor
吕金鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201711455657.7A priority Critical patent/CN108129144B/zh
Publication of CN108129144A publication Critical patent/CN108129144A/zh
Application granted granted Critical
Publication of CN108129144B publication Critical patent/CN108129144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种低吸收/发射比自适应,属于新材料领域,材料组分为BayAxTiO3,其中A为Sr、Sn、Ca、La、Nb、Y中一种或多种,其中x+y=1;本发明还公开了其制备方法,获得材料的红外发射率随外界热环境变化而在居里点附近发生变化,利用此方法制备的智能型自适应热控材料,具有低太阳吸收比,as<0.3,红外发射率变化幅度大的特性,ΔeH>0.2,可广泛应用于航天器热控***、建筑物节能减排、电子设备散热以及战术武器红外隐身等领域;特别是在建筑物节能减排、电子设备散热和航天器热控领域具有巨大的实用价值和应用前景。

Description

一种低吸收/发射比自适应控温材料及其制备方法
技术领域
本发明属于属于新材料领域,具体是指一种低吸收/发射比自适应控温材料 及其制备方法。
背景技术
智能型温控材料,是指材料本身在不同环境温度的激励作用下,通过自身结构物理性质的跃变实现红外发射率的突变,而自适应改变其热辐射性能,具有冬暖夏凉式的空调功能。智能温控材料在国防科技和民用节能减排领域具有极大的应用前景。可广泛应用于航天器热控、建筑物节能、智能玻璃/窗、发动机散热、电子产品散热、LED灯具散热等领域。实现智能温控的材料技术主要有电致变色材料、热致变色材料技术和热控百叶窗等。其中热致变色材料具有重量轻、无外加功耗、成本低、应用范围广等优点,成为当前热控技术领域最具前景的材料技术之一。然而,目前开发的VO2基和La1-xAxMnO3基热致相变可变发射率材料均存在突出的自身缺陷,严重限制了智能热控材料的应用。VO2材料在Tc=68℃发生由低温绝缘态(高发射率)向高温金属态(低发射率)快速可逆的热致相变,不符合传统低温保暖和高温散热的应用需求。尽管文献(吴春华等,一种用于改变智能热控材料控温能力的薄膜及其制备方法,中国专利CN104561897A)对VO2材料进行多层膜系设计,基本满足了应用需求,但存在结构复杂、成本较高、应用受限等缺点。另一种热致相变可变发射率材料La1-xAxMnO3则通常外观为深蓝色/黑色(张勇等,一种智能热辐射陶瓷材料的制备方法,中国专利CN101531513B),其太阳吸收比高达0.89,严重制约了其热控能力。因此,亟需探索开发具有低太阳吸收-半球发射比热环境响应特性的新型自适应热控材料。
发明内容
本发明针对现有技术中存在的问题,公开了一种低吸收/发射比自适应控温 材料及其制备方法,获得材料的红外发射率随外界热环境变化而在居里点附近发 生变化,利用此方法制备的智能型自适应热控材料,具有低太阳吸收比、红外发 射率变化幅度大的特性,解决了现有技术中存在的问题。
本发明是这样实现的:
一种低吸收/发射比自适应控温材料,其特征在于,所述的材料组分为 BayAxTiO3,其中A为Sr、Sn、Ca、La、Nb、Y其中一种或多种,x+y=1。
进一步,所述的材料外观为白色;所述材料的居里温度点在-10~40℃范围内 可调,当环境温度低于居里点时,呈低发射率态;当环境温度高于居里点时,突 变为高红外发射率态,本发明自适应热控材料,具有低太阳吸收比,αs<0.3,红 外发射率变化幅度大的特性,ΔεH>0.2。
本发明还公开了一种低吸收/发射比自适应控温材料的制备方法,其特征在 于,具体步骤如下:
步骤一:分别称取1份TiO2粉末,x份A的氧化物或碳酸盐,y份Ba的氧 化物或碳酸盐,A为Sr(锶)、Sn(锡)、Ca(钙)、La(镧)、Nb(铌)、Y (钇)其中一种或多种,x+y=1;
步骤二:将上述称量好试剂与玛瑙球、水或乙醇按体积比1:1:1混合放入 玛瑙球磨罐中,混合研磨24h,取出烘干;
步骤三:将步骤二中研磨后的粉末过100目筛,放入坩埚置于马弗炉中预烧;
步骤四:将预烧后的粉末取出,加入Al2O3、MnO2和纳米SiO2中的一种或多种, 通过加入三者中的一种或多种来改变发射率变化范围。加入后再次放入玛瑙罐中 球磨10h,取出烘干;
步骤五:将步骤四中的烘干后的粉末加入聚乙烯醇水溶液造粒(浓度1at%), 聚乙烯醇水溶液加入量为粉末质量的5%,于100~200Mpa压力下压制成型, 然后烧结,烧结温度为1000~1400℃,保温时间1~3h。
进一步,所述的步骤一中的粉末纯度>99.9%,粒径分布在亚微米尺寸。
进一步,所述的步骤二中是采用行星式球磨机进行混合研磨。
进一步,所述的步骤三马弗炉预烧参数为:温度900~1200℃;预烧0.5~1h。
本发明与现有技术的有益效果在于:
1)本发明的方法是基于钙钛矿材料的金属-绝缘体转变原理,获得材料 的红外发射率随外界热环境变化而在居里点附近发生变化。居里温 度点在-10~40℃范围内可调,当环境温度低于居里点时,呈低发射 率态;当环境温度高于居里点时,突变为高红外发射率态;
2)利用此方法制备的智能型自适应热控材料,具有低太阳吸收比, αs<0.3,红外发射率变化幅度大的特性,ΔεH>0.2,可广泛应用于航 天器热控***、建筑物节能减排、电子设备散热以及战术武器红外 隐身等领域;特别是在建筑物节能减排、电子设备散热和航天器热 控领域具有巨大的实用价值和应用前景;
3)利用本发明方法制备的材料外观为白色,可有效反射太阳辐射热流, 同时其红外发射率随环境温度而自动调节,解决了当前热致变色材 料高太阳吸收比造成的温控能力差的问题,极大拓展了智能控温材 料的应用领域,适用于建筑物外墙冬保暖夏散热及航天器热控***;
4)本发明方法通过优化材料组分及工艺,优化后的工艺简单、成本低 廉,易于规模化生产,可做成涂层、陶瓷片、透明薄膜等形式,满 足不同领域的应用需求。
附图说明
图1为本发明实施例1制备的智能热控材料的扫描电子显微镜照片。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚,明确,以及参照附图并举实 例对本发明进一步详细说明。应当指出此处所描述的具体实施仅用以解释本发明, 并不用于限定本发明。
实施例1
1)按化学计量比BayAxTiO3称取1mol TiO2粉,0.4mol碳酸锶(A组分),0.6mol 碳酸钡,三者的纯度>99.9%,粉末粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、水按体积比1:1:1混合放入玛瑙球 磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入刚玉坩埚置于马弗炉,进行1000℃ 预烧1h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.005mol Al2O3和0.024mol纳米SiO2, 再次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于150Mpa压力下压制成型,然后烧结, 烧结温度为1350℃,保温时间3h。如图1所示,图1为本实施例制备的 材料的扫描电子显微镜照片。
6)将制备的智能热控陶瓷材料样品的居里温度为276K,太阳吸收比为0.25, 在270K时红外发射率为0.42,在300K时的红外发射率为0.67,ΔεH=0.25。
实施例2
1)称取1mol TiO2粉,0.7mol Ba的碳酸盐(碳酸钡),0.3mol Sr的碳酸盐(碳 酸锶A组分),粉末纯度>99.9%,粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、乙醇按体积比1:1:1混合放入玛瑙 球磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入坩埚置于马弗炉,进行1150℃预烧 0.5h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.003mol Al2O3,0.002mol MnO2和0.02mol 纳米SiO2,再次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于200Mpa压力下压制成型,然后烧结, 烧结温度为1380℃,保温时间2h;
6)本实施例制备的智能热控陶瓷材料样品的居里温度为290K,太阳吸收比 为0.25,在275K时红外发射率为0.45,在310K时的红外发射率为0.71, ΔεH=0.26;
实施例3
1)称取1mol TiO2,0.6mol碳酸钡,0.3mol的碳酸锶,0.1mol碳酸锡,粉末 纯度>99.9%,粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、水或乙醇按体积比1:1:1混合放入 玛瑙球磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入刚玉坩埚置于马弗炉,进行1100℃ 预烧1h,随炉冷却至室温
4)将步骤3)中的粉末取出,放入0.001mol Al2O3,0.002mol MnO2和0.03mol 纳米SiO2,再放入玛瑙罐中球磨10h,取出烘干,过100目筛。
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于200Mpa压力下压制成型,1050℃烧结 2h,用30分钟降温至800℃,然后随炉冷却至室温,得到热致变色可变 发射率材料组成为Ba0.6Sr0.3Sn0.1TiO3
6)本实施例制备的粉末材料的居里温度为287K,太阳吸收比为0.26,在275K 时红外发射率为0.58,在310K时的红外发射率为0.79,ΔεH=0.21;
实施例4
1)称取1mol TiO2粉,0.3mol氧化锡和0.1mol氧化钙(A组分),0.6mol氧 化钡,三者的纯度>99.9%,粉末粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、水按体积比1:1:1混合放入玛瑙球 磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入刚玉坩埚置于马弗炉,进行1000℃ 预烧0.5h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.005mol Al2O3和0.024mol纳米SiO2, 再次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于150Mpa压力下压制成型,然后烧结, 烧结温度为1350℃,保温时间3h。
实施例5
1)称取1mol TiO2粉,0.3mol氧化锶和0.1mol氧化镧(A组分),0.6mol氧 化钡,三者的纯度>99.9%,粉末粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、乙醇按体积比1:1:1混合放入玛瑙 球磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入刚玉坩埚置于马弗炉,进行1000℃ 预烧0.5h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.005mol Al2O3,0.002mol MnO2,0.024 mol纳米SiO2,再次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于150Mpa压力下压制成型,然后烧结, 烧结温度为1000℃,保温时间1h。
实施例6
1)称取1mol TiO2粉,0.3mol氧化钙和0.1mol氧化铌(A组分),0.6mol 氧化钡,粉末纯度>99.9%,粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、水按体积比1:1:1混合放入玛瑙球 磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入坩埚置于马弗炉,进行1150℃预烧 0.5h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.003mol Al2O3,0.02mol纳米SiO2,再 次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于200Mpa压力下压制成型,然后烧结, 烧结温度为1400℃,保温时间1h。
实施例7
1)称取1mol TiO2粉,0.2mol氧化钇和0.2mol碳酸锡(A组分),0.6mol 碳酸钡,粉末纯度>99.9%,粒径在亚微米尺寸;
2)将步骤1)称量好的粉末与玛瑙球、乙醇按体积比1:1:1混合放入玛瑙 球磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)将步骤2)中的粉末过100目筛,放入坩埚置于马弗炉,进行1150℃预烧 0.5h,随炉冷却至室温;
4)将步骤3)中的粉末取出,放入0.003mol Al2O3,0.02mol纳米SiO2,再 次放入玛瑙罐中球磨10h,取出烘干
5)将步骤4)中的粉末加入聚乙烯醇水溶液造粒(浓度1at%),聚乙烯醇水 溶液加入量为粉末质量的5%,于200Mpa压力下压制成型,然后烧结, 烧结温度为1200℃,保温时间2h。

Claims (2)

1.一种低吸收/发射比自适应控温材料的制备方法,其特征在于,所述的方法具体制备步骤如下:
1)、称取1mol TiO2粉,0.4mol碳酸锶, 0.6mol碳酸钡,三者的纯度>99.9%,粉末粒径在亚微米尺寸;
2)、将步骤1)称量好的粉末与玛瑙球、水按体积比1:1:1混合放入玛瑙球磨罐中,用行星式球磨机混合研磨24h,取出,100℃烘干;
3)、将步骤2)中的粉末过100目筛,放入刚玉坩埚置于马弗炉,进行1000℃预烧1h,随炉冷却至室温;
4)、将步骤3)中的粉末取出,放入0.005 mol Al2O3和0.024 mol 纳米SiO2,再次放入玛瑙罐中球磨10h,取出烘干;
5)、将步骤4)中的粉末加入聚乙烯醇水溶液造粒,聚乙烯醇水溶液加入量为粉末质量的5%,于150Mpa压力下压制成型,然后烧结,烧结温度为1350℃,保温时间3h。
2.根据权利要求1所述的一种低吸收/发射比自适应控温材料的制备方法制得的材料。
CN201711455657.7A 2017-12-28 2017-12-28 一种低吸收/发射比自适应控温材料及其制备方法 Active CN108129144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711455657.7A CN108129144B (zh) 2017-12-28 2017-12-28 一种低吸收/发射比自适应控温材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711455657.7A CN108129144B (zh) 2017-12-28 2017-12-28 一种低吸收/发射比自适应控温材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108129144A CN108129144A (zh) 2018-06-08
CN108129144B true CN108129144B (zh) 2021-02-05

Family

ID=62393236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711455657.7A Active CN108129144B (zh) 2017-12-28 2017-12-28 一种低吸收/发射比自适应控温材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108129144B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126383B (zh) * 2019-05-17 2021-03-26 中北大学 一种同辐射干扰的红外隐身结构
CN111517790B (zh) * 2020-04-30 2022-04-01 郑州大学 一种La0.9Sr0.1Ti0.75Nb0.25O3+δ块体材料及其制备方法
CN113809544B (zh) * 2021-09-26 2022-10-28 北京工业大学 一种砷化镓/石墨烯复合超材料太赫兹宽带吸收器
CN114136015B (zh) * 2021-11-18 2024-06-04 航天材料及工艺研究所 一种吸收发射比可调的智能热控器件及其制备方法
CN116143517B (zh) * 2023-03-06 2024-05-31 上海交通大学 可见近红外波段具有高反射率陶瓷材料及制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135006A (ja) * 1996-10-30 1998-05-22 Matsushita Electric Ind Co Ltd 正特性サーミスタおよびその製造方法
CN101531513A (zh) * 2009-04-16 2009-09-16 清华大学 一种智能热辐射陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135006A (ja) * 1996-10-30 1998-05-22 Matsushita Electric Ind Co Ltd 正特性サーミスタおよびその製造方法
CN101531513A (zh) * 2009-04-16 2009-09-16 清华大学 一种智能热辐射陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
常温PTC热控材料及其热控方法研究;宋嘉梁;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20160915(第9期);第20-27页 *

Also Published As

Publication number Publication date
CN108129144A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN108129144B (zh) 一种低吸收/发射比自适应控温材料及其制备方法
CN107828289B (zh) 疏水自洁净表面温度昼夜低于气温的反思托克斯荧光及辐射制冷涂料及其制备方法
Guo et al. Phase-change materials for intelligent temperature regulation
CN103788849A (zh) 一种低碳节能涂料
CN110627055A (zh) 一种二氧化钒与石墨烯复合薄膜结构及其制备方法和应用
CN109292820B (zh) VO2/ZnO双层薄膜及其制备方法
CN102390856B (zh) 一种低温制备高稳定性γ相纳米硫化镧粉体的方法
CN104403558B (zh) 一种具有自洁性能的太阳能选择性吸收涂料的制备方法
CN204138748U (zh) 相变型二氧化钒薄膜结构
CN106278232A (zh) 一种富铝锌尖晶石透明陶瓷的制备方法
CN102167564A (zh) 一种热致变红外发射率陶瓷薄片材料及其制备方法
CN104261694A (zh) 一种红外透过率自动调节智能玻璃的产业化制备方法
CN109553135B (zh) 一种氟化镁包覆二氧化钒核壳复合粉体及其制备方法
CN113652640B (zh) 溅射制备纳米复合相氧化钒柔性薄膜的方法及薄膜
CN103693691B (zh) 一种双温区还原法制备二氧化钒的方法
CN105130415A (zh) Ln1-xSrxMg1-yMnyAl11-zTizO19纳米陶瓷热障涂层材料及其制备方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN115433007A (zh) 一种太阳能光谱宽频吸收材料及其制备方法
CN107338415B (zh) 一种金属纳米线网和二氧化钒的复合薄膜的制备方法
CN104962869A (zh) 一种掺杂纳米复合镶嵌结构的智能节能薄膜及其制备方法
CN114716148A (zh) 一种可见光/激光/红外/雷达兼容隐身材料及其制备方法
CN107200579B (zh) 一种纳米陶瓷靶材及其制备方法
CN111517790B (zh) 一种La0.9Sr0.1Ti0.75Nb0.25O3+δ块体材料及其制备方法
CN1544390A (zh) 一种温致发射率可逆变化材料
CN116120066B (zh) 一种钼钛酸稀土冷颜料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant