CN108103465A - 加工不锈钢专用涂层刀具及其制备方法 - Google Patents

加工不锈钢专用涂层刀具及其制备方法 Download PDF

Info

Publication number
CN108103465A
CN108103465A CN201711387535.9A CN201711387535A CN108103465A CN 108103465 A CN108103465 A CN 108103465A CN 201711387535 A CN201711387535 A CN 201711387535A CN 108103465 A CN108103465 A CN 108103465A
Authority
CN
China
Prior art keywords
tool matrix
stainless steel
gas
matrix
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711387535.9A
Other languages
English (en)
Inventor
马宁
许立
李丙文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funik Ultrahard Material Co Ltd
Original Assignee
Funik Ultrahard Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funik Ultrahard Material Co Ltd filed Critical Funik Ultrahard Material Co Ltd
Priority to CN201711387535.9A priority Critical patent/CN108103465A/zh
Publication of CN108103465A publication Critical patent/CN108103465A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:25%~35%、15%~20%、5%~9%、2%~5%和37%~46%。该刀具具有高显微硬度、低摩擦系数、优异的附着力和优良的高温服役性能。本发明还提供一种制备所述加工不锈钢专用涂层刀具的方法,包括基体清洗、制备Ti过渡层、制备TiN过渡层和制备CrAlTiSiN主体涂层。该制备方法工艺简单、易于工业化生产。

Description

加工不锈钢专用涂层刀具及其制备方法
技术领域
本发明属于刀具技术领域,具体涉及一种加工不锈钢专用涂层刀具及其制备方法。
背景技术
不锈钢在生产中有较为广泛的应用,如工业石油管道上所使用的阀门、联接紧固法兰盘、球阀、医药器械及食品器械中的卫生级阀门、常见的生活类五金件等。不锈钢之所以很少生锈,主要是因为其有较高的抗腐蚀性,通常材料中含Cr量在10%以上,并含有大量的Ni成分,在较高的温度下也能保持一定的强度。市场上常选用的钢种有304、316、316L等,与其他材料组相比,不锈钢属于难切削材料范畴。不锈钢的难切削特性主要表现在以下几个方面:
黏结现象严重:由于韧性及塑性比其他材料好,因此在加工过程中切屑容易粘接在前刀面上;
切削抗力大:不锈钢与其他钢种相比,因为塑性和韧性较好,使得在加工过程中切屑不易从不锈钢基体上分离,导致形成较大的切削抗力;
导热系数低:因为导热系数较其他材料低,因此在切削加工中产生的大量温度来不及通过切屑直接排出带走从而热量附加在工件本身上,导致切削刀具的刀尖部位容易形成比较集中的高切削温度,致使切削刀具磨损严重;
加工硬化严重:切削变形严重,晶格间易产生严重的扭转变形,不稳定的奥氏体将部分向马氏体转化,产生强化效应,表面硬化程度可达不锈钢原材料的 250%~350%,其硬化深度可以达到切削深度的三分之一。
目前,市面上的加工不锈钢的刀具主要有硬质合金刀具和硬质合金涂层刀具两大类,其中涂层刀具近年来发展迅速,涂层成分主要以TiN、TiAlN;但在不锈钢的高速切削加工中,上述刀具的性能依然无法胜任。
为了解决以上存在的问题,人们一直在寻求一种理想的技术解决方案。
发明内容
由鉴于此,本发明提供一种加工不锈钢专用涂层刀具,包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:25%~35%、15%~20%、5%~9%、2%~5%和37%~46%。
基于上述,所述刀具基体为陶瓷基体、硬质合金基体或纯金属基体。
本发明还提供一种制备所述的加工不锈钢专用涂层刀具的方法,包括以下步骤:
基体清洗:依次对刀具基体进行酸洗、碱洗、去离子水冲洗和离子清洗,得到洁净刀具基体;
制备Ti过渡层:利用高功率脉冲磁控溅射技术溅射金属Ti靶,在所述洁净刀具基体上沉积Ti过渡层,得到一次沉积刀具基体;
制备TiN过渡层:以N2为反应气体,在所述一次沉积刀具基体表面沉积TiN过渡层,得到二次沉积刀具基体;
制备CrAlTiSiN主体涂层:利用高功率脉冲磁控溅射技术溅射TiSi复合靶、AlCr复合靶材和纯Cr靶,在所述二次沉积刀具基体上沉积CrAlTiSiN主体涂层,得到加工不锈钢专用涂层刀具。
基于上述,所述TiSi复合靶中Ti原子与Si原子的原子比为80:15;所述AlCr复合靶中Al原子与Cr原子的原子比为30:70。
基于上述,所述CrAlTiSiN主体涂层的厚度为3μm~10μm。
基于上述,所述基体清洗步骤具体包括:首先依次采用稀酸、碱液和去离子水对所述刀具基体进行清洗5min~10min;然后再依次采用丙酮、酒精和去离子水对其进行超声波清洗10min~15min,得到初步清洗的刀具基体;最后将所述初步清洗的刀具基体置于真空室内,将真空室的真空度抽至10-1 Pa~10-3 Pa,向真空室内通入Ar气,维持真空度为0.1Pa~1Pa,在直流偏压为-600 V~-300 V条件下对所述初步清洗的刀具基体进行5 min~20min的离子轰击,得到所述洁净刀具基体。
基于上述,所述制备Ti过渡层步骤具体包括:将所述洁净刀具基体置于到溅射室中,利用高功率脉冲磁控溅射技术溅射金属Ti靶,在平均输出功率为0.5 KW~2.5KW、偏压为-100 V~-60 V、沉积温度为400℃~600℃的条件下,在所述洁净刀具基体上沉积厚度为200 nm~300 nm的Ti过渡层,得到所述一次沉积刀具基体。
基于上述,所述制备TiN过渡层步骤具体包括:以N2气和Ar气的气体流量比为3:20的比例向所述溅射室内通入反应气体N2气和Ar气;在平均输出功率0.5KW~1.5KW、真空度为0.2 Pa~2.0Pa的条件下,在所述一次沉积刀具基体表面沉积厚度为100nm~200nm的TiN过渡层,得到所述二次沉积刀具基体。
基于上述,所述制备CrAlTiSiN主体涂层步骤具体包括:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至5×10-3Pa~6×10-3Pa,以N2气和Ar气的气体流量比1:5的比例,向所述溅射室内通入反应气体N2气和Ar气;
在平均输出功率1KW~3KW、偏压为-120V~-80V、真空度为0.1Pa~3.0Pa、沉积温度为500℃~650 ℃的条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶,在所述二次沉积刀具基体上沉积厚度为3μm~10μm 的CrAlTiSiN主体涂层,得到所述加工不锈钢专用涂层刀具。
本发明所提供的加工不锈钢专用涂层刀具所含有的主体涂层中Cr元素是提高抗热腐蚀性能的主要元素,同时,在Ti-Al-N中掺少量Cr元素可提高刀具的断裂韧性以及涂层与刀具基体之间的结合力,并能提高刀具的热稳定性温度和开始氧化温度均有明显提高。Al元素可固溶在TiN晶格中,起到固溶强化作用。在涂层刀具切削过程中,Al元素跟O元素结合,在刀具刃口表面形成致密的Al2O3薄膜,还能起到自润滑作用。Si元素能大幅提高硬度和耐磨性,研究表明,当Al、Si原子数含量达到一定比例时,涂层中的Si元素取代了亚稳态c-TiAlN中的Ti,形成了具有面心立方结构的TiAlSiN,可以提高其硬度和抗氧化温度;Ti元素具有非常好的结合力。
因此,本发明提供的加工不锈钢专用涂层刀具是以Ti层和TiN层为过渡层的CrAlTiSiN多元复合涂层刀具,在具有优异结合力的同时,涂层硬度、抗氧化性均有所提高并且还具有较低的摩擦系数。试验表明,本发明提供的加工不锈钢专用涂层刀具的显微硬度可达到31.2 GPa~37.3GPa、抗氧化温度可达到1059℃~1237℃、层间结合力可达到47N~85N、摩擦系数为0.2~0.58。
具体实施方式
下面通过具体实施方式,对本发明的技术方案做进一步的详细描述。
实施例1
本实施例提供了一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:25%、20%、5%、5%和45%。其中,所述刀具基体为陶瓷基体。
本实施例还提供一种制备所述加工不锈钢专用涂层刀具的方法,包括以下步骤:
基体清洗:首先依次采用稀酸、碱液和去离子水对所述刀具基体进行清洗10min;然后再依次采用丙酮、酒精和去离子水对其进行超声波清洗15min,得到初步清洗的刀具基体;最后将所述初步清洗的刀具基体置于真空室内,先将真空室的真空度抽至10-3 Pa,向真空室内通入Ar气,维持真空度为0.1Pa,在直流偏压为-300 V条件下对所述初步清洗的刀具基体进行20 min的离子轰击,得到所述洁净刀具基体。
制备Ti过渡层:将所述洁净刀具基体置于到溅射室中,利用高功率脉冲磁控溅射技术溅射金属Ti靶,在平均输出功率为2.5KW、偏压为-60V、沉积温度为600℃的条件下在所述洁净刀具基体上沉积厚度为300 nm的Ti过渡层,得到一次沉积刀具基体。
制备TiN过渡层:以N2气和Ar气的气体流量比为3:20的比例向所述溅射室内通入反应气体N2气和Ar气,在平均输出功率1.5KW、真空度为2.0Pa的条件下,在Ti过渡层表面沉积厚度为150nm所述TiN过渡层,得到二次沉积刀具基体。
制备CrAlTiSiN主体涂层:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至6×10-3Pa,以N2气和Ar气的气体流量比1:5的比例向所述溅射室内通入反应气体N2气和Ar气,在平均输出功率3KW、偏压为-80V、真空度为3.0Pa、沉积温度为650 ℃条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶在所述二次沉积刀具基体上沉积厚度为10 μm的CrAlTiSiN主体涂层,得到加工不锈钢专用涂层刀具。
试验证明:采用DHV-10002型显微维氏硬度计,载荷为0.49N对由本发明提供的方法制备的加工不锈钢专用涂层刀具做压痕测试,从涂层膜脱离方式、压痕周边裂纹、压痕半径三方面来分析CrAlTiSiN主体涂层与刀具基体的结合力。结果表面,本实施例提供的加工不锈钢专用涂层刀具表面虽有压痕损伤但压痕不明显且半径小于30 µm,压痕周边无裂纹。因此,由本发明提供的加工不锈钢专用涂层刀具与刀具基体有比较强的结合力。并且,经检测可得该加工不锈钢专用涂层刀具的显微硬度可达到31.2GPa、抗氧化温度可达到1200℃、层间结合力可达到85N、摩擦系数为0.3。
实施例2
本实施例提供一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:30%、15%、9%、5%和41%。其中,所述刀具基体为硬质合金基体。
本实施例还提供一种制备所述加工不锈钢专用涂层刀具的方法,具体步骤与实施例1中的步骤大致相同,不同之处在于:
本实施例中所述制备Ti过渡层的步骤包括:将所述洁净刀具基体置于到溅射室中,利用高功率脉冲磁控溅射技术溅射金属Ti靶,在平均输出功率为1KW、偏压为-60V、沉积温度为500℃的条件下在所述洁净刀具基体上沉积厚度为250nm的Ti过渡层,得到一次沉积刀具基体。
所述制备TiN过渡层的步骤包括:以N2气和Ar气的气体流量比为3:20的比例向所述溅射室内通入反应气体N2气和Ar气,在平均输出功率1KW、真空度为1.0Pa的条件下,在Ti过渡层表面沉积厚度为130 nm所述TiN过渡层,得到二次沉积刀具基体。
所述制备CrAlTiSiN主体涂层的步骤包括:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至5.5×10-3Pa,以N2气和Ar气的气体流量比1:5的比例向所述溅射室内通入反应气体N2气和Ar气,在平均输出功率1.5KW、偏压为-120V、真空度为3.0Pa、沉积温度为560 ℃的条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶在所述二次沉积刀具基体上沉积厚度为8μm 的CrAlTiSiN主体涂层,得到所述加工不锈钢专用涂层刀具。
试验证明:采用与实施例1相同的测试方法测得本实施例提供的加工不锈钢专用涂层刀具的显微硬度可达到31.2 GPa、抗氧化温度可达到1100℃、层间结合力可达到65N、摩擦系数为0.2。
实施例3
本实施例提供一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:25%、20%、5%、5%和45%。其中,所述刀具基体为45号钢基体。
本实施例还提供一种制备所述加工不锈钢专用涂层刀具的方法,具体步骤与实施例1中的步骤大致相同,不同之处在于:
本实施例中所述制备CrAlTiSiN主体涂层的步骤包括:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至6×10-3Pa;以N2气和Ar气的气体流量比1:5的比例向所述溅射室内通入反应气体N2气和Ar气;在平均输出功率2KW、偏压为-80V、真空度为3.0Pa、沉积温度为650 ℃的条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶在所述二次沉积刀具基体上沉积厚度为5μm 的CrAlTiSiN主体涂层,得到所述加工不锈钢专用涂层刀具。
试验证明:采用与实施例1相同的测试方法测得本实施例提供的加工不锈钢专用涂层刀具的显微硬度可达到35GPa、抗氧化温度可达到1237℃、层间结合力可达到60N、摩擦系数为0.3。
实施例4
本实施例提供一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀片基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:33%、17%、9%、2%和39%。其中,所述刀具基体为陶瓷基体。
本实施例还提供一种制备所述加工不锈钢专用涂层刀具方法,具体步骤与实施例1中的步骤大致相同,不同之处在于:
本实施例中所述制备CrAlTiSiN主体涂层的步骤包括:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至5×10-3Pa,以N2气和Ar气的气体流量比1:5的比例向所述溅射室内通入反应气体N2气和Ar气;在平均输出功率1KW、偏压为-100V、真空度为3.0Pa、沉积温度为620 ℃的条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶在所述二次沉积刀具基体上沉积厚度为3μm的CrAlTiSiN主体涂层,得到所述加工不锈钢专用涂层刀具。
试验表明,采用与实施例1相同的测试方法测得本实施例提供的加工不锈钢专用涂层刀具的显微硬度可达到35GPa、抗氧化温度可达到1150℃、层间结合力可达到47N、摩擦系数为0.35。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (9)

1.一种加工不锈钢专用涂层刀具,它包括刀具基体和自内而外依次沉积在所述刀具基体表面的Ti过渡层、TiN过渡层和CrAlTiSiN主体涂层,其特征在于,所述CrAlTiSiN主体涂层中Cr、Al、Ti、Si、N的原子比分别为:25%~35%、15%~20%、5%~9%、2%~5%和37%~46%。
2.根据权利要求1所述的加工不锈钢专用涂层刀具,其特征在于,所述刀具基体为陶瓷基体、硬质合金基体或纯金属基体。
3.一种制备权利要求1或2所述的加工不锈钢专用涂层刀具的方法,包括以下步骤:
基体清洗:依次对刀具基体进行酸洗、碱洗、去离子水冲洗和离子清洗,得到洁净刀具基体;
制备Ti过渡层:利用高功率脉冲磁控溅射技术溅射金属Ti靶,在所述洁净刀具基体上沉积Ti过渡层,得到一次沉积刀具基体;
制备TiN过渡层:以N2气为反应气体,在所述一次沉积刀具基体表面沉积TiN过渡层,得到二次沉积刀具基体;
制备CrAlTiSiN主体涂层:利用高功率脉冲磁控溅射技术溅射TiSi复合靶、AlCr复合靶材和纯Cr靶,在所述二次沉积刀具基体上沉积CrAlTiSiN主体涂层,得到加工不锈钢专用涂层刀具。
4.根据权利要求3所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述TiSi复合靶中Ti原子与Si原子的原子比为80:15;所述AlCr复合靶中Al原子与Cr原子的原子比为30:70。
5.根据权利要求4所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述CrAlTiSiN主体涂层的厚度为3μm~10μm。
6.根据权利要求5所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述基体清洗步骤具体包括:首先依次采用稀酸、碱液和去离子水对所述刀具基体进行清洗5min~10min;然后再依次采用丙酮、酒精和去离子水对其进行超声波清洗10min~15min,得到初步清洗的刀具基体;最后将所述初步清洗的刀具基体置于真空室内,将真空室的真空度抽至10-1 Pa~10-3 Pa,向真空室内通入Ar气,维持真空度为0.1Pa~1Pa,在直流偏压为-600 V~-300 V的条件下对所述初步清洗的刀具基体进行5 min~20 min的离子轰击,得到所述洁净刀具基体。
7.根据权利要求6所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述制备Ti过渡层步骤具体包括:将所述洁净刀具基体置于到溅射室中,利用高功率脉冲磁控溅射技术溅射金属Ti靶,在平均输出功率为0.5 KW~2.5KW、偏压为-100 V~-60 V、沉积温度为400℃~600℃条件下,在所述洁净刀具基体上沉积厚度为200nm~300nm的Ti过渡层,得到所述一次沉积刀具基体。
8.根据权利要求7所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述制备TiN过渡层步骤具体包括:以N2气和Ar气的气体流量比为3:20的比例向所述溅射室内通入反应气体N2气和Ar气;在平均输出功率0.5KW~1.5KW、真空度为0.2 Pa~2.0Pa的条件下,在所述一次沉积刀具基体表面沉积厚度为100nm~200nm的TiN过渡层,得到所述二次沉积刀具基体。
9.根据权利要求8所述的制备加工不锈钢专用涂层刀具的方法,其特征在于,所述制备CrAlTiSiN主体涂层步骤具体包括:将所述二次沉积刀具基体置于到溅射室中,先将溅射室的真空度抽至5×10-3Pa~6×10-3Pa,以N2气和Ar气的气体流量比1:5的比例,向所述溅射室内通入反应气体N2气和Ar气;
在平均输出功率1KW~3KW、偏压为-120V~-80V、真空度为0.1Pa~3.0Pa、沉积温度为500℃~650 ℃的条件下,利用高功率脉冲磁控溅射技术分别溅射TiSi复合靶、AlCr复合靶和纯Cr靶,在所述二次沉积刀具基体上沉积厚度为3μm~10μm 的CrAlTiSiN主体涂层,得到所述加工不锈钢专用涂层刀具。
CN201711387535.9A 2017-12-20 2017-12-20 加工不锈钢专用涂层刀具及其制备方法 Pending CN108103465A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711387535.9A CN108103465A (zh) 2017-12-20 2017-12-20 加工不锈钢专用涂层刀具及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711387535.9A CN108103465A (zh) 2017-12-20 2017-12-20 加工不锈钢专用涂层刀具及其制备方法

Publications (1)

Publication Number Publication Date
CN108103465A true CN108103465A (zh) 2018-06-01

Family

ID=62211417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711387535.9A Pending CN108103465A (zh) 2017-12-20 2017-12-20 加工不锈钢专用涂层刀具及其制备方法

Country Status (1)

Country Link
CN (1) CN108103465A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295425A (zh) * 2018-09-28 2019-02-01 深圳市奥美特纳米科技有限公司 Cr/CrN/CrAlSiN/CrAlTiSiN纳米多层梯度膜及其制备方法
CN114026269A (zh) * 2019-06-28 2022-02-08 瓦尔特公开股份有限公司 涂覆的切削工具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071819A (zh) * 2012-12-31 2013-05-01 四川大学 一种刀具表面Ti/TiN/MaN复合涂层及其制备方法
CN105839054A (zh) * 2016-05-24 2016-08-10 上海都浩真空镀膜技术有限公司 一种CrAlTiSiN刀具保护性涂层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071819A (zh) * 2012-12-31 2013-05-01 四川大学 一种刀具表面Ti/TiN/MaN复合涂层及其制备方法
CN105839054A (zh) * 2016-05-24 2016-08-10 上海都浩真空镀膜技术有限公司 一种CrAlTiSiN刀具保护性涂层及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295425A (zh) * 2018-09-28 2019-02-01 深圳市奥美特纳米科技有限公司 Cr/CrN/CrAlSiN/CrAlTiSiN纳米多层梯度膜及其制备方法
CN109295425B (zh) * 2018-09-28 2020-07-14 深圳市奥美特纳米科技有限公司 Cr/CrN/CrAlSiN/CrAlTiSiN纳米多层梯度膜及其制备方法
CN114026269A (zh) * 2019-06-28 2022-02-08 瓦尔特公开股份有限公司 涂覆的切削工具
CN114026269B (zh) * 2019-06-28 2024-01-09 瓦尔特公开股份有限公司 涂覆的切削工具

Similar Documents

Publication Publication Date Title
CN108220880B (zh) 一种高硬度高耐蚀性高熵合金氮化物涂层及其制备方法
CN107201499B (zh) 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法
CN104789933B (zh) 一种纳米复合涂层及其沉积方法
Ananthakumar et al. Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings
Gilewicz et al. Structure, morphology, and mechanical properties of AlCrN coatings deposited by cathodic arc evaporation
Zhao et al. Super-hard and anti-corrosion (AlCrMoSiTi) Nx high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition
Gu et al. Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings
Rodríguez-Castro et al. Multi-pass scratch test behavior of AISI 316L borided steel
Grigoriev et al. Investigation of the properties of the Cr, Mo-(Cr, Mo, Zr, Nb) N-(Cr, Mo, Zr, Nb, Al) N multilayer composite multicomponent coating with nanostructured wear-resistant layer
Ou et al. Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering
CN104325738B (zh) 一种冷轧圆盘飞剪的硬质涂层及其制备方法
Ge et al. Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments
Ahangarani et al. A review on titanium nitride and titanium carbide single and multilayer coatings deposited by plasma assisted chemical vapor deposition
CN108103465A (zh) 加工不锈钢专用涂层刀具及其制备方法
CN106893987A (zh) 一种物理气相沉积Ta‑C涂层的制备方法及Ta‑C涂层
Lackner et al. Room temperature deposition of (Ti, Al) N and (Ti, Al)(C, N) coatings by pulsed laser deposition for tribological applications
Xingrun et al. Comparison of microstructure and tribological behaviors of CrAlN and CrN film deposited by DC magnetron sputtering
JP2021501830A (ja) タービンブレードおよびその他の構成要素の耐水滴浸食性コーティング材
Chang et al. Mechanical properties of amorphous and crystalline CrN/CrAlSiN multilayer coating fabricated using HPPMS
Fellah et al. Characterisation of RF magnetron sputtered Cr-N, Cr-Zr-N and Zr-N coatings
Ariharan et al. A comprehensive review of vapour deposited coatings for cutting tools: properties and recent advances
Naghashzadeh et al. Nanoindentation and tribological behavior of TiN-TiCN-TiAlN multilayer coatings on AISI D3 tool steel
Bakalova et al. The effect of the process gas mixture ratio on the structure and composition of TiC and TiCN thin layers prepared by cathodic arc deposition on tool steel
Zhang et al. Structure, mechanical property, and tribological behavior of c-NbN/CNx multilayers grown by magnetron sputtering
CN1776024A (zh) 切削锯钻工具的表面使用的硬质复合纳米陶瓷薄膜的涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601