CN108104804A - A kind of hard brittle shale Fracturing Pressure Prediction method - Google Patents

A kind of hard brittle shale Fracturing Pressure Prediction method Download PDF

Info

Publication number
CN108104804A
CN108104804A CN201711308930.3A CN201711308930A CN108104804A CN 108104804 A CN108104804 A CN 108104804A CN 201711308930 A CN201711308930 A CN 201711308930A CN 108104804 A CN108104804 A CN 108104804A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711308930.3A
Other languages
Chinese (zh)
Inventor
赵晓姣
屈展
凡元芳
樊恒
薛朝妹
徐竟天
赵志峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201711308930.3A priority Critical patent/CN108104804A/en
Publication of CN108104804A publication Critical patent/CN108104804A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A kind of hard brittle shale Fracturing Pressure Prediction method, it first passes through indoor aquation triaxial tests and obtains the rock parameter of hard brittle shale, the detecting earth stress data for obtaining mud shale stratum are tested by live formation breakdown again, then other routine datas needed for calculating are collected, plastoelasticity and rock mechanics theory are based on again, calculate the stress distribution for the vertical well borehole wall surrounding formation for considering seepage flow;Then the effective tangential stress considered under the action of aquation is calculated;Finally according to maximum tensional stress criterion, the fracture pressure model on hard brittle shale stratum is obtained, the present invention can more effectively, more accurately predict the fracture pressure of mud shale stratum, so as to provide high-precision basic data for pressing crack construction design.

Description

A kind of hard brittle shale Fracturing Pressure Prediction method
Technical field
The present invention relates to oil exploration formation fracture pressure prediction technical field more particularly to a kind of hard brittle shales Fracturing Pressure Prediction method.
Background technology
In the mining operations of oil/gas well, prediction is carried out to formation fracture pressure and is very important.In the prior art In, model has according to model, anderson model, exlog models, Huang Shi models etc., wherein according to a model consider Poisson's ratio with The relation of depth;Anderson model considers the influence of borehole wall stress concentration, introduces stress, the strain of elastic porous medium Relation;The problem of exlog models consider tectonic stress, and done hypothesis of the even level to tectonic stress;Huang Shi models Primarily directed to what is proposed in general reservoir, the influence of various factors is generally considered, considering not only rock stratum overlying should Power is the function of depth, the influence of borehole wall stress concentration, but also the work of the tectonic stress in view of underground non-uniform Distribution With and the factors such as rock strength.Therefore, it can be suitably used for the area of different condition, and the fracture pressure predicted also will be compared with Other patterns are more accurately and reliably.However, the pattern does not account for the influence of rock porosity, seepage flow and aquation.
It is tight to establish the model for considering that Hydrogeochemical anomaly calculates fracture pressure, the model on the basis of Huang Shi models on the sunny side It is the function of depth, the effect of tectonic stress of underground non-uniform Distribution and seepage flow and hole not account for rock stratum overlying stress The influence of degree.Deng Jingen etc. establishes the new mould of high temperature and pressure formation fracture pressure calculating for considering temperature and seepage effect Type, but this model primarily directed to stratum be sandstone, do not account for the influence of hydration.Luo Limin etc., which is established, to be contained The prediction before drilling method of confidence level formation fracture pressure, Main Analysis sea deep-well harshness formation fracture pressure.East such as shakes at the utilizations Theory of Fracture Mechanics derives fractured reservoir fracture pressure calculation formula, with reference to point shape rock mechanics theory with establishing Fractured Layer fracture pressure analytic modell analytical model, proposes a kind of fracture pressure computational methods of practicality, is primarily directed to coal petrography.Li Chuanliang gives Go out the fracture pressure computation model under the conditions of perforation completion, however how to obtain continuous contact porosity parameter profile, Also it is a yet unresolved issue.Li Peichao is corrected the perforation completion fracture pressure model of Li Chuanliang, introduces perforation Depth parameter finally obtains vertical well perforation completion fracture pressure calculation formula, only accounts for stress concentration caused by drilling well, Secondary stress caused by ignoring perforation concentrates the influence to fracture pressure.
To sum up, consider that multifactor, more effective, more accurately method carries out hard brittle shale there is presently no a kind of The prediction of layer fracture pressure.
The content of the invention
The shortcomings that in order to overcome the above-mentioned prior art, the object of the present invention is to provide a kind of ruptures of hard brittle shale to press Force prediction method, on the basis of Huang Shi models, it is contemplated that Radial Flow Through Porous Media of the drilling well percolate in formation pore is enclosed in the borehole wall The influence of additional profiled bar, the porosity of rock and drilling fluid hydration caused by rock, it is contemplated that many factors calculate Simplicity can more effectively, more accurately predict the fracture pressure of mud shale stratum, high-precision so as to be provided for pressing crack construction design The basic data of degree.
In order to achieve the above object, the technical solution taken of the present invention is:
A kind of hard brittle shale Fracturing Pressure Prediction method, comprises the following steps:
1) rock parameter of hard brittle shale is obtained by indoor aquation triaxial tests, the compression strength including rock, Elasticity modulus and Poisson's ratio;
2) the detecting earth stress data for obtaining mud shale stratum are tested by live formation breakdown, are had including maximum horizontal Efficacy σ1, minimum level effective stress σ2, overlying stress σv, tensile strength of rock StWith the compression strength of rock;
3) other routine datas needed for calculating are collected, including geological structure stress coefficient, Hydrogeochemical anomaly, poroelasticity Constant, permeable membrane efficiency, gas constant, pure water partial molar volume, activity and mud into water in stratum liquid activity, mud shale Shale porosity;
4) based on plastoelasticity and rock mechanics theory, the vertical well borehole wall surrounding formation of consideration seepage flow is calculated Stress distribution;
Wherein:σrFor radial stress, Mpa;σθFor tangential stress, Mpa;σFor shear stress, Mpa;σzFor vertical stress, Mpa;σvFor overburden pressure, Mpa;piFor drilling well liquid columnpressure, Mpa;ppFor prime stratum pore pressure, Mpa;For Effective stress coefficient;μ is Poisson's ratio;σ1Horizontal maximum crustal stress, Mpa;σ2For horizontal minimum crustal stress, Mpa;R is maximum well Eye radius, m;R be wellbore radius, m;δ is infiltration coefficient;φ is mud shale porosity;
5) the effective tangential stress considered under the action of aquation is calculated:
Wherein:σ'θFor effective tangential stress, Mpa;ImFor permeable membrane efficiency;R ' is gas constant;T is absolute temperature;For Pure water partial molar volume;(Aw)mTo enter stratum liquid activity;(Aw)shFor the activity of water in mud shale;φ is mud shale hole Degree;
6) according to maximum tensional stress criterion, the fracture pressure model on hard brittle shale stratum is obtained:
P in formulaFFor formation fracture pressure, MPa;α, β are geological structure stress coefficient;
S is overlying stress, MPa;StFor the tensile strength of rock, MPa.
Compression strength, elasticity modulus, the Poisson's ratio of test rock, comprise the following steps in the step 1):
1.1) standard cylinder rock sample is prepared:It is prepared according to International Society of Rock Mechanics (ISRM) proposed standard, it will The mud shale rock core taken out is processed into the cylindrical standard sample of diameter 25.4mm, a height of 50mm, and the flatness of end face is 0.1mm;
1.2) standard cylinder rock sample prepared by 3 groups of steps 1.1) is immersed in distilled water, impregnate respectively 1d, 3d and Then 5d weighs and calculates corresponding moisture content;
Moisture content calculation formula is ωc=(mω- m)/m, wherein, m is the quality after impregnating;mωFor the quality before immersion;
1.3) confining pressure is carried out respectively again as the triaxial compression test under 15MPa, 20MPa and 25MPa:
1. starting MTS Wikis control electro-hydraulic servo rock triaxial pressure experimental machine, the parameter setting of control program is carried out;
2. sample is wrapped up with thermal shrinkable sleeve, pressure chamber base is fixed on, extensometer is installed;
3. balancing gate pit's cover is loaded onto, oiling discharge gas;After oil is full of, to triaxial chamber plus confining pressure, with 1MPa per minute or so Rate be loaded into predetermined confining pressure value, then with axial strain rate 10-6The rate of/s carries out loading experiment;
4. being loaded into sample to destroy suddenly, system is automatically stopped.
The tensile strength S of disrupted beds rock in the step 2)tIt is on the basis of live burst test graph is obtained It is estimated.
The other basic parameters collected in the step 3) are considered as constant value in oilfield internal these coefficients.
Beneficial effects of the present invention are:
The present invention is based on plastoelasticity and rock mechanics correlation theory, using maximum tensional stress criterion, it is contemplated that rock stratum Overlying stress is the influence of the relation of depth, borehole wall stress concentration, the effect of the tectonic stress of underground non-uniform Distribution and rock Layer intensity, Radial Flow Through Porous Media of the drilling well percolate in formation pore is in additional profiled bar caused by Sidewall Surrounding Rock, the hole of rock The many factors such as the influence of porosity and drilling fluid hydration, example show that Fracturing Pressure Prediction model of the present invention is surveyed with scene The data difference 3.65% that well data are calculated, it is more more accurate than Forecasting Methodology before, and calculate easy, this hair Bright method is particularly suitable for hard brittle shale stratum.
Description of the drawings
Fig. 1 is the FB(flow block) of the present invention.
Fig. 2 is curve of the fracture pressure of the embodiment of the present invention with change in depth.
Specific embodiment
With reference to embodiment, the present invention is described in detail.
With reference to Fig. 1, a kind of hard brittle shale Fracturing Pressure Prediction method comprises the following steps:
1) rock parameter of hard brittle shale is obtained by indoor aquation triaxial tests, the compression strength including rock, Elasticity modulus and Poisson's ratio;
Compression strength, elasticity modulus, the Poisson's ratio of rock are tested, is comprised the following steps:
1.1) standard cylinder rock sample is prepared:It is prepared according to International Society of Rock Mechanics (ISRM) proposed standard, it will The mud shale rock core taken out is processed into the cylindrical standard sample of diameter 25.4mm, a height of 50mm, and the flatness of end face is 0.1mm;
1.2) standard cylinder rock sample prepared by 3 groups of steps 1.1) is immersed in distilled water, impregnate respectively 1d, 3d and Then 5d weighs and calculates corresponding moisture content;
Moisture content calculation formula is ωc=(mω- m)/m, wherein, m is the quality after impregnating;mωFor the quality before immersion;
1.3) confining pressure is carried out respectively again as the triaxial compression test under 15MPa, 20MPa and 25MPa:
1. starting MTS Wikis control electro-hydraulic servo rock triaxial pressure experimental machine, the parameter setting of control program is carried out;
2. sample is wrapped up with thermal shrinkable sleeve, pressure chamber base is fixed on, extensometer is installed;
3. balancing gate pit's cover is loaded onto, oiling discharge gas;After oil is full of, to triaxial chamber plus confining pressure, with 1MPa per minute or so Rate be loaded into predetermined confining pressure value, then with axial strain rate 10-6The rate of/s carries out loading experiment;
4. being loaded into sample to destroy suddenly, system is automatically stopped;
Obtained experimental result is shown in Table 1,
The triaxial compression test result of the different soaking time rock samples of table 1
2) the detecting earth stress data for obtaining mud shale stratum are tested by live formation breakdown, are had including maximum horizontal Efficacy σ1, minimum level effective stress σ2, overlying stress σv, tensile strength of rock StWith the compression strength of rock, it is specifically shown in Table 2;
3) other routine datas needed for calculating are collected, including geological structure stress coefficient, Hydrogeochemical anomaly, poroelasticity Constant, permeable membrane efficiency, gas constant, pure water partial molar volume, activity and mud into water in stratum liquid activity, mud shale Shale porosity;
Permeable membrane efficiency is I in the present embodimentm=0.1, gas constant is R '=8.314, and absolute temperature T=363K is pure Water partial molar volume is _ V_=1.8 × 10-5m3mol-1, other parameters are shown in Table 2;Due to general mud shale stratum using clear water or Slippery water carries out pressure break, then can be (A into stratum liquid activityw)m=0.78, the activity of water is (A in shalew)sh= 0.915, mud shale porosity is φ=18.11%, effective stress coefficientPoisson's ratio μ=0.25, tectonic stress system Number α=1.40, β=0.46;
4) based on plastoelasticity and rock mechanics theory, the vertical well borehole wall surrounding formation of consideration seepage flow is calculated Stress distribution.
Wherein:σrFor radial stress, Mpa;σθFor tangential stress, Mpa;σFor shear stress, Mpa;σzFor vertical stress, Mpa;σvFor overburden pressure, Mpa;piFor drilling well liquid columnpressure, Mpa;ppFor prime stratum pore pressure, Mpa;For Effective stress coefficient;μ is Poisson's ratio;σ1Horizontal maximum crustal stress, Mpa;σ2For horizontal minimum crustal stress, Mpa;R is maximum well Eye radius, m;R be wellbore radius, m;δ is infiltration coefficient;φ is mud shale porosity;
5) the effective tangential stress considered under the action of aquation is calculated:
Wherein:σ'θFor effective tangential stress, Mpa;ImFor permeable membrane efficiency;R ' is gas constant;T is absolute temperature;For Pure water partial molar volume;(Aw)mTo enter stratum liquid activity;(Aw)shFor the activity of water in mud shale;φ is mud shale hole Degree;
6) according to maximum tensional stress criterion, the fracture pressure model on hard brittle shale stratum is obtained:
P in formulaFFor formation fracture pressure, Mpa;α, β are geological structure stress coefficient;
S is overlying stress, Mpa;StFor the tensile strength of rock, Mpa.
The results are shown in Table 2.
Table 2
Curve of the fracture pressure with change in depth is drawn according to table 2, as shown in Figure 2.
In order to which the accuracy of prediction result is better described, by the method for the present invention with according to model, anderson model, Exlog models and Huang Shi models are compared, as shown in Fig. 2, the results show:Prediction result of the present invention is ruptured with actual formation The accordance of barometric gradient is very high, and the equivalent drilling fluid density being calculated more meets reality, and the prediction result of other methods It is then relatively relatively low.Statistics is drawn, is 39.49% according to the error of model, and the error of anderson model is 15.89%, exlog The error that the error of model then reaches about 12.88%, Huang Shi models is 4.95%, and the error of model of the present invention is about 3.65%. This is because when carrying out hydraulic fracturing to mud shale stratum, drilling fluid or fracturing fluid enter mud shale stratum with causing mud shale Layer occurs aquation and generates Hydrogeochemical anomaly, causes the increase of Sidewall Surrounding Rock stress, fracture pressure is caused to increase.

Claims (4)

  1. A kind of 1. hard brittle shale Fracturing Pressure Prediction method, which is characterized in that comprise the following steps:
    1) rock parameter of hard brittle shale is obtained by indoor aquation triaxial tests, compression strength, elasticity including rock Modulus and Poisson's ratio;
    2) the detecting earth stress data for obtaining mud shale stratum are tested by live formation breakdown, including maximum horizontal effective stress σ1, minimum level effective stress σ2, overlying stress σv, tensile strength of rock StWith the compression strength of rock;
    3) collect calculate needed for other routine datas, including geological structure stress coefficient, Hydrogeochemical anomaly, poroelasticity constant, Permeable membrane efficiency, gas constant, pure water partial molar volume, into the activity of water in stratum liquid activity, mud shale and mud shale hole Porosity;
    4) based on plastoelasticity and rock mechanics theory, the stress for calculating the vertical well borehole wall surrounding formation for considering seepage flow divides Cloth;
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>R</mi> <mn>4</mn> </msup> </mrow> <msup> <mi>r</mi> <mn>4</mn> </msup> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>4</mn> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mi>cos</mi> <mn>2</mn> <mi>&amp;theta;</mi> <mo>+</mo> <mi>&amp;delta;</mi> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;phi;</mi> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>R</mi> <mn>4</mn> </msup> </mrow> <msup> <mi>r</mi> <mn>4</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mi>cos</mi> <mn>2</mn> <mi>&amp;theta;</mi> <mo>+</mo> <mi>&amp;delta;</mi> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;phi;</mi> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>R</mi> <mn>4</mn> </msup> </mrow> <msup> <mi>r</mi> <mn>4</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mi>sin</mi> <mn>2</mn> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>=</mo> <msub> <mi>&amp;sigma;</mi> <mi>v</mi> </msub> <mo>-</mo> <mi>&amp;mu;</mi> <mo>&amp;lsqb;</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>R</mi> <mi>r</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mi>cos</mi> <mn>2</mn> <mi>&amp;theta;</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>&amp;delta;</mi> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>R</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;phi;</mi> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein:σrFor radial stress, Mpa;σθFor tangential stress, Mpa;σFor shear stress, Mpa;σzFor vertical stress, Mpa;σv For overburden pressure, Mpa;piFor drilling well liquid columnpressure, Mpa;ppFor prime stratum pore pressure, Mpa;To there is effect Force coefficient;μ is Poisson's ratio;σ1Horizontal maximum crustal stress, Mpa;σ2For horizontal minimum crustal stress, Mpa;R is maximum wellbore radius, m;R be wellbore radius, m;δ is infiltration coefficient;φ is mud shale porosity;
    5) the effective tangential stress considered under the action of aquation is calculated:
    <mrow> <msubsup> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mn>3</mn> <msub> <mi>&amp;sigma;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mi>&amp;phi;</mi> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mi>R</mi> <mo>&amp;prime;</mo> </msup> <mi>T</mi> </mrow> <mover> <mi>V</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mi>ln</mi> <mfrac> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msub> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> </mrow>
    Wherein:σ'θFor effective tangential stress, Mpa;ImFor permeable membrane efficiency;R ' is gas constant;T is absolute temperature;It is inclined for pure water Molal volume;(Aw)mTo enter stratum liquid activity;(Aw)shFor the activity of water in mud shale;φ is mud shale porosity;
    6) according to maximum tensional stress criterion, the fracture pressure model on hard brittle shale stratum is obtained:
    <mrow> <msub> <mi>p</mi> <mi>F</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>S</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mi>R</mi> <mo>&amp;prime;</mo> </msup> <mi>T</mi> </mrow> <mover> <mi>V</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mi>l</mi> <mi>n</mi> <mfrac> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msub> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mfrac> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;mu;</mi> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;mu;</mi> </mrow> </mfrac> <mo>+</mo> <mn>3</mn> <mi>&amp;beta;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>S</mi> <mo>-</mo> <msub> <mi>p</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> </mrow>
    P in formulaFFor formation fracture pressure, Mpa;α, β are geological structure stress coefficient;
    S is overlying stress, Mpa;StFor the tensile strength of rock, Mpa.
  2. 2. a kind of hard brittle shale Fracturing Pressure Prediction method according to claim 1, it is characterised in that:The step 1) compression strength, elasticity modulus, the Poisson's ratio of test rock, comprise the following steps in:
    1.1) standard cylinder rock sample is prepared:It is prepared, will be taken out according to International Society of Rock Mechanics (ISRM) proposed standard The mud shale rock core come is processed into the cylindrical standard sample of diameter 25.4mm, a height of 50mm, and the flatness of end face is 0.1mm;
    1.2) standard cylinder rock sample prepared by 3 groups of steps 1.1) is immersed in distilled water, impregnates 1d, 3d and 5d respectively, so After weigh and calculate corresponding moisture content;
    Moisture content calculation formula is ωc=(mω- m)/m, wherein, m is the quality after impregnating;mωFor the quality before immersion;
    1.3) confining pressure is carried out respectively again as the triaxial compression test under 15MPa, 20MPa and 25MPa:
    1. starting MTS Wikis control electro-hydraulic servo rock triaxial pressure experimental machine, the parameter setting of control program is carried out;
    2. sample is wrapped up with thermal shrinkable sleeve, pressure chamber base is fixed on, extensometer is installed;
    3. balancing gate pit's cover is loaded onto, oiling discharge gas;After oil is full of, to triaxial chamber plus confining pressure, with the speed of 1MPa per minute or so Rate is loaded into predetermined confining pressure value, then with axial strain rate 10-6The rate of/s carries out loading experiment;
    4. being loaded into sample to destroy suddenly, system is automatically stopped.
  3. 3. a kind of hard brittle shale Fracturing Pressure Prediction method according to claim 1, it is characterised in that:The step 2) the tensile strength S of disrupted beds rock intIt is estimated on the basis of live burst test graph is obtained.
  4. 4. a kind of hard brittle shale Fracturing Pressure Prediction method according to claim 1, it is characterised in that:The step 3) the other basic parameters collected in are considered as constant value in oilfield internal these coefficients.
CN201711308930.3A 2017-12-11 2017-12-11 A kind of hard brittle shale Fracturing Pressure Prediction method Pending CN108104804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711308930.3A CN108104804A (en) 2017-12-11 2017-12-11 A kind of hard brittle shale Fracturing Pressure Prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711308930.3A CN108104804A (en) 2017-12-11 2017-12-11 A kind of hard brittle shale Fracturing Pressure Prediction method

Publications (1)

Publication Number Publication Date
CN108104804A true CN108104804A (en) 2018-06-01

Family

ID=62209514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711308930.3A Pending CN108104804A (en) 2017-12-11 2017-12-11 A kind of hard brittle shale Fracturing Pressure Prediction method

Country Status (1)

Country Link
CN (1) CN108104804A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241651A (en) * 2018-09-25 2019-01-18 西安石油大学 A kind of general formation fracture pressure prediction method
CN111257134A (en) * 2018-11-30 2020-06-09 中国石油天然气股份有限公司 Continuous deep treatment method for shear stress
CN111411945A (en) * 2020-05-08 2020-07-14 中国石油天然气集团有限公司 Reservoir compressibility test method based on hydration characteristics of marine shale
CN111927446A (en) * 2020-09-11 2020-11-13 西南石油大学 Method for predicting collapse instability of well wall of hydrated shale stratum
CN111980698A (en) * 2020-09-30 2020-11-24 西南石油大学 Deep high-temperature shale formation fracture pressure calculation method considering thermal damage
CN113420264A (en) * 2021-07-20 2021-09-21 西安石油大学 Vertical well wall rupture pressure calculation method and device and computer equipment
CN113624847A (en) * 2021-08-12 2021-11-09 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method
CN115618658A (en) * 2022-12-16 2023-01-17 新疆石油管理局有限公司 Stratum fracture pressure dynamic prediction method and device based on elastic-plastic constitutive
CN117420150A (en) * 2023-12-18 2024-01-19 西安石油大学 Analysis and prediction system and prediction method based on drilling parameters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206206A (en) * 2012-01-16 2013-07-17 中国石油化工股份有限公司 Method for calculating fracture pressure of ultra deep well formations
CN107169248A (en) * 2017-07-05 2017-09-15 中海石油(中国)有限公司 A kind of special formation mud weight range determines method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206206A (en) * 2012-01-16 2013-07-17 中国石油化工股份有限公司 Method for calculating fracture pressure of ultra deep well formations
CN107169248A (en) * 2017-07-05 2017-09-15 中海石油(中国)有限公司 A kind of special formation mud weight range determines method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIN LI: "Study on open-hole extended-reach limit model analysis for horizontal drilling in shales", 《JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING》 *
王萍: "泥页岩井壁水化损伤的蠕变失稳力学研究", 《中国博士学位论文全文数据库工程科技I辑》 *
黄荣樽: "地层破裂压力预测模式的探讨", 《华东石油学院学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109241651B (en) * 2018-09-25 2022-09-16 西安石油大学 Universal stratum fracture pressure prediction method
CN109241651A (en) * 2018-09-25 2019-01-18 西安石油大学 A kind of general formation fracture pressure prediction method
CN111257134A (en) * 2018-11-30 2020-06-09 中国石油天然气股份有限公司 Continuous deep treatment method for shear stress
CN111411945A (en) * 2020-05-08 2020-07-14 中国石油天然气集团有限公司 Reservoir compressibility test method based on hydration characteristics of marine shale
CN111411945B (en) * 2020-05-08 2023-03-10 中国石油天然气集团有限公司 Reservoir compressibility test method based on hydration characteristics of marine shale
CN111927446A (en) * 2020-09-11 2020-11-13 西南石油大学 Method for predicting collapse instability of well wall of hydrated shale stratum
CN111980698A (en) * 2020-09-30 2020-11-24 西南石油大学 Deep high-temperature shale formation fracture pressure calculation method considering thermal damage
CN111980698B (en) * 2020-09-30 2022-03-18 西南石油大学 Deep high-temperature shale formation fracture pressure calculation method considering thermal damage
CN113420264A (en) * 2021-07-20 2021-09-21 西安石油大学 Vertical well wall rupture pressure calculation method and device and computer equipment
CN113420264B (en) * 2021-07-20 2022-07-05 西安石油大学 Vertical well wall rupture pressure calculation method and device and computer equipment
CN113624847A (en) * 2021-08-12 2021-11-09 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method
CN113624847B (en) * 2021-08-12 2022-07-08 西南石油大学 Method for establishing prediction model of shale hydration damage coefficient and prediction method
CN115618658A (en) * 2022-12-16 2023-01-17 新疆石油管理局有限公司 Stratum fracture pressure dynamic prediction method and device based on elastic-plastic constitutive
CN117420150A (en) * 2023-12-18 2024-01-19 西安石油大学 Analysis and prediction system and prediction method based on drilling parameters
CN117420150B (en) * 2023-12-18 2024-03-08 西安石油大学 Analysis and prediction system and prediction method based on drilling parameters

Similar Documents

Publication Publication Date Title
CN108104804A (en) A kind of hard brittle shale Fracturing Pressure Prediction method
CN107506534B (en) Method for evaluating closure of cover layer in carbon dioxide flooding and sequestration
CN108590601B (en) Experimental method for optimizing water injection expansion construction parameters
CA2762261C (en) Process for determining mobile water saturation in a reservoir formation
Sawatzky et al. Tracking cold production footprints
CN109241651A (en) A kind of general formation fracture pressure prediction method
Falcon-Suarez et al. CO2-brine flow-through on an Utsira Sand core sample: experimental and modelling. Implications for the Sleipner storage field
CN108169093B (en) Method for measuring water storage coefficient of coal mine underground reservoir
Petrakov et al. The effect of fluid saturation on the elastic-plastic properties of oil reservoir rocks
CN109162701A (en) A kind of coal seam open hole well Fracturing Pressure Prediction method
Sang et al. Experimental investigation of shale gas production with different pressure depletion schemes
Xizhe et al. Main flow channel index in porous sand reservoirs and its application
CN111577264A (en) Method and device for predicting capacity of fractured-pore oil reservoir horizontal well
Romero et al. Air Injection Laboratory Experiments on Opalinus Clay. Experimental techniques, Results and Analyses
CN114169204B (en) Sand control opportunity determination method for offshore oil and gas field development and production
Masalmeh et al. The importance of special core analysis in modelling remaining oil saturation in carbonate fields
Huang et al. Stress sensitivity analysis of fractal porous media based on the elasto-plastic thick-walled cylinder model
Stetler WATER GEOCHEMISTRY AND PRESSURE BUILDUP IN DRILL HOLES ON THE 4850-FT LEVEL AT THE SANFORD UNDERGROUND RESEARCH FACILITY.
CN105888656B (en) A kind of method that natural microcrack development compact reservoir of quantitative assessment covers pressure liquid survey permeability
Liu et al. Non-uniform Distributions of Gas Pressure and Coal Permeability in Coalbed Methane Reservoirs Induced by the Loess Plateau Geomorphology: A Case Study in Ordos Basin, China
Tan et al. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling
CN106769688B (en) Under the conditions of a kind of prediction geology in tight sand diffusion coefficient of natural gas method
US20190323344A1 (en) Method for monitoring salinity within an underground formation
RU2245442C1 (en) Method for determining type of carbonate collector on basis of data from specialized well research
Simonsen et al. Permeability of a stiff fissured very high plasticity palaeogene clay-direct and indirect measurement methods and scale effects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601

RJ01 Rejection of invention patent application after publication